Answer:
[tex]\frac{1}{12}[/tex]
Step-by-step explanation:
The number with the smallest denominator is the larger number and [tex]\frac{1}{12}[/tex] is the number with the smallest denominator out of [tex]\frac{1}{12} , \frac{1}{32} , \frac{1}{48} , \frac{1}{18}[/tex].
Answer:
1/12
Step-by-step explanation:
Start with a number, for example 100.
Now divide 100 by several numbers which are greater and greater:
100/1 = 100
100/2 = 50
100/4 = 25
100/10 = 10
100/100 = 1
As you divide the same number, 100, by a greater number, the result becomes smaller.
As we divide 100 by 1, then by 2, then by 4, etc., we are always dividing 100 by a greater and greater number. The result is smaller and smaller, 100, 50, 25, etc. If you always divide the same number by other numbers, the larger the number you divide by, the smaller the result.
Numbers in order from greatest to smallest:
1/12, 1/18, 1/32, 1/48
Answer: The greatest number is 1/12
Use Green's Theorem to evaluate ?C F·dr. (Check the orientation of the curve before applying the theorem.)
F(x, y) =< x + 4y3, 4x2 + y>
C consists of the arc of the curve y = sin x from (0, 0) to (p, 0) and the line segment from (p, 0) to (0, 0).
Answer:
Step-by-step explanation:
given a field of the form F = (P(x,y),Q(x,y) and a simple closed curve positively oriented, then
[tex]\int_{C} F \cdot dr = \int_A \frac{dQ}{dx} - \frac{dP}{dy} dA[/tex] where A is the area of the region enclosed by C.
In this case, by the description we can assume that C starts at (0,0). Then it goes the point (pi,0) on the path giben by y = sin(x) and then return to (0,0) along the straigth line that connects both points. Note that in this way, the interior the region enclosed by C is always on the right side of the point. This means that the curve is negatively oriented. Consider the path C' given by going from (0,0) to (pi,0) in a straight line and the going from (pi,0) to (0,0) over the curve y = sin(x). This path is positively oriented and we have that
[tex] \int_{C} F\cdot dr = - \int_{C'} F\cdot dr[/tex]
We use the green theorem applied to the path C'. Taking [tex] P = x+4y^3, Q = 4x^2+y[/tex] we get
[tex] \int_{C'} F\cdot dr = \int_{A} 8x-12y^2dA[/tex]
A is the region enclosed by the curves y =sin(x) and the x axis between the points (0,0) and (pi,0). So, we can describe this region as follows
[tex]0\leq x \leq \pi, 0\leq y \leq \sin(x)[/tex]
This gives use the integral
[tex] \int_{A} 8x-12y^2dA = \int_{0}^{\pi}\int_{0}^{\sin(x)} 8x-12y^2 dydx[/tex]
Integrating accordingly, we get that [tex]\int_{C'} F\cdot dr = 8\pi - \frac{16}{3}[/tex]
So
[tex] \int_{C} F cdot dr = - (8\pi - \frac{16}{3}) = \frac{16}{3} - 8\pi [/tex]
What is the ratio 16 : 12 in its simplest form?
Answer:
4 : 3
Step-by-step explanation:
16 : 12 can be simplified by 4 to get 4 : 3
Answer:
[tex]4:3[/tex]
Step-by-step explanation:
[tex]16 : 12[/tex]
The common highest factor of the ratio is 4.
Simplify the ratio.
[tex]16 \div 4:12 \div 4[/tex]
[tex]4:3[/tex]
A sample of 8 students was asked how often they used campus dining facilities during the past month. The responses were as follows. 4 1 6 1 2 10 2 6 The sample standard deviation is _____.
Answer:
Your answer is 3.16227766
Step-by-step explanation:
divide and simplify x^2+7x+12 over x+3 divided by x-1 over x+4
Answer:
[tex]\dfrac{x^2+8x+16}{x-1}[/tex]
Step-by-step explanation:
In general, "over" and "divided by" are used to mean the same thing. Parentheses are helpful when you want to show fractions divided by fractions. Here, we will assume you intend ...
[tex]\dfrac{\left(\dfrac{x^2+7x+12}{x+3}\right)}{\left(\dfrac{x-1}{x+4}\right)}=\dfrac{(x+3)(x+4)}{x+3}\cdot\dfrac{x+4}{x-1}=\dfrac{(x+4)^2}{x-1}\\\\=\boxed{\dfrac{x^2+8x+16}{x-1}}[/tex]
The Venn diagram below is used for showing odd numbers and prime numbers.
Place the numbers 1, 2, 3, 4 and 5 in the Venn diagram.
Answer:
See attached
Step-by-step explanation:
Given the numbers 1,2,3,4 and 5
Odd Numbers =1, 3 and 5Prime Numbers = 2, 3 and 5Let O be the event that the number is Odd
Let E be the event that the number is Prime
Then the intersection of Odd and Prime Numbers: [tex]O \cap P =\{3,5\}[/tex]
Since 4 is neither odd nor prime, we place it outside of the two circles.
See the attached diagram for the required Venn diagram.
A lake has a large population of fish. On average, there are 2,400 fish in the lake, but this number can vary by as much as 155. What is the maximum number of fish in the lake? What is the minimum number of fish in the lake?
Answer:
Minimum population of fish in lake = 2400 - 155 = 2245
Maximum population of fish in lake = 2400 + 155 = 2555
Step-by-step explanation:
population of fish in lake = 2400
Variation of fish = 155
it means that while current population of fish is 2400, the number can increase or decrease by maximum upto 155.
For example
for increase
population of fish can 2400 + 2, 2400 + 70, 2400 + 130 etc
but it cannot be beyond 2400 + 155.
It cannot be 2400 + 156
similarly for decrease
population of fish can 2400 - 3, 2400 - 95, 2400 - 144 etc
but it cannot be less that 2400 - 155.
It cannot be 2400 - 156
Hence population can fish in lake can be between 2400 - 155 and 2400 + 155
minimum population of fish in lake = 2400 - 155 = 2245
maximum population of fish in lake = 2400 + 155 = 2555
-12.48 -(-2.99)-5.62
Answer:
[tex]-15.11[/tex]
Step-by-step explanation:
[tex]-12.48-(-2.99)-5.62=\\-12.48+2.99-5.62=\\-9.49-5.62=\\-15.11[/tex]
Answer:
-15.11
Step-by-step explanation:
-12.48+2.99-5.62=
-9.49 - 5.62= - (9.49+5.62)=-15.11
Which of the following are equations for the line shown below? Check all that apply.
A. Y= x-2
B. Y-1=(x-3)
C. Y=x-2
D. Y+4=(x+2)
Answer: D. [tex]y+4=(x+2)[/tex]
Step-by-step explanation: Once you subtract [tex]4[/tex] from both sides, in order to solve for y (as the equation needs to be in the slope-intercept form, otherwise known as [tex]y=mx+b[/tex]), you end up with [tex]y=x-2[/tex], which is the right answer. It is the correct answer because the y-intecept shown in the equation matches what is on the graph, in addition to the fact that the slope is just [tex]x[/tex].
3. How many different arrangements can be made with the letters in the word
POWER?
O A 100
B 25
OC 20
OD 120
Answer:
D. 120
Step-by-step explanation:
Array formula: A (n, p) = n! / (n -p)!
At where:
n = Total number of elements in the set.
p = Quantity of elements per arrangement
A (5.5) = 5! / (5-5)! = (5x4x3x2x1) / 0!
By definition: 0! = 1
Then: 120/1 = 120
Which of the following equations describes the line shown below? Check all
that apply
Answer:
y-7=1/2(x-8)
y-4=1/2(x-2)
Step-by-step explanation:
Slope: 3/6, or 1/2
y-7=1/2(x-8)
y-4=1/2(x-2)
Find sin angle ∠ C.
A. 12/13
B. 1
C. 13/12
D. 13/5
Answer:
A
Step-by-step explanation:
We can use the trigonometric ratios. Recall that sine is the ratio of the opposite side to the hypotenuse:
[tex]\displaystyle \sin(C)=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]
The opposite side with respect to ∠C is 24 and the hypotenuse is 26.
Hence:
[tex]\displaystyle \sin(C)=\frac{24}{26}=\frac{12}{13}[/tex]
Our answer is A.
What is the end behavior of the graph of the polynomial function f(x) = 2x3 – 26x – 24?
Answer:
Step-by-step explanation:
Answer:
its b on edge
Step-by-step explanation:
Which of the following statements are equivalent to the statement "Every integer has an additive inverse" NOTE: (The additive inverse of a number x is the number that, when added to x, yields zero. Example: the additive inverse of 5 is -5, since 5+-5 = 0) Integers are{ ... -3, -2,-1,0, 1, 2, 3, ...} All integers have additive inverses. A. There exists a number x such that x is the additive inverse of all integers.B. All integers have additive inverses.C. If x is an integer, then x has an additive inverse.D. Given an integer x, there exists a y such that y is the additive inverse of x.E. If x has an additive inverse, then x is an integer.
Answer:
B, C and D
Step-by-step explanation:
Given:
Statement: "Every integer has an additive inverse"
To find: statement that is equivalent to the given statement
Solution:
For any integer x, if [tex]x+y=0[/tex] then y is the additive inverse of x.
Here, 0 is the additive identity.
Statements ''All integers have additive inverses '', '' If x is an integer, then x has an additive inverse'' and ''Given an integer x, there exists a y such that y is the additive inverse of x'' are equivalent to the given statement "Every integer has an additive inverse".
Help meeeee and thank u so much god bless u haha
Answer:
[See Below]
Step-by-step explanation:
For Point Slope Form:Point slope form is: [tex]y-y_1=m(x-x_1)[/tex]
'm' is the slope
(x1, y1) is a coordinate point.
Slope:Slope is rise over run. [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
We are given the points (-1,5) and (3,-3).
[tex]\frac{-3-5}{3-(-1)}=\frac{-8}{4}= -2[/tex]
The slope of the line is -2.
I will use (-1,5) as the point:
[tex]y-y_1=m(x-x_1)\rightarrow\boxed{y-5=-2(x+1)}[/tex]
For Slope Intercept:Slope intercept is: [tex]y=mx+b[/tex]
'm' - Slope
'b' - y-intercept
We can use the point slope equation to convert it into slope intercept form:
[tex]y-5=-2(x+1)\\\\y-5=-2x-2\\\\y-5+5=-2x-2+5\\\\\boxed{y=-2x+3}[/tex]
For Standard Form:Standard form is [tex]Ax+By=C[/tex]
Using out slope intercept form equation:
[tex]y=-2x+3\\\\y+2x=-2x+2x+3\\\\1y+2x=3\\\\\boxed{2x+1y=3}[/tex]
Which are the right ones?
Answer:
20 4/5
Step-by-step explanation:
13/5 times 8/1
104/5
which is simplify
to 20 4/5\
hope this helps
There are 11 students in our Science class left to give their presentations. Today we will have time for 6 presentations. How many different ways can the teacher choose the presenters?
Answer:
He has 2,772 ways
Step-by-step explanation:
Hello,
the teacher has to choose 6 students and there are 11 students in total.
When he chooses the first student he has 11 choices
if he has to choose 1 students he has 11 ways to do it
then for the second one he has 11-1=10 choices
if he has to choose 2 students he has (11*10)/2 ways to do it (we do not count the duplicate - for instance if he chooses Steve and then Nils or Nils and then Steve this is only one group (Steve, Nils) we do not care of the order)
Then for the third student he has 10-1=9 choices
if he has to choose 3 students he has (11*10*9)/(2*3) ways to do it (we do not take into account the order of ppl in the group)
and so on and so forth
...
if he has to choose 6 students he has (11*10*9*8*7*6)/(2*3*4*5)
so he has 2,772 ways
Answer:
C. 462 is correct. I did the test.
Step-by-step explanation:
The area of the sector of a circle with a radius of 8 centimeters is 125.6 square centimeters. The estimated value of is 3.14.
The measure of the angle of the sector is
Answer:
225º or 3.926991 radians
Step-by-step explanation:
The area of the complete circle would be π×radius²: 3.14×8²=200.96
The fraction of the circle that is still left will be a direct ratio of the angle of the sector of the circle.
[tex]\frac{125.6}{200.96}[/tex]=.625. This is the ratio of the circe that is in the sector. In order to find the measure we must multiply it by either the number of degrees in the circle or by the number of radians in the circle (depending on the form in which you want your answer).
There are 360º in a circle, so .625×360=225 meaning that the measure of the angle of the sector is 225º.
We can do the same thing for radians, if necessary. There are 2π radians in a circle, so .625×2π=3.926991 radians.
Answer:
225º
Step-by-step explanation:
Suppose that prices of recently sold homes in one neighborhood have a mean of $225,000 with a standard deviation of $6700. Using Chebyshev's Theorem, what is the minimum percentage of recently sold homes with prices between $211,600 and $238,400
Answer:
[tex] 211600 = 225000 -k*6700[/tex]
[tex] k = \frac{225000-211600}{6700}= 2[/tex]
[tex] 238400 = 225000 +k*6700[/tex]
[tex] k = \frac{238400-225000}{6700}= 2[/tex]
So then the % expected would be:
[tex] 1- \frac{1}{2^2}= 1- 0.25 =0.75[/tex]
So then the answer would be 75%
Step-by-step explanation:
For this case we have the following info given:
[tex] \mu = 225000[/tex] represent the true mean
[tex]\sigma =6700[/tex] represent the true deviation
And for this case we want to find the minimum percentage of sold homes between $211,600 and $238,400.
From the chebysev theorem we know that we have [tex]1 -\frac{1}{k^2}[/tex] % of values within [tex]\mu \pm k\sigma[/tex] if we use this formula and the limit given we have:
[tex] 211600 = 225000 -k*6700[/tex]
[tex] k = \frac{225000-211600}{6700}= 2[/tex]
[tex] 238400 = 225000 +k*6700[/tex]
[tex] k = \frac{238400-225000}{6700}= 2[/tex]
So then the % expected would be:
[tex] 1- \frac{1}{2^2}= 1- 0.25 =0.75[/tex]
So then the answer would be 75%
For what values (cases) of the variables the expression does not exist: a / a−b
Answer:
a=b
Step-by-step explanation:
When the denominator is zero, the expression is undefined
a-b=0
a=b
Overweight participants who lose money when they don’t meet a specific exercise goal meet the goal more often, on average, than those who win money when they meet the goal, even if the final result is the same financially. In particular, participants who lost money met the goal for an average of 45.0 days (out of 100) while those winning money or receiving other incentives met the goal for an average of 33.7 days. The incentive does make a difference. In this exercise, we ask how big the effect is between the two types of incentives. Find a 90% confidence interval for the difference in mean number of days meeting the goal, between people who lose money when they don't meet the goal and those who win money or receive other similar incentives when they do meet the goal. The standard error for the difference in means from a bootstrap distribution is 4.14.
Answer:
The 90% confidence interval for the difference in mean number of days meeting the goal is (4.49, 18.11).
Step-by-step explanation:
The (1 - α)% confidence interval for the difference between two means is:
[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]
It is provided that:
[tex]\bar x_{1}=45\\\bar x_{2}=33.7\\SE_{\text{diff}} =4.14\\\text{Confidence Level}=90\%[/tex]
The critical value of z for 90% confidence level is,
z = 1.645
*Use a z-table.
Compute the 90% confidence interval for the difference in mean number of days meeting the goal as follows:
[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]
[tex]=45-33.7\pm 1.645\times 4.14\\\\=11.3\pm 6.8103\\\\=(4.4897, 18.1103)\\\\\approx (4.49, 18.11)[/tex]
Thus, the 90% confidence interval for the difference in mean number of days meeting the goal is (4.49, 18.11).
According to Brad, consumers claim to prefer the brand-name products better than the generics, but they can't even tell which is which. To test his theory, Brad gives each of 199 consumers two potato chips - one generic, and one brand-name - then asks them which one is the brand-name chip. 92 of the subjects correctly identified the brand-name chip.
Required:
a. At the 0.01 level of significance, is this significantly greater than the 50% that could be expected simply by chance?
b. Find the test statistic value.
Answer:
a. There is not enough evidence to support the claim that the proportion that correctly identifies the chip is significantly smaller than 50%.
b. Test statistic z=-1.001
Step-by-step explanation:
This is a hypothesis test for a proportion.
The claim is that the proportion that correctly identifies the chip is significantly smaller than 50%.
Then, the null and alternative hypothesis are:
[tex]H_0: \pi=0.5\\\\H_a:\pi<0.5[/tex]
The significance level is 0.01.
The sample has a size n=199.
The sample proportion is p=0.462.
[tex]p=X/n=92/199=0.462[/tex]
The standard error of the proportion is:
[tex]\sigma_p=\sqrt{\dfrac{\pi(1-\pi)}{n}}=\sqrt{\dfrac{0.5*0.5}{199}}\\\\\\ \sigma_p=\sqrt{0.001256}=0.035[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p-\pi+0.5/n}{\sigma_p}=\dfrac{0.462-0.5+0.5/199}{0.035}=\dfrac{-0.035}{0.035}=-1.001[/tex]
This test is a left-tailed test, so the P-value for this test is calculated as:
[tex]\text{P-value}=P(z<-1.001)=0.16[/tex]
As the P-value (0.16) is greater than the significance level (0.01), the effect is not significant.
The null hypothesis failed to be rejected.
There is not enough evidence to support the claim that the proportion that correctly identifies the chip is significantly smaller than 50%.
Estimate the area of the circle equal three decimal 14 round to the nearest hundredth if necessary9
Answer:
49π m² or 153.94 m²
Step-by-step explanation:
Area of a circle: A = πr²
We are given r as 7, so simply plug it in
A = π(7)^2
A = 49π m²
Find the product of
3/5 × 7/11
Answer:
21/55
Step-by-step explanation:
Simply multiply the top 2 together:
3 x 7 = 21
And the bottom 2 together:
5 x 11 = 55
21/55 is your answer!
A restaurant borrows from a local bank for months. The local bank charges simple interest at an annual rate of for this loan. Assume each month is of a year. Answer each part below.Do not round any intermediate computations, and round your final answers to the nearest cent. If necessary, refer to the list of financial formulas.
(a) Find the interest that will be owed after 4 months
(b) Assuming the restaurant doesn't make any payments, find the amount owed after 4 months
Complete Question:
A restaurant borrows $16,100 from a local bank for 4 months. The local bank charges simple interest at an annual rate of 2.45% for this loan. Assume each month is 1/12 of a year.
Answer each part below.Do not round any intermediate computations, and round your final answers to the nearest cent. If necessary, refer to the list of financial formulas.
(a) Find the interest that will be owed after 4 months
(b) Assuming the restaurant doesn't make any payments, find the amount owed after 4 months
Answer:
a) Interest that will be owed after 4 months , I = $131.48
b) Amount owed by the restaurant after 4 months = $16231.48
Step-by-step explanation:
Note that the question instructs not to round any intermediate computations except the final answer.
Annual rate = 2.45%
Monthly rate, [tex]R = \frac{2.45\%}{12}[/tex]
R = 0.20416666666%
Time, T = 4 months
Interest, [tex]I = \frac{PRT}{100}[/tex]
[tex]I = \frac{16100 * 0.20416666666 * 4}{100} \\I = 161 * 0.20416666666 * 4\\I = \$131.483333333\\I = \$131.48[/tex]
b) If the restaurant doesn't make any payments, that means after four months, they will be owing both the capital and the interest ( i.e the amount)
Amount owed by the restaurant after 4 months = (Amount borrowed + Interest)
Amount owed by the restaurant after 4 months = 16100 + 131.48
Amount owed by the restaurant after 4 months = $16231.48
Write the rectangular equation (x+5) 2 + y 2 = 25 in polar form.
Answer:
r = -10*cos(t)
Step-by-step explanation:
To write the rectangular equation in polar form we need to replace x and y by:
[tex]x=r*cos(t)\\y=r*sin(t)[/tex]
Replacing on the original equation, we get:
[tex](x+5)^2+y^2=25\\x^2+10x+25+y^2=25\\(r*cos(t))^2+10*(r*cos(t))+25+(r*sin(t))^2=25[/tex]
Using the identity [tex]sin^2(t)+cos^2(t)=1[/tex] and solving for r, we get that the polar form of the equation is:
[tex](r*cos(t))^2+10*(r*cos(t))+25+(r*sin(t))^2=25\\r^2cos^2(t)+10rcos(t)+r^2sin^2(t)=0\\r^2cos^2(t)+r^2sin^2(t)=-10rcos(t)\\r^2(cos^2(t)+sin^2(t))=-10rcos(t)\\r^2=-10rcos(t)\\\\r=-10cos(t)[/tex]
What is the solution for this inequality? 5x ≤ 45
A. x ≥ -9
B. x ≤ 9
C. x ≤ -9
D. x ≥ 9
Answer:
[tex]x\le \:9[/tex]
Step-by-step explanation:
[tex]5x\le 45[/tex]
[tex]\frac{5x}{5}\le \frac{45}{5}[/tex]
[tex]x\le \:9[/tex]
Answer:
B
Step-by-step explanation:
We divide the entire inequality by 5 to get rid of the coefficient of x. The ≤ stays the same so we get x ≤ 9.
Math 7th grade. help please!!!
Answer:
1 .angle S is 90 degree
2. 12
3. 155 degree
1. x = 3
hope it helps .....
What is the value of (4-2) – 3x4?
О-20
оооо
4
Answer:
-10
Step-by-step explanation:
Use the Order of Operations - PEMDAS
Do what is in parentheses first - (4-2) = 2
Next multiply 3 and 4 = 12
Last, perform 2 - 12; which equals -10
1. A door of a lecture hall is in a parabolic shape. The door is 56 inches across at the bottom of the door and parallel to the floor and 32 inches high. Sketch and find the equation describing the shape of the door. If you are 22 inches tall, how far must you stand from the edge of the door to keep from hitting your head
Answer:
See below in bold.
Step-by-step explanation:
We can write the equation as
y = a(x - 28)(x + 28) as -28 and 28 ( +/- 1/2 * 56) are the zeros of the equation
y has coordinates (0, 32) at the top of the parabola so
32 = a(0 - 28)(0 + 28)
32 = a * (-28*28)
32 = -784 a
a = 32 / -784
a = -0.04082
So the equation is y = -0.04082(x - 28)(x + 28)
y = -0.04082x^2 + 32
The second part is found by first finding the value of x corresponding to y = 22
22 = -0.04082x^2 + 32
-0.04082x^2 = -10
x^2 = 245
x = 15.7 inches.
This is the distance from the centre of the door:
The distance from the edge = 28 - 15.7
= 12,3 inches.
What is the square root of 28
Answer:5. 291503
Step-by-step explanation:
√28
2√7
5. 291503