Where do you find cells that undergo meiosis? What is the
purpose of meiosis?
What would the impact be for a male who is producing very low
amounts of FSH?

Answers

Answer 1

Cells that undergo meiosis are found in the gonads of animals, i.e., the testes of males and the ovaries of females. Meiosis is a process in which a single cell divides two times to produce four cells that contain half the amount of genetic material as the parent cell. Meiosis is an essential process in the production of gametes and is necessary for sexual reproduction.

Meiosis is a specialized type of cell division that results in the formation of gametes, the sperm in males and the eggs in females. The process consists of two divisions and generates four daughter cells with half the number of chromosomes as the parent cell.The purpose of meiosis is to reduce the chromosome number by half and to introduce genetic variability by shuffling and recombining the chromosomes.

This ensures that offspring inherit a unique combination of genes from both parents and contributes to the genetic diversity of a population.If a male is producing low levels of follicle-stimulating hormone (FSH), this can result in reduced sperm production. FSH is a hormone produced by the pituitary gland that stimulates the testes to produce sperm. Low levels of FSH can lead to decreased sperm production, which can make it more difficult for a male to father children. In some cases, treatment with medications that increase FSH levels may be needed to improve sperm production.

To know more about meiosis visit:

https://brainly.com/question/30336915

#SPJ11


Related Questions

Oxygenated blood goes from the O a) Right ventricle to the right atria to the heart O b) Lungs to the heart to the body cells O c) Body cells to the heart to the lungs O d) Lungs to the body cells

Answers

The correct answer is:

b) Lungs to the heart to the body cells

Oxygenated blood travels from the lungs to the heart, specifically to the left atrium, through the pulmonary veins. From the left atrium, it then passes into the left ventricle. The left ventricle is responsible for pumping oxygenated blood out of the heart and into the systemic circulation, supplying oxygen to the body's cells. The oxygenated blood is distributed throughout the body via arteries, arterioles, and capillaries, reaching the various tissues and organs. In the capillaries, oxygen is released to the body's cells, and deoxygenated blood returns to the heart through veins to be pumped to the lungs for oxygenation once again.

Learn more about   Oxygenated blood  here:

https://brainly.com/question/32327726

#SPJ11

Gastric acid commonly creats peptic ulcers in the _____? (select
all that apply)
-stomach
-duodenum
-illeum
-jejunum

Answers

Gastric acid commonly creates peptic ulcers in the stomach and duodenum.

Peptic ulcers are painful sores that occur in the stomach lining or the duodenum (the upper part of the small intestine). The majority of peptic ulcers are caused by the bacterium Helicobacter pylori, which is responsible for up to 90% of cases. In some instances, the long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin or ibuprofen can induce peptic ulcers. Peptic ulcers, as the name implies, are ulcers that develop in the stomach lining and the upper part of the small intestine known as the duodenum.

The duodenum is the area where stomach acid and digestive juices are introduced to the digestive system, and it is therefore more susceptible to peptic ulcer development.In conclusion, gastric acid commonly creates peptic ulcers in the stomach and duodenum.

Learn more about Peptic ulcers at https://brainly.com/question/31719027

#SPJ11

gonadocorticoids are released by which part of the adrenal gland?

Answers

Gonadocorticoids are released by the zona reticularis of the adrenal gland.

The adrenal gland is composed of two main parts: the outer cortex and the inner medulla. The cortex is further divided into three layers: the zona glomerulosa, the zona  fasciculata, and the zona reticularis. Each layer of the cortex produces different types of hormones. The zona reticularis specifically secretes gonadocorticoids, also known as sex hormones. These hormones include androgens (such as dehydroepiandrosterone, or DHEA) and some estrogenic compounds. While the zona reticularis is responsible for the production of gonadocorticoids, the other layers of the adrenal cortex produce different hormones, such as mineralocorticoids (aldosterone) and glucocorticoids (cortisol).

learn more about " adrenal gland ":- https://brainly.com/question/15628426

#SPJ11

whaler who was swallowed by a whale. A day or 2 later his crew got a whale. By pure chance it was the same whale. When they cut it open they found the man alive

Answers

While it is possible for a person to be swallowed by a whale, it is extremely rare and there is no verified scientific evidence of a person surviving such an incident.

The story you mentioned is often considered a legend or a fictional tale.

Fictional characters or events occur only in stories, plays, or films and never actually existed or happened.

Fiction: something invented by the imagination or feigned. specifically : an invented story. … I'd found out that the story of the ailing son was pure fiction.

To know more about fictional tale, visit:

https://brainly.com/question/1315357

#SPJ11

2 A. List the 13 steps of pulmonary circulation on left and then add each step and its corresponding number, correctly to the diagram illustrating pulmonary circulation on the right. (8 points). 2B. Name a congenital heart defect and discuss its significance in affecting pulmonary circulation above ( 2 points).

Answers

Surgical intervention is typically required to correct Tetralogy of Fallot, aiming to repair the defects and improve pulmonary circulation, allowing for better oxygenation and overall cardiac function.

A. List of the 13 steps of pulmonary circulation:

1. Deoxygenated blood enters the right atrium from the superior and inferior vena cava.

2. The right atrium contracts, forcing the blood through the tricuspid valve.

3. Blood flows into the right ventricle.

4. The right ventricle contracts, pushing the blood through the pulmonary valve.

5. Blood enters the pulmonary artery, which splits into left and right pulmonary arteries.

6. Pulmonary arteries carry deoxygenated blood to the lungs.

7. In the lungs, the blood moves through the pulmonary capillaries surrounding the alveoli.

8. Oxygen from the alveoli diffuses into the pulmonary capillaries, while carbon dioxide diffuses out of the capillaries into the alveoli.

9. Oxygenated blood returns to the heart via the pulmonary veins.

10. Pulmonary veins carry oxygenated blood from the lungs to the left atrium.

11. The left atrium contracts, pushing the blood through the mitral (bicuspid) valve.

12. Blood flows into the left ventricle.

13. The left ventricle contracts, forcing the oxygenated blood through the aortic valve and into the aorta.

B. Congenital heart defect affecting pulmonary circulation: Tetralogy of Fallot

Tetralogy of Fallot is a congenital heart defect that affects pulmonary circulation. It is a combination of four specific heart abnormalities, which include:

Ventricular septal defect (VSD): A hole in the wall (septum) that separates the right and left ventricles, allowing blood to flow from the right ventricle to the left ventricle.

Pulmonary stenosis: Narrowing of the pulmonary valve or the pulmonary artery, restricting blood flow from the right ventricle to the lungs.

The significance of Tetralogy of Fallot is that it causes a mixing of oxygenated and deoxygenated blood, leading to decreased oxygen levels in the systemic circulation. The ventricular septal defect allows blood from the right ventricle to flow into the left ventricle, resulting in systemic circulation receiving less oxygen-rich blood.

Learn more about Surgical intervention https://brainly.com/question/26724240

#SPJ11

Ulva, Volvox, Spirogyra, Red algae, Plasmodial slime mold, Dinoflagellates, Stentor, Plasmodium, Trypanosoma, diatoms, Radiolaria, Euglena Brown algae

Answers

The list you provided includes various organisms from different taxonomic groups. Here is some information about each of them:

1. Ulva: Ulva is a genus of green algae commonly known as sea lettuce. It is multicellular and can be found in marine and freshwater environments. Ulva is edible and is sometimes used in salads or as a food source for animals.

2. Volvox: Volvox is a genus of green algae that forms spherical colonies. Each colony consists of numerous individual cells that work together in a coordinated manner. Volvox colonies are known for their intricate cellular organization and reproductive strategies.

3. Spirogyra: Spirogyra is a filamentous green alga that has spiral chloroplasts, giving it its characteristic appearance. It is commonly found in freshwater habitats. Spirogyra is photosynthetic and plays a vital role in aquatic ecosystems.

4. Red algae: Red algae are a diverse group of multicellular algae that are predominantly found in marine environments. They are known for their red pigmentation, which is due to the presence of phycoerythrin. Red algae have ecological importance and are used in various industries, including food and cosmetics.

5. Plasmodial slime mold: Plasmodial slime molds are unique organisms that exhibit characteristics of both fungi and protozoa. They exist as a multinucleate mass of protoplasm called a plasmodium, which moves and feeds on decaying organic matter. Plasmodial slime molds are often found in moist terrestrial habitats.

6. Dinoflagellates: Dinoflagellates are a diverse group of single-celled protists. They are characterized by the presence of two flagella and are mostly found in marine environments. Some dinoflagellates are photosynthetic and contribute to marine primary production, while others are heterotrophic.

7. Stentor: Stentor is a genus of large, trumpet-shaped ciliates. They are single-celled organisms that inhabit freshwater environments. Stentor exhibits remarkable regenerative capabilities and can undergo fragmentation and subsequent regeneration.

8. Plasmodium: Plasmodium is a genus of parasitic protozoa that causes malaria in humans. It has a complex life cycle that involves transmission through mosquitoes and infection of red blood cells. Malaria is a significant global health concern, particularly in tropical and subtropical regions.

9. Trypanosoma: Trypanosoma is a genus of parasitic flagellate protozoa that includes species causing diseases such as African sleeping sickness and Chagas disease. These diseases are transmitted by insects, primarily tsetse flies and triatomine bugs, respectively.

10. Diatoms: Diatoms are a group of photosynthetic algae that are characterized by their intricate silica shells, called frustules. They are found in both freshwater and marine environments and play a crucial role in primary production and nutrient cycling.

11. Radiolaria: Radiolaria are marine protists that have intricate mineral skeletons made of silica. They are known for their intricate and diverse forms, which are important in the fossil record. Radiolaria play a role in marine food webs and contribute to the ocean's biological productivity.

12. Euglena: Euglena is a genus of single-celled organisms that belong to the group of euglenoids. They are unique in that they possess both plant-like and animal-like characteristics. Euglena are often found in freshwater habitats and are capable of photosynthesis using chloroplasts.

To know more about taxonomic groups click here:

https://brainly.com/question/28389390

#SPJ11

Pinto LC, Falcetta MR, Rados DV, Leitao CB, Gross JL. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Scientific reports. 2019:9:1-6.

Answers

The study titled "Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis" by Pinto LC, Falcetta MR, Rados DV, Leitao CB, Gross JL was published in Scientific Reports in 2019 (volume 9, pages 1-6).

The research aimed to assess the potential association between the use of glucagon-like peptide-1 (GLP-1) receptor agonists and the risk of pancreatic cancer. Through a meta-analysis and trial sequential analysis, the authors analyzed existing evidence on this topic.

However, without access to the full article, specific findings and conclusions cannot be provided. It's important to consult the full study for a comprehensive understanding of their research methodology and results.

Learn more about pancreatic cancer

https://brainly.com/question/31831907

#SPJ11

Explain the difference between coenzymes that are classified as cosubstrates and those classified as prosthetic groups.

Answers

The main difference between cosubstrates and prosthetic groups lies in their association with the enzyme during the catalytic process.

Coenzymes play crucial roles in many enzymatic reactions by assisting in catalysis and enabling the proper functioning of enzymes.

They can be broadly classified into two categories: cosubstrates and prosthetic groups.

Cosubstrates: Cosubstrates are transiently associated with the enzyme during the catalytic reaction. They bind to the enzyme's active site temporarily, undergo a chemical transformation, and are released from the enzyme once the reaction is complete.

Cosubstrates often participate in redox reactions or carry specific functional groups to or from the enzyme's active site. Examples of cosubstrates include coenzymes like NAD+ (nicotinamide adenine dinucleotide) and NADP+ (nicotinamide adenine dinucleotide phosphate) in redox reactions.

Prosthetic groups: Prosthetic groups are coenzymes that are tightly bound to the enzyme throughout the entire catalytic process. They remain permanently associated with the enzyme and play an essential role in the enzyme's function.

Prosthetic groups are usually covalently attached to the enzyme's protein structure, forming a stable enzyme-cofactor complex. They assist in catalysis by providing specific chemical functionalities or participating directly in the reaction mechanism. Examples of prosthetic groups include heme in hemoglobin, which binds oxygen for transport, and biotin in enzymes involved in carboxylation reactions.

In summary, cosubstrates are temporarily associated with the enzyme, undergo chemical transformations, and are released after the reaction, while prosthetic groups are permanently bound to the enzyme and actively participate in catalysis throughout the reaction.

know more about catalysis here

https://brainly.com/question/30417381#

#SPJ11

Select all the is true about the renal system: partial?? A. Reabsorption is the movement of water and solutes back into the plasma from renal tubules. B. Peritubular capillaries are known as vasa recta when surrounding the loop of Henle. C. Afferent arterioles branch from the renal artery, which supplies blood to the kidneys. D. Glomerular and peritubular capillaries are connected to each other by an afferent arteriple. E. Tubular secretion is the transfer of materials from peritubular capillaries to the renal tubules. 14. Select all that is true about the homeostatic mechanism for the control of osmolarity and water volume in the blood: partial? A. The signals come from the peripheral osmoreceptors through the yagus nerve. B. The osmoreceptors are located in the cortex and renal artery. (kidney) C. The control center controls the kidney response mainly by the autonomic nervous system. 15. Select all that is true about the micturition reflex: WRONG A. The stretch receptors are located on the kidney wall. B. The autonomic nervous system controls the contraction of the smooth muscles of the bladder wall and the internal urethral. C. The somatic motor pudental nerve controls the contraction of the internal urethal spincther. D. The signals on the presence of urine in the bladder are sent to the spinal cord by the pelvic and hypogastric nerves.

Answers

For the renal system: A, B, C, E are true statements.

A. Reabsorption is indeed the movement of water and solutes back into the plasma from renal tubules. During this process, essential substances like water, glucose, ions, and amino acids are reabsorbed from the renal tubules into the bloodstream to maintain proper fluid balance and conserve valuable molecules.

B. Peritubular capillaries surrounding the loop of Henle are indeed known as vasa recta. These specialized capillaries play a crucial role in reabsorption and exchange of water and solutes in the kidney's medulla, aiding in the concentration of urine.

C. Afferent arterioles do branch from the renal artery, which supplies blood to the kidneys. These arterioles deliver blood to the glomerulus, initiating the filtration process within the nephrons.

E. Tubular secretion does involve the transfer of materials from peritubular capillaries to the renal tubules. It is a selective process where certain substances, such as drugs, toxins, and excess ions, are actively transported from the blood into the renal tubules for excretion.

Regarding the homeostatic mechanism for the control of osmolarity and water volume in the blood:

A, B, C are false statements. There is no option mentioned for number 14.

Learn more about renal system

brainly.com/question/12968853

#SPJ11

45) A scientist discovers a new tetrapod species and notes the following features: keratinized scales covering slender body, loosely articulated jaw, internal fertilization, ectothermic. Based on this description, you decide that the new animal should be classified as a A) ray-finned fish B) mammal C) reptile D) amphibian

Answers

Based on the described features, the new tetrapod species should be classified as a C) reptile.

Reptiles, a diverse group of tetrapods, include various species such as snakes, lizards, turtles, and crocodiles. The keratinized scales covering the slender body of the new species are typical of reptiles and serve various functions, including protection, water retention, and thermoregulation.

The loosely articulated jaw allows reptiles to accommodate a wider range of prey sizes and capture techniques. Internal fertilization is a reproductive strategy commonly observed in reptiles, where the male transfers sperm directly into the female's reproductive tract. This is in contrast to amphibians, which typically undergo external fertilization. Lastly, reptiles are ectothermic organisms, meaning they rely on external sources of heat to regulate their body temperature.

This characteristic differs from mammals, which are endothermic and generate their own body heat internally. Therefore, considering the described features, the new tetrapod species is best classified as a reptile.

To learn more about reptile here brainly.com/question/15147975

#SPJ11

This is the structure that ruptures during ovulation. cortical gyrus theca interna all of these tertiary follicle secondary follicle

Answers

The structure that ruptures during ovulation is the mature ovarian follicle.

Let's break down the different terms  mentioned:

1. Tertiary follicle: This is another term for the mature ovarian follicle. It is also sometimes referred to as a Graafian follicle. It is the final stage of follicular development in the ovaries before ovulation.

2. Secondary follicle: This is an earlier stage of follicular development. The secondary follicle develops from a primary follicle and contains a fluid-filled space called the antrum.

3. Theca interna: The theca interna is a layer of cells within the ovarian follicle. It is responsible for producing and secreting estrogen, a hormone involved in the menstrual cycle and ovulation.

4. Cortical gyrus: Cortical gyrus refers to the folded and convoluted outer layer of the cerebral cortex, which is the outermost layer of the brain. It is not directly related to ovulation.

During ovulation, the mature ovarian follicle (tertiary follicle or Graafian follicle) ruptures and releases the egg (oocyte) into the fallopian tube. This process is triggered by a surge in luteinizing hormone (LH) from the pituitary gland. The rupture of the follicle allows the egg to be released, making it available for fertilization.

To know more about ovarian follicle refer here:

https://brainly.com/question/31923338?#

#SPJ11

5. Compare and contrast the characteristics of the four different tissue types. Recall basic anatomy Tissue types Epithelial tissue (layers and shapes) Serous membrane and mucous membrane Connective tissues (Loose or areolar; adipose; reticular; dense connective) Muscle tissue (skeletal, cardiac, smooth) Nerve tissue (neuron, neuroglia) Cell to cell connection Tight junction Adhering junction Gap junction NMJ Synapse Extracellular matrix Glycosaminoglycans (GAGs) Proteoglycans Adhesion molecules Cadherins Selectins Integrins Immunoglobulin superfamily

Answers

Epithelial tissue, connective tissue, muscle tissue, and nerve tissue differ in their composition, function, and cell-to-cell connections. Epithelial tissue forms protective layers with various shapes, while connective tissue provides support with an extracellular matrix. Muscle tissue enables contraction, and nerve tissue facilitates electrical signaling.

Explanation:

Epithelial tissue is characterized by closely packed cells that form protective layers. It can be classified into different layers, such as simple (single layer) or stratified (multiple layers), and shapes, including squamous (flat), cuboidal (cube-shaped), and columnar (column-shaped). It also forms serous membranes (lining body cavities) and mucous membranes (lining organs and passages).

Connective tissue, on the other hand, consists of cells dispersed within an abundant extracellular matrix. It includes loose or areolar connective tissue, which supports and surrounds organs; adipose tissue, responsible for fat storage; reticular tissue, which forms the framework in organs; and dense connective tissue, providing strength and support to various structures.

Muscle tissue is specialized for contraction and generating force. It includes skeletal muscle, responsible for voluntary movement; cardiac muscle, which contracts involuntarily to pump blood in the heart; and smooth muscle, found in the walls of organs and responsible for their involuntary movement.

Nerve tissue comprises neurons and supporting cells called neuroglia. Neurons transmit electrical signals, allowing communication throughout the body, while neuroglia provide support and insulation to neurons.

The cell-to-cell connections differ among the tissue types. Epithelial tissue utilizes tight junctions to form barriers, connective tissue relies on various types of adhesion molecules like cadherins, selectins, and integrins. Muscle tissue employs gap junctions for coordinated contractions, and nerve tissue relies on synapses for signal transmission.

Learn more about Epithelial tissue

brainly.com/question/29361246

#SPJ11

You would like to rapidly generate two different knockout mice using CRISPR-Cas9. The genes to be knocked out are Pcsk9 and Apoc3, both involved in lipid metabolism. In each case, you would like to take advantage of non-homologous end joining (NHEJ) to introduce frameshift mutations into the coding sequence of the gene. You begin by choosing the gene exons within which to introduce mutations.
You use the UCSC Genome Browser (www.genome.ucsc.edu) to assess the exon-intron structure of each gene. You use four tracks to show each gene:
(1) UCSC Genes
(2) Ensembl Genes
(3) RefSeq Genes
(4) Other RefSeq Genes (this shows orthologs from other species)

Answers

In order to rapidly generate two different knockout mice using CRISPR-Cas9, you must first choose the gene exons within which to introduce mutations and use non-homologous end joining (NHEJ) to introduce frameshift mutations into the coding sequence of the gene.

The UCSC Genome Browser (www.genome.ucsc.edu) will be used to evaluate the exon-intron structure of each gene, which uses four tracks to show each gene, which are:UCSC Genes Ensembl Genes RefSeq Genes Other RefSeq Genes (this shows orthologs from other species)The Pcsk9 and Apoc3 genes, which are both involved in lipid metabolism, would be the two genes to knock out. To knock out the genes, you must choose the exons in which to introduce mutations to take advantage of non-homologous end joining (NHEJ) to introduce frameshift mutations into the coding sequence of the gene.

This can be accomplished by utilizing the UCSC Genome Browser (www.genome.ucsc.edu) to assess the exon-intron structure of each gene. The UCSC Genome Browser employs four tracks to display each gene: UCSC Genes, Ensembl Genes, RefSeq Genes, and Other RefSeq Genes (which displays orthologs from other species). As a result, to generate two knockout mice using CRISPR-Cas9, gene exons and using non-homologous end joining (NHEJ) to introduce frameshift mutations into the coding sequence of the gene.

To know more about mutations visit:-

https://brainly.com/question/13923224

#SPJ11

lace the structures the sperm must pass through in the correct order: sperm cells penatrating secondary oocyte 1 2 3

Answers

The structures that a sperm passes through are va-gina, followed by cervix, followed by the uterus, fallopian tubes and finally the egg.

First is the va-gina. During se-xual intercourse, sperm is ejaculated into the va-gina. The cervix is the second stage is basically is the narrow opening at the lower end of the uterus. Sperm must pass through the cervix to enter the uterus.

The uterus, or womb, is where the fertilized egg implants and develops into a fetus. Sperm swim through the uterus in search of the fallopian tubes. The fallopian tubes are basically considered as the site of fertilization. If sperm encounters a secondary oocyte in the fallopian tube, fertilization can occur. If a sperm successfully penetrates the secondary oocyte, it fertilizes the egg, resulting in the formation of a zygote.

To know more about fallopian tubes

https://brainly.com/question/1542659

#SPJ4

Q5. DIRECTION: Read and understand the given problem / case. Write your solution and answer on a clean_paper with your written name and student number. Scan and upload in MOODLE as.pdf document before the closing time. Evolution determines the change in inherited traits over time to ensure survival. There are three variants identified as Variant 1 with high reproductive rate, eats fruits and seeds; Variant 2, thick fur, produces toxins; and Variant 3 with thick fur, fast and resistant to disease. These variants are found in a cool, wet, and soil environment. In time 0 years with cool and wet environment, the population is 50,000 with 10,000 Variant 1, 15,000 Variant 2, and 25,000 of Variant 3 . Two thousand years past, the environment remained the same with constant average temperature and rainfall. A disease spread throughout the population. However the population increased to 72,000 . Calculate the population percentage of each variant in O years. (Rubric 3 marks)

Answers

Given problem:Evidence proves that evolution determines the change in inherited traits over time to ensure survival. There are three variants identified as Variant 1 with high reproductive rate, eats fruits and seeds; Variant 2, thick fur, produces toxins; and Variant 3 with thick fur, fast and resistant to disease.

These variants are found in a cool, wet, and soil environment. In time 0 years with cool and wet environment, the population is 50,000 with 10,000 Variant 1, 15,000 Variant 2, and 25,000 of Variant 3. Two thousand years past, the environment remained the same with constant average temperature and rainfall. A disease spread throughout the population. However, the population increased to 72,000. Calculate the population percentage of each variant in O years.Solution: Population of Variant 1 = 10,000Population of Variant 2 = 15,000Population of Variant 3 = 25,000Total Population at time 0 years = 50,000 years Total population after 2000 years = 72,000 Population increased in 2000 years = 72,000 - 50,000= 22,000 We know that in the 2000 years, a disease spread throughout the population but the environment remained the same with constant average temperature and rainfall.Therefore, each of the variants had equal chances of dying due to the disease.

Therefore, we can assume that the percentage of each variant in the population at time O years will be the same as the percentage of each variant in the population after 2000 years.(As no data is provided regarding the reproduction rate, mutation rate or migration of the variants we can't assume their effect on the population percentages)Hence,Population percentage of Variant 1 = (10,000 / 72,000) × 100%= 13.89%Population percentage of Variant 2 = (15,000 / 72,000) × 100%= 20.83%Population percentage of Variant 3 = (25,000 / 72,000) × 100%= 34.72%Therefore, the percentage of Variant 1, Variant 2, and Variant 3 in the population at O years is 13.89%, 20.83%, and 34.72% respectively. Therefore, the percentage of Variant 1, Variant 2, and Variant 3 in the population at O years is 13.89%, 20.83%, and 34.72% respectively.

To know more about reproductive rate visit:-

https://brainly.com/question/30941758

#SPJ11

Please help me answer this in simple understanding for a thumbs up.
1. Explain what causes initial and then continued uterine contractions during labor. Correctly identify any positive or negative feedback loops involved in this process.
2. Describe two positive feedback loops needed for an infant to obtain breast milk.
3. explain why milk is ejected from both mammary glands when an infant suckles on one gland

Answers

1. Initial and continued uterine contractions during labor are caused by the release of oxytocin, which acts as a positive feedback loop. As the baby's head pushes against the cervix, it stimulates sensory receptors, triggering the release of oxytocin. Oxytocin then stimulates uterine contractions, which push the baby further down, leading to more stretching of the cervix and increased oxytocin release, reinforcing the contractions.

2. Positive feedback loops involved in infant breast milk consumption:

  - Suckling reflex stimulates the release of oxytocin, leading to milk let-down reflex and increased milk flow.

  - Mechanical stimulation of nipple and areola triggers the release of prolactin, promoting milk production.

3. Milk is ejected from both mammary glands when an infant suckles on one gland due to the interconnectedness of milk ducts and the action of oxytocin, which contracts smooth muscles surrounding the ducts in both breasts.

1. During labor, the initial uterine contractions are caused by a positive feedback loop involving the release of oxytocin.

As the baby's head pushes against the cervix, sensory receptors send signals to the brain, triggering the release of oxytocin from the posterior pituitary gland. Oxytocin stimulates the uterine muscles to contract, which further pushes the baby downward, leading to more cervical stretching and increased oxytocin release. This positive feedback loop continues until the baby is delivered.

2. Two positive feedback loops involved in infant breast milk consumption are:

  - The suckling reflex stimulates nerve endings in the nipple, sending signals to the hypothalamus.

This triggers the release of oxytocin, which causes the milk let-down reflex.

The baby's continued suckling stimulates more oxytocin release, leading to increased milk flow.

  - As the baby suckles, the mechanical stimulation on the nipple and areola triggers the release of prolactin from the anterior pituitary gland.

Prolactin promotes milk production in the mammary glands, and as the baby continues to suckle, more prolactin is released, leading to sustained milk production.

3. Milk is ejected from both mammary glands when an infant suckles on one gland due to the interconnectedness of milk ducts and the action of oxytocin.

When a baby suckles on one nipple, sensory nerve impulses are sent to the hypothalamus, resulting in the release of oxytocin. Oxytocin acts on the smooth muscles surrounding the milk ducts in both breasts, causing them to contract and squeeze milk into the ducts. The contraction of the smooth muscles in both breasts ensures that milk is ejected from both glands, facilitating breastfeeding and providing nourishment to the infant.

For more such questions on Labor:

https://brainly.com/question/10087034

#SPJ8

Explain the difference between positive and negative feedback
regulation during homeostasis

Answers

Homeostasis is the process of maintaining a stable internal environment within the body. Feedback mechanisms are essential for maintaining homeostasis. These feedback mechanisms are positive and negative feedback. Positive feedback tends to enhance or intensify the occurrence of a change, while negative feedback helps in maintaining a stable state or equilibrium by countering the change.Positive feedbackPositive feedback occurs when the body's response to a stimulus intensifies the stimulus.

In other words, it amplifies the change that is happening in the body. An example of a positive feedback mechanism is the contraction of the uterus during childbirth. As the baby's head pushes against the cervix, this stimulates the contraction of the uterus. The contractions push the baby further down, which causes more pressure on the cervix. The pressure on the cervix causes more contractions, which in turn causes more pressure, and so on until the baby is born.Negative feedbackNegative feedback, on the other hand, works to maintain a stable state or equilibrium by countering the change that is happening in the body.

Negative feedback tends to slow down or reverse the effects of a stimulus. An example of a negative feedback mechanism is the regulation of blood glucose levels. When blood glucose levels rise, the pancreas secretes insulin, which causes the cells to take up glucose from the blood. This lowers the blood glucose levels. When blood glucose levels fall too low, the pancreas secretes glucagon, which causes the liver to release glucose into the blood. This raises the blood glucose levels. By regulating the blood glucose levels, the body is maintaining a stable state or equilibrium.

To know more about homeostasis visit:

https://brainly.com/question/15647743

#SPJ11

1.Tell me all you know about the hormonal regulation of ECF osmolality by ADH and aldosterone. Include an explanation of our thirst mechanism. 2. Tell me all you know about glucose as a fuel source for various tissues/organs. Include normal and abnormal fasting blood glucose values. Explain how blood glucose levels are regulated with hormones. Why should I be concerned about hyperglycemia and hypoglycemia? 3. Tell me all you know about Type I Diabetes Mellitus; causes, S\&S, treatment, etc. 4. Tell me all you know about Type II Diabetes Mellitus; causes, S\&S, treatment, etc. 5. Tell me all you know about ketoacidosis and diabetic coma; causes, S\&S, treatment,

Answers

1. Hormonal regulation of ECF osmolality by ADH and aldosteroneADH regulates the ECF osmolality by acting on the distal convoluted tubules and the collecting ducts of the kidney. It increases the number of water channels called aquaporins to be inserted into the cell membrane of these tubules.

Aquaporins help in the reabsorption of water from urine, thus increasing the concentration of urine. Aldosterone acts on the distal tubules and collecting ducts of the kidney to regulate ECF osmolality. It increases the reabsorption of sodium ions and secretion of potassium ions, thereby increasing the water retention in the body. Our thirst mechanism is stimulated when the osmolality of the ECF is high, which causes the hypothalamus to trigger the thirst centre, making us feel thirsty and drink water.

2. Glucose as a fuel source for various tissues/organs Glucose is a primary source of energy for the body and is used by various tissues and organs for their metabolic activities. The normal fasting blood glucose levels are between 70 and 99 mg/dL. Abnormal fasting blood glucose levels indicate hyperglycemia (blood glucose levels higher than 126 mg/dL) or hypoglycemia (blood glucose levels lower than 70 mg/dL). Hormones such as insulin, glucagon, and epinephrine regulate the blood glucose levels. Insulin decreases blood glucose levels by facilitating the uptake of glucose by tissues and organs, whereas glucagon and epinephrine increase blood glucose levels by promoting glycogen breakdown and gluconeogenesis in the liver. Hyperglycemia and hypoglycemia can lead to complications such as diabetic ketoacidosis, diabetic retinopathy, neuropathy, nephropathy, etc.

3. Type I Diabetes Mellitus Type I Diabetes Mellitus is an autoimmune disease that occurs when the immune system attacks and destroys the insulin-producing beta cells in the pancreas. This results in a deficiency of insulin, leading to high blood glucose levels. The symptoms of Type I Diabetes Mellitus include polydipsia, polyuria, polyphagia, fatigue, weight loss, etc. The treatment of Type I Diabetes Mellitus involves insulin therapy, dietary changes, regular exercise, and self-monitoring of blood glucose levels.

To know more about Hormonal regulation visit:

https://brainly.com/question/15892482

#SPJ11

the brain is protected from injury by the skull, while the heart and lungs are protected by the ribs and chest wall. what protects the kidneys?

Answers

The kidneys are an important organ in the human body. The main function of the kidneys is to filter waste products and excess water from the blood.

As they are located in the abdominal cavity, it is very important that they are protected from injury by a covering of fat and muscle tissue.Kidneys are protected from injury by a combination of factors. The kidneys are located in the retroperitoneal space, which is in front of the muscles that are located in the lower back. This anatomical position provides some natural protection for the kidneys. In addition, the kidneys are also cushioned by a layer of fat that surrounds them, known as perirenal fat.Therefore, the kidneys are protected by a layer of fat and muscle tissue that helps to cushion them from the impact of physical injuries. The kidney's main function is to filter the blood, removing waste products and excess water from the body. This vital organ plays an important role in maintaining the body's internal environment and keeping it healthy. Therefore, it is important that we take good care of our kidneys and avoid activities that could put them at risk.

To know more about kidneys visit:

https://brainly.com/question/28021240

#SPJ11

All of the following are effects of the LH surge except:
All of the following are effects of the LH surge except:
stimulates the conversion of the ruptured follicle into the corpus luteum
causes the inflammation of the ovarian wall that allows it to rupture during ovulation
removes the arrest of meiosis I and allows the oocyte to continue on to meiosis II
causes estrogen levels to become elevated

Answers

All of the following are effects of the LH surge except: causes the inflammation of the ovarian wall that allows it to rupture during ovulation.

LH (luteinizing hormone) is a hormone released by the pituitary gland that plays a crucial role in reproductive health. It triggers ovulation, which occurs when the ovarian follicles rupture and release an egg into the fallopian tube. In addition, it stimulates the conversion of the ruptured follicle into the corpus luteum, a gland that generates progesterone, a hormone that prepares the uterus for pregnancy and maintains it throughout the first trimester.

Inflammation and LH surge :-The LH surge is not related to the inflammation of the ovarian wall. Rather, during ovulation, the ruptured follicle, which releases an egg into the fallopian tube, creates a small wound in the ovary. The release of blood and other fluids that occurs as a result of this wound is not inflammation; instead, it is referred to as a rupture. This rupture enables the oocyte to exit the ovary and move toward the uterus in search of a sperm to fertilize it.As a result, all of the options are effects of the LH surge except for the inflammation of the ovarian wall that allows it to rupture during ovulation.

related to this answer:-

inflammation https://brainly.com/question/948300

#SPJ11

How are non-native species introduced into an ecosystem?

Answers

Non-native species are introduced into ecosystems through various means, including intentional introductions, accidental transport, and natural dispersal facilitated by human activities.

Non-native species, also known as invasive or introduced species, are those that are not native to a particular ecosystem but are introduced there by human activities or natural processes. Intentional introductions occur when species are deliberately brought into an ecosystem by humans for various purposes, such as agriculture, horticulture, or as pets. These intentional introductions may have unintended consequences if the introduced species escape or outcompete native species.

Accidental transport is another common way non-native species are introduced. This can happen through activities like international trade, transportation, or travel, where species may inadvertently hitch a ride on vehicles, cargo, or even people. Ballast water in ships is a well-known example, where species from one region can be transported to another when water is taken on board in one location and discharged in another.

Human activities also play a role in facilitating the natural dispersal of non-native species. For instance, construction of canals, roads, and other infrastructure can create pathways for species to spread into new areas. Climate change and global warming can also enable the expansion of species ranges, allowing non-native species to move into regions where they were previously unable to survive.

Overall, the introduction of non-native species into ecosystems is a complex issue influenced by both intentional and unintentional human actions, as well as natural processes. It is important to manage and regulate these introductions to minimize the negative impacts on native species and ecosystems.

Learn more about ecosystems here:

https://brainly.com/question/31459119

#SPJ11

Which checkpoint would assess whether there was an error during dna replication?

Answers

The checkpoint that would assess whether there was an error during DNA replication is the G2/M checkpoint, which occurs before the cell enters mitosis.

During DNA replication, the cell goes through several checkpoints to ensure the accuracy of the process. One crucial checkpoint is the G2/M checkpoint, which occurs after DNA replication in the G2 phase of the cell cycle, just before the cell enters mitosis. At this checkpoint, the cell assesses the integrity and accuracy of DNA replication. It checks for any errors or damages in the replicated DNA strands.

To evaluate the fidelity of DNA replication, the G2/M checkpoint involves several regulatory mechanisms. One such mechanism is the activation of DNA damage response pathways, which detect and repair DNA lesions or breaks. The checkpoint also ensures that all DNA replication has been completed correctly and that any errors or abnormalities are resolved before proceeding to mitosis.

If errors or damages are detected during the G2/M checkpoint, the cell cycle may be halted, allowing time for DNA repair mechanisms to fix the issues. If the errors are severe and cannot be repaired, the cell may undergo programmed cell death (apoptosis) to prevent the propagation of faulty genetic information.

In summary, the G2/M checkpoint is responsible for assessing whether there was an error during DNA replication by detecting and repairing any damages or abnormalities in the replicated DNA strands. It plays a crucial role in maintaining the integrity of the genome before the cell proceeds to mitosis.

Learn more about cell cycle here:

https://brainly.com/question/29768999

#SPJ11

describe the axis hypothalamus-pituitary gland, how the hypothalamus exerts control upon the pituitary gland, and the hormones that these glands produce.

Answers

The hypothalamus-pituitary axis, also known as the hypothalamus-pituitary system, is a regulatory system in the human body that includes the hypothalamus and the pituitary gland.

To provide a better understanding, let's break down the terms:

The hypothalamus is a small region of the brain that serves as the control center for homeostasis in the body. The hypothalamus-pituitary axis is divided into two parts: the anterior pituitary gland and the posterior pituitary gland. The anterior pituitary gland is controlled by the hypothalamus, which secretes regulatory hormones known as releasing hormones. These hormones stimulate or inhibit the release of anterior pituitary hormones. The posterior pituitary gland, on the other hand, is controlled by neural pathways from the hypothalamus, which release neurohormones directly into the bloodstream. This system of control is called the hypothalamus-pituitary-adrenal axis. Hormones that are produced by the anterior pituitary gland include growth hormone (GH), thyroid-stimulating hormone (TSH), adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Hormones that are produced by the posterior pituitary gland include antidiuretic hormone (ADH) and oxytocin. The hypothalamus is an endocrine gland that exerts control over the pituitary gland. It does so by producing hormones, which are then released into the bloodstream and transported to the pituitary gland.

Once there, these hormones act on the pituitary gland, causing it to produce and release specific hormones into the bloodstream.

Learn more about the  hypothalamus-pituitary system:

https://brainly.com/question/31457907

#SPJ11

1. Explain the difference in the purpose of mitosis and meiosis in the life cycle of multicellular eukaryotes.

Answers

Mitosis and Meiosis are two types of cell division that occur in the life cycle of multicellular eukaryotes.

However, there are significant differences between the two processes, as outlined below:Purpose of MitosisMitosis is a type of cell division that occurs in somatic cells, which are the cells that make up the body of an organism. The purpose of mitosis is to produce two genetically identical daughter cells that are identical to the parent cell. Mitosis has several functions, including the replacement of damaged cells, the growth and development of new tissues, and the regeneration of lost body parts.Purpose of MeiosisMeiosis is a type of cell division that occurs in reproductive cells, which are the cells responsible for sexual reproduction.

The purpose of meiosis is to produce gametes, which are the cells that fuse during fertilization to form a zygote. Meiosis has several functions, including the production of genetically diverse offspring, the elimination of damaged DNA, and the maintenance of the correct chromosome number.Overall, the main difference between mitosis and meiosis is that mitosis produces two genetically identical daughter cells, while meiosis produces four genetically diverse daughter cells. Furthermore, mitosis occurs in somatic cells, while meiosis occurs in reproductive cells.

To know more about multicellular eukaryotes visit:-

https://brainly.com/question/19049080

#SPJ11

How would you know if a bacteria displayed true motility and not just brownian movement?
a) look for the flagella
b) motility will be evident if the bacteria can move across the field of view
c) there is no way to tell
d) motility will be evident if the bacteria moves at all

Answers

To know whether a bacteria displayed true motility or not just by brownian movement, we can identify by observing the flagella.

The correct option for the given question is a)

Brownian movement is the zigzag motion that microscopic particles show when suspended in a liquid or gas and resulting from their collision with molecules of the liquid or gas in random directions. This movement is caused by the kinetic energy from the molecules in the medium. Brownian motion can be observed as pollen grains moving randomly in water.

A bacteria has flagella which is a whip-like structure that helps it to move. Brownian movement only appears to be moving but the bacteria is really only experiencing the random jiggling of water molecules. It is possible to tell if the bacteria is moving due to its flagella or due to brownian motion by observing the flagella. If the bacteria is able to move across the field of view then it is moving due to flagella and not just due to brownian movement.

To know more about motility visit:-

https://brainly.com/question/28561400

#SPJ11

do larger animals have smaller ratio of surface area to weight

Answers

Yes, larger animals have a smaller ratio of surface area to weight.An animal's surface area is proportional to the square of its height, whereas its weight is proportional to the cube of its height.

This implies that as an animal grows larger, its weight increases faster than its surface area; as a result, the ratio of surface area to weight decreases.Therefore, larger animals have a smaller ratio of surface area to weight.

An animal's volume, which is correlated with its weight, grows larger than its surface area more quickly. This is so because surface area is a two-dimensional measurement (length width) whereas volume is a three-dimensional measurement (length width height).

Learn more about surface area at https://brainly.com/question/29298005

#SPJ11

true or false both the appetite and the satiety center are found in the hypothalamus.

Answers

True. Both the appetite and satiety centers are found in the hypothalamus.

The hypothalamus plays a crucial role in regulating food intake and energy balance. It contains different nuclei that are responsible for controlling hunger and satiety signals. The lateral hypothalamus is associated with the appetite center, which stimulates hunger and initiates food-seeking behaviors. On the other hand, the ventromedial nucleus of the hypothalamus is involved in the satiety center, which promotes feelings of fullness and inhibits further food intake. These centers in the hypothalamus receive and integrate various signals from hormones, neurotransmitters, and other parts of the body to regulate appetite and energy homeostasis.

To know more about hypothalamus

https://brainly.com/question/31934446

#SPJ11

What are the benefits and drawbacks of a weight-loss diet? Why might a person choose to adopt a weight loss diet?

Answers

A weight-loss diet is a dietary approach designed to promote weight loss by creating a calorie deficit, controlling portion sizes, and making specific food choices.

While it can be effective for achieving weight loss goals, there are both benefits and drawbacks to consider. Additionally, the reasons why someone may choose to adopt a weight-loss diet can vary.

Benefits of a weight-loss diet:

Weight loss: The ability to reach and maintain a healthy body weight is the key advantage of a weight-loss diet.

Increased energy and improved physical well-being: Losing extra weight might result in an increase in energy and an improvement in physical health.

Health gains: A balanced diet-based weight loss program can lead to improvements in blood pressure, cholesterol levels, and blood sugar regulation.

Drawbacks of a weight-loss diet:

Nutrient deficiencies: Lack of critical nutrients in strict or imbalanced weight-loss diets might result in deficits if not carefully planned and managed.

Unsustainability: Long-term maintenance of some weight-loss programs might be difficult.

Potential for disordered eating: The possibility of establishing disordered eating behaviors or a negative relationship with food is increased by placing an excessive amount of emphasis on weight reduction and rigid diets.

Reasons for adopting a weight-loss diet:

Health issues: People may adopt a weight-loss plan to enhance particular health indicators, such as lowering high blood pressure, controlling diabetes, or easing joint discomfort.

Body image and self-confidence: Wanting to have a better body image and feeling more confident might be reasons to start a weight-loss plan.

Fitness objectives: Some people go on a weight-loss plan to improve their physical fitness, their sports performance, or their body composition.

To know more about weight loss:

https://brainly.com/question/29065690

#SPJ4

Explain the difference between the evolutionary definition of adaptation and its use in everyday English.

Answers

The evolutionary definition of adaptation refers to the process by which organisms change over time in response to their environment.

In this context, adaptation refers to the traits or characteristics that enhance an organism's survival and reproductive success. It is driven by natural selection and leads to the accumulation of favorable traits in a population over generations. On the other hand, the everyday English use of the term "adaptation" is more broad and can refer to any adjustment or modification made by an individual or group to fit a new situation or environment. It is not limited to biological changes, but can also include behavioral, social, or technological adjustments.

In summary, the evolutionary definition of adaptation is specific to the biological changes that enhance survival and reproduction, while the everyday English use of adaptation is more general and can encompass a wide range of adjustments in various contexts.

To know more about Organisms visit-

brainly.com/question/13278945

#SPJ11

what features characterize the group we call plants? what adaptations have allowed different groups of land plants to colonize and diversify in a habitat very different than that of their green algal relatives?

Answers

1. We group plants in Multicellular, eukaryotic organisms with cell walls primarily made of cellulose.

2. Plants have adaptations like waxy cuticles, roots, and vascular tissues to colonize and diversify on land.

3. The sugar solution is transported through the phloem via translocation, driven by active loading and pressure gradients.

Plants are characterized by multicellular, eukaryotic organisms with cell walls primarily made of cellulose. They are autotrophs, perform photosynthesis, and have specialized tissues for transport, reproduction, and protection.

To colonize terrestrial habitats, plants evolved adaptations like a waxy cuticle to prevent water loss, roots for water and nutrient absorption, and vascular tissues for efficient transport. Seeds and pollen allow for reproduction in diverse environments.

The sugar solution is moved in plants through a process called translocation. Sucrose is actively loaded into phloem sieve tubes at the source, creating a pressure gradient for movement to sinks. This occurs through the mass flow or pressure-flow hypothesis, ensuring efficient sugar distribution for growth and energy storage.

Learn more about the plants at

https://brainly.com/question/13711433

#SPJ4

The question is -

1. What features characterize the group we call plants? What adaptations have allowed different groups of land plants to colonize and diversify in a habitat very different than that of their green algal relatives?

2. How is sugar solution moved from place to place in a plant?

Other Questions
Letf : {0,112 {0,1}}.f(x) = x0. 1) What is the range of the function? 2) Is f one-to-one? Justify your answer. 3) Is f onto? Justify your answer. 4) Isf a bijection? Justify your answer. Letf : Z Z where f(x) = x2 + 12. Let g: Z Z where g(x) = x + 13. = gof(1) = fg(-3) = = g f(x) = o fog(x) = \( 1+x^{2} y^{2}+z^{2}=\cos (x y z) \) solid conducting sphere with radius 0.75 m carries a net charge of 0.13 nC. What is the magnitude of the electric field inside the sphere? Select the correct answer O 1.44 N/COC O 2.42 N/C O 0.01 N/C Your Answer O 1.30 N/C Evaluate the following integral usings drigonomedric subsdidution. t 249t 2dt(4.) What substidution will be the mast helpfol for evaluating this integral? A. +=7sec B. t=7tan c+=7sin (B) rewrite the given indegral using this substijution. t 249t 2dt=([?)d (C) evaluade the indegral. t 249t 2dt= Graph the following equation. 5x - 3y = -15 Use the graphing tool to graph the equation. 2. Find the area of the region bounded by \( f(x)=3-x^{2} \) and \( g(x)=2 x \). the hypotenuse of a right triangle is long. the longer leg is longer than the shorter leg. find the side lengths of the triangle. Attenuation of ongoing neuropathic pain by peripheral acting opioid involves activation of central dopaminergic neurocircuitry. diane, a police officer, stops tim's car for a traffic offense. while talking to tim, she shines a flashlight into the passenger compartment of tim's car and sees evidence of drug paraphernalia. which statement is correct? What the ""utterly alien placement scenario"" is and does for us in establishing a ""ground"" or basic justification for moral pluralism? A direct consequence of the shift in funding sources from federal agencies to drug companies has been a(n)? a research submarine has a 10-cm-diameter window that is 8.4 cm thick. the manufacturer says the window can withstand forces up to 1.0106 n . question 1 / 3 tis molecule is best described as a polyunsaturated fatty acid. a fatty acid. a triglyceride. an unsaturated fatty acid. You supervise an aging production line that constantly needs maintenance and new parts. Last month you spent $25,000 replacing a failed controller. Should the following plan be accepted if the interest rate is 15%. The net installed cost of the new line is $600,000 with a useful life of 6 years. First year of operation will cost $100,000 and will generate annual revenues of $300,000. Each year the operating cost will increasse by $5,000 and revenues will fall $15,000. After 6 years the equipment will have a value of $100,000 in the next re-building of the line. Determine the number of real number roots to the equation y = 2x^2 x + 10 a. Infinite real number roots b. Two distinct real number roots c. One distinct real number root d. No real number root (3)) The velocity of a particle, which has slid down a plane tilted at an angle a, is V. Assuming that the friction coefficient is k, find the height from which the particle started its motion. show that any vector field of the form f(x,y,z)=f(y,z)i g(x,z)j h(x,y)k is incompressible what is the clock frequency given a critical path of 10 ns? 1 mhz 10 mhz 100 mhz 1000 mhz Solve the following integrals cx 2+y 2dsr(t)=(4cost,4sint,3t) c(xy)dx+(x+y)dy(counterclockwise)Vertices (0,0)(1,0)(0,1) Multiplications and divisions using shift operations - bitwise operations 0 / 10 Load default template... Assembly Line 1 # Type your code here. Line 2 # Do not initialize memory here. Line 3 # Use the + button under the Memory disp Line 4 lw $t0,N Line 5 sll $t1,$t0,3 Line 6 sw $t1,N+4 Line 7 srl $t1,$t0,4 Line 8 sw $t1,N+8 Registers Each has value o Memory Each has value o > +