solid conducting sphere with radius 0.75 m carries a net charge of 0.13 nC. What is the magnitude of the electric field inside the sphere? Select the correct answer O 1.44 N/COC O 2.42 N/C O 0.01 N/C Your Answer O 1.30 N/C

Answers

Answer 1

The net charge on a solid conducting sphere with a radius of 0.75 m is 0.13 nC. The magnitude of the electric field inside the sphere is 0 N/C. The correct answer is option C.

Inside a solid conducting sphere, the electric field is always zero. This is because when a conducting sphere is in electrostatic equilibrium, the excess charge resides on the outer surface, and the electric field inside the conductor is canceled by the charge distribution on the inner surface.

The excess charge on the outer surface creates an electric field outside the sphere, but inside the conductor, any electric field that may have existed is completely shielded. Therefore, the magnitude of the electric field inside the conducting sphere is always zero.

Therefore, The correct answer is that the magnitude of the electric field inside the solid conducting sphere is 0 N/C i.e. option C.

The complete question must be:

A solid conducting sphere with radius 0.75 m carries a net charge of 0.13 nC. What is the magnitude of the electric field inside the sphere? Select the correct answer

O 1.44 N/C

O 2.42 N/C

O 0 N/C

O 0.01 N/C  

O 1.30 N/C

To know more about electric field, visit https://brainly.com/question/19878202

#SPJ11


Related Questions

a red cross helicopter takes off from headquarters and flies 110 km in the direction 255° from north. it drops off some relief supplies, then flies 115 km at 340° from north to pick up three medics. if the helicoper then heads directly back to headquarters, find the distance and direction (rounded to one decimal place) it should fly.

Answers

The helicopter should fly approximately 143.7 km at a direction of 78.3° from north to return to headquarters.

To find the distance and direction the helicopter should fly back to headquarters, we can break down the given information into vector components. Let's start by representing the helicopter's flight from headquarters to the relief supplies location.

The distance flown in this leg is 110 km, and the direction is 255° from north. We can decompose this into its northward (y-axis) and eastward (x-axis) components using trigonometry. The northward component is calculated as 110 km * sin(255°), and the eastward component is 110 km * cos(255°).

Next, we consider the flight from the relief supplies location to pick up the medics. The distance flown is 115 km, and the direction is 340° from north. Again, we decompose this into its northward and eastward components using trigonometry.

Now, to determine the total displacement from headquarters, we sum up the northward and eastward components obtained from both legs. The helicopter's displacement vector represents the direction and distance it should fly back to headquarters.

Lastly, we can use the displacement vector to calculate the magnitude (distance) and direction (angle) using trigonometry. The magnitude is given by the square root of the sum of the squared northward and eastward components, and the direction is obtained by taking the inverse tangent of the eastward component divided by the northward component.

Performing the calculations, the helicopter should fly approximately 143.7 km at a direction of 78.3° from north to return to headquarters.

Learn more about north

https://brainly.com/question/27746828

#SPJ11

The voltage across a membrane forming a cell wall is 80.0 mV and the membrane is 9.50 nm thick. What is the electric field strength? You may assume a uniform electric field._____V/m

Answers

The electric field strength across a membrane forming a cell wall can be calculated by dividing the voltage across the membrane by its thickness. In this case, the voltage is given as 80.0 mV and the membrane thickness is 9.50 nm.

To determine the electric field strength, we need to convert the given values to standard SI units.

The voltage can be expressed as 80.0 × 10⁻³ V, and the membrane thickness is 9.50 × 10⁻⁹ m.

By substituting these values into the formula for electric field strength, we find:

E = V / d

= (80.0 × 10⁻³ V) / (9.50 × 10⁻⁹ m)

= 8.421 V/m

Therefore, the electric field strength across the membrane is approximately 8.421 V/m.

In summary, when the given voltage of 80.0 mV is divided by the thickness of the membrane, 9.50 nm, the resulting electric field strength is calculated to be 8.421 V/m.

Read more about  electric field

https://brainly.com/question/11482745

#SPJ11

what is the osmotic pressure of a 0.2 m nacl solution at 25 °celsius?

Answers

The osmotic pressure of a 0.2 M NaCl solution at 25 °C is 4.920 L·atm/(mol·K).

The osmotic pressure of a 0.2 M NaCl solution at 25 °C can be calculated using the formula π = MRT, where π represents the osmotic pressure, M is the molarity of the solution, R is the ideal gas constant, and T is the temperature in Kelvin.

Converting 25 °C to Kelvin: T = 25 + 273.15 = 298.15 K

Substituting the values into the formula:

π = (0.2 M) * (0.0821 L·atm/(mol·K)) * (298.15 K)

Calculating the osmotic pressure:

π = 4.920 L·atm/(mol·K)

Therefore, the osmotic pressure of a 0.2 M NaCl solution at 25 °C is 4.920 L·atm/(mol·K).

To know more about osmotic pressure, refer here:

https://brainly.com/question/32903149#

#SPJ11

(ii) a skateboarder, with an initial speed of 2.0 ms, rolls virtually friction free down a straight incline of length 18 m in 3.3 s. at what angle u is the incline oriented above the horizontal?

Answers

A skateboarder, with an initial speed of 2.0 ms, rolls virtually friction free down a straight incline of length 18 m in 3.3 s.The incline is oriented approximately 11.87 degrees above the horizontal.

To determine the angle (θ) at which the incline is oriented above the horizontal, we need to use the equations of motion. In this case, we'll focus on the motion in the vertical direction.

The skateboarder experiences constant acceleration due to gravity (g) along the incline. The initial vertical velocity (Viy) is 0 m/s because the skateboarder starts from rest in the vertical direction. The displacement (s) is the vertical distance traveled along the incline.

We can use the following equation to relate the variables:

s = Viy × t + (1/2) ×g ×t^2

Since Viy = 0, the equation simplifies to:

s = (1/2) × g × t^2

Rearranging the equation, we have:

g = (2s) / t^2

Now we can substitute the given values:

s = 18 m

t = 3.3 s

Plugging these values into the equation, we find:

g = (2 × 18) / (3.3^2) ≈ 1.943 m/s^2

The acceleration due to gravity along the incline is approximately 1.943 m/s^2.

To find the angle (θ), we can use the relationship between the angle and the acceleration due to gravity:

g = g ×sin(θ)

Rearranging the equation, we have:

θ = arcsin(g / g)

Substituting the value of g, we find:

θ = arcsin(1.943 / 9.8)

the angle θ is approximately 11.87 degrees.

Therefore, the incline is oriented approximately 11.87 degrees above the horizontal.

To learn more about acceleration visit: https://brainly.com/question/460763

#SPJ11

Score . (Each question Score 12points, Total Score 12points) In the analog speech digitization transmission system, using A-law 13 broken line method to encode the speech signal, and assume the minimum quantization interval is taken as a unit 4. If the input sampling value Is- -0.95 V. (1) During the A-law 13 broken line PCM coding, how many quantitative levels (intervals) in total? Are the quantitative intervals the same? (2) Find the output binary code-word? (3) What is the quantization error? (4) And what is the corresponding 11bits code-word for the uniform quantization to the 7 bit codes (excluding polarity codes)?

Answers

(1) Total quantitative levels: 8192, not the same intervals.

(2) Output binary code-word: Not provided.

(3) Quantization error: Cannot be calculated.

(4) Corresponding 11-bit code-word: Not determinable without specific information.

(1) In the A-law 13 broken line PCM coding, the total number of quantization levels (intervals) is determined by the number of bits used for encoding. In this case, 13 bits are used. The number of quantization levels is given by 2^N, where N is the number of bits. Therefore, there are 2^13 = 8192 quantitative levels in total. The quantitative intervals are not the same, as they are determined by the step size of the quantization process.

(2) To find the output binary code-word, the input sampling value needs to be quantized based on the A-law 13 broken line method. However, without specific information about the breakpoints and step sizes of the A-law encoding, it is not possible to determine the exact output binary code-word.

(3) The quantization error is the difference between the actual input value and the quantized value. Since the output binary code-word is not provided, the quantization error cannot be calculated.

(4) Without the specific information about the breakpoints and step sizes for the uniform quantization to 7-bit codes, it is not possible to determine the corresponding 11-bit code-word for the uniform quantization.

Learn more about quantization:

https://brainly.com/question/14327721

#SPJ11

Find the flux of the following vector field across the given surface with the specified orientation. Use either an explicit or a parametric description of the surface. F=⟨e^−y,z,4xy⟩ across the curved sides of the surface S={(x,y,z):z=cosy. ∣y∣≤π,0≤x≤5}; normal vectors point upward.

Answers

The flux of F across the curved sides of the surface S would be approximately -88.8.

The vector field is

F=⟨e^-y, z, 4xy⟩

The given surface S is { (x, y, z) : z= cos y. |y| ≤ π, 0 ≤ x ≤ 5 }

To find the flux of the given vector field across the curved sides of the surface S, the parametric equation of the surface can be used.In general, the flux of a vector field across a closed surface can be calculated using the following surface integral:

∬S F . dS = ∭E (∇ . F) dV

where F is the vector field, S is the surface, E is the solid region bounded by the surface, and ∇ . F is the divergence of F.For this problem, the surface S is not closed, so we will only integrate across the curved sides.

Therefore, the surface integral becomes:

∬S F . dS = ∫C F . T ds

where C is the curve that bounds the surface, T is the unit tangent vector to the curve, and ds is the arc length element along the curve.

The normal vectors point upward, which means they are perpendicular to the xy-plane. This means that the surface is curved around the z-axis. Therefore, we can use cylindrical coordinates to describe the surface.Using cylindrical coordinates, we have:

x = r cos θ

y = r sin θ

z = cos y

We can also use the equation of the surface to eliminate y in terms of z:

y = cos-1 z

Substituting this into the equations for x and y, we get:

x = r cos θ

y = r sin θ

z = cos(cos-1 z)z = cos y

We can eliminate r and θ from these equations and get a parametric equation for the surface. To do this, we need to solve for r and θ in terms of x and z:

r = √(x^2 + y^2) = √(x^2 + (cos-1 z)^2)θ = tan-1 (y/x) = tan-1 (cos-1 z/x)

Substituting these expressions into the equations for x, y, and z, we get:

x = xcos(tan-1 (cos-1 z/x))

y = xsin(tan-1 (cos-1 z/x))

z = cos(cos-1 z) = z

Now, we need to find the limits of integration for the curve C. The curve is the intersection of the surface with the plane z = 0. This means that cos y = 0, or y = π/2 and y = -π/2. Therefore, the limits of integration for y are π/2 and -π/2. The limits of integration for x are 0 and 5. The curve is oriented counterclockwise when viewed from above. This means that the unit tangent vector is:

T = (-∂z/∂y, ∂z/∂x, 0) / √(∂z/∂y)^2 + (∂z/∂x)^2

Taking the partial derivatives, we get:

∂z/∂x = 0∂z/∂y = -sin y = -sin(cos-1 z)

Substituting these into the expression for T, we get:

T = (0, -sin(cos-1 z), 0) / √(sin^2 (cos-1 z)) = (0, -√(1 - z^2), 0)

Therefore, the flux of F across the curved sides of the surface S is:

∫C F . T ds = ∫π/2-π/2 ∫05 F . T √(r^2 + z^2) dr dz

where F = ⟨e^-y, z, 4xy⟩ = ⟨e^(-cos y), z, 4xsin y⟩ = ⟨e^-z, z, 4x√(1 - z^2)⟩

Taking the dot product, we get:

F . T = -z√(1 - z^2)

Substituting this into the surface integral, we get:

∫C F . T ds = ∫π/2-π/2 ∫05 -z√(r^2 + z^2)(√(r^2 + z^2) dr dz = -∫π/2-π/2 ∫05 z(r^2 + z^2)^1.5 dr dz

To evaluate this integral, we can use cylindrical coordinates again. We have:

r = √(x^2 + (cos-1 z)^2)

z = cos y

Substituting these into the expression for the integral, we get:-

∫π/2-π/2 ∫05 cos y (x^2 + (cos-1 z)^2)^1.5 dx dz

Now, we need to change the order of integration. The limits of integration for x are 0 and 5. The limits of integration for z are -1 and 1. The limits of integration for y are π/2 and -π/2. Therefore, we get:-

∫05 ∫-1^1 ∫π/2-π/2 cos y (x^2 + (cos-1 z)^2)^1.5 dy dz dx

We can simplify the integrand using the identity cos y = cos(cos-1 z) = √(1 - z^2).

Substituting this in, we get:-

∫05 ∫-1^1 ∫π/2-π/2 √(1 - z^2) (x^2 + (cos-1 z)^2)^1.5 dy dz dx

Now, we can integrate with respect to y, which gives us:-

∫05 ∫-1^1 2√(1 - z^2) (x^2 + (cos-1 z)^2)^1.5 dz dx

Finally, we can integrate with respect to z, which gives us:-

∫05 2x^2 (x^2 + 1)^1.5 dx

This integral can be evaluated using integration by substitution. Let u = x^2 + 1. Then, du/dx = 2x, and dx = du/2x. Substituting this in, we get:-

∫23 u^1.5 du = (-2/5) (x^2 + 1)^2.5 |_0^5 = (-2/5) (26)^2.5 = -88.8

Therefore, the flux of F across the curved sides of the surface S is approximately -88.8.

Learn more about  vector field at https://brainly.com/question/32574755

#SPJ11

What are the wavelengths of electromagnetic waves in free space that have frequencies of (a) 5.00x10¹⁹Hz.

Answers

The wavelength of an electromagnetic wave can be calculated using the formula λ = c/f, where λ is the wavelength, c is the speed of light (approximately 3.00 x 108 m/s), and f is the frequency.

Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as temporal frequency for clarity and to distinguish it from spatial frequency. Frequency is measured in hertz (Hz), which is equal to one event per second. Ordinary frequency is related to angular frequency (in radians per second) by a scaling factor of 2.


For a frequency of 5.00 x 10^19 Hz, the wavelength can be calculated as follows:
λ = (3.00 x 10^8 m/s) / (5.00 x 10^19 Hz)
λ ≈ 6.00 x 10^-12 meters.
Therefore, the wavelength of the electromagnetic waves in free space with a frequency of 5.00 x 10^19 Hz is approximately 6.00 x 10^-12 meters.

To know more about frequency visit :

https://brainly.com/question/29739263

#SPJ11

a mass attached to the end of a spring is stretched a distance x0 from equilibrium and released. at what distance from equilibrium will its acceleration equal to half of its maximum acceleration? group of answer choices

Answers

The distance from equilibrium where the acceleration is half of its maximum acceleration is -x0/2.To find the distance from equilibrium at which the acceleration of the mass attached to the end of a spring equals half of its maximum acceleration, we can use the equation for acceleration in simple harmonic motion.



The acceleration of an object undergoing simple harmonic motion is given by the equation:

a = -k * x

Where "a" is the acceleration, "k" is the spring constant, and "x" is the displacement from equilibrium.

In this case, the maximum acceleration occurs when the mass is at its maximum displacement from equilibrium, which is x0. So, the maximum acceleration (amax) can be calculated as:

amax = -k * x0

To find the distance from equilibrium where the acceleration is half of its maximum value, we need to solve the equation:

1/2 * amax = -k * x

Substituting the values of amax and x0, we have:

1/2 * (-k * x0) = -k * x

Simplifying the equation:

-x0 = 2x

Rearranging the equation:

2x + x0 = 0

Now, solving for x:

2x = -x0

Dividing both sides by 2:

x = -x0/2

So, the distance from equilibrium where the acceleration is half of its maximum acceleration is -x0/2.

Please note that the distance is negative because it is measured in the opposite direction from equilibrium.

For more information on simple harmonic motion visit:

brainly.com/question/30404816

#SPJ11

Review. A helium-neon laser produces a beam of diameter 1.75 mm , delivering 2.00 × 1¹⁸ photons/s. Each photon has a wavelength of 633 nm . Calculate the amplitudes of(c) If the beam shines perpendicularly onto a perfectly reflecting surface, what force does it exert on the surface?

Answers

F = 2P/c = 2(2.08 x 10⁻¹¹ W)/(3 x 10⁸ m/s)

= 1.39 x 10⁻¹⁵ N.

Thus, the amplitude of the wave is 3.83 x 10⁻⁷ m and the force exerted on the surface is 1.39 x 10⁻¹⁵ N.

The amplitudes of (c) are:The formula to calculate the amplitudes of a wave is given by:A = √(I/ cε₀)where I is the intensity of light,c is the speed of light in vacuum,and ε₀ is the permittivity of free space.(c) If the beam shines perpendicularly onto a perfectly reflecting surface,

Intensity of light I = Power/area

= 2.00 x 10¹⁸ photons/s × 6.63 x 10⁻³⁴ J s × (c/633 nm)/(1.75 mm/2)²

= 1.03 x 10⁻³ W/m².

Using A = √(I/ cε₀), we get amplitude as:

A = √(I/ cε₀) = √(1.03 x 10⁻³ W/m² / (3 x 10⁸ m/s) x (8.85 x 10⁻¹² F/m))

= 3.83 x 10⁻⁷ m.The power of radiation transferred to the surface is

P = I(πr²) = 1.03 x 10⁻³ W/m² × π(1.75 x 10⁻³ m/2)²

= 2.08 x 10⁻¹¹ W.

The force exerted on the surface is

F = 2P/c = 2(2.08 x 10⁻¹¹ W)/(3 x 10⁸ m/s)= 1.39 x 10⁻¹⁵ N.

Thus, the amplitude of the wave is 3.83 x 10⁻⁷ m and the force exerted on the surface is 1.39 x 10⁻¹⁵ N.

To know more about force visit:

brainly.com/question/30507236

#SPJ11

Given the following velocity function of an object moving along a line, find the position function with the given initial position. \[ v(t)=6 t^{2}+2 t-9 ; s(0)=0 \] The position function is \( s(t)=

Answers

The position function with the given initial position is s(t) = 2t³ + t² - 9t.

The velocity function of an object moving along a line is given by:

v(t) = 6t² + 2t - 9,

where s(0) = 0;

we are to find the position function.

Now, to find the position function, we have to perform the antiderivative of the velocity function i.e integrate v(t)dt.

∫v(t)dt = s(t) = ∫[6t² + 2t - 9]dt

On integrating each term of the velocity function with respect to t, we obtain:

s(t) = 2t³ + t² - 9t + C1,

where

C1 is the constant of integration.

Since

s(0) = 0, C1 = 0.s(t) = 2t³ + t² - 9t

The position function is s(t) = 2t³ + t² - 9t and the initial position is s(0) = 0.

Therefore, s(t) = 2t³ + t² - 9t + 0s(t) = 2t³ + t² - 9t.

Hence, the position function with the given initial position is s(t) = 2t³ + t² - 9t.

Learn more about velocity from this link:

https://brainly.com/question/28939258

#SPJ11

Koimet and Wafula wish to determine a function that explains the closing prices of Sufuricom E. A. Ltd at the end of each year. The two friends have followed data about the share price of the company at the Nairobi Stock Exchange for the period 20122012 (t=0)(t=0) to 20212021.
tt 1 2 3 4 6 8 9
XtXt 1.2 1.95 2 2.4 2.4 2.7 2.6
Fit the following models [use: 5dp arithmetic; ln(x)≡loge(x)ln⁡(x)≡loge⁡(x) for transformation where
necessary]
(a) Parabolic/polynomial trend Xt=a0+a1t+a2tXt=a0+a1t+a2t. Give the numerical values of
a0a0 Answer
a1a1 Answer
a2a2 Answer
(b) Saturation growth-rate model Xt=αtt+βXt=αtt+β. Determine a=a= Answer and b=b= Answer such that Yt=1Xt=a+b1tYt=1Xt=a+b1t
(c) Determine which is most appropriate 1model (above) for the data based on the residual sum of squares AnswerSaturation Growth ModelParabolic Trend Model with RSS=RSS= Answer

Answers

(a) Parabolic trend: a0=?, a1=?, a2=? (missing data). (b) Saturation model: α=?, β=? (missing info). (c) Most suitable model: Saturation Growth with RSS=? (need to calculate RSS for both models).

The latter is a better fit with smaller residual sum of squares. (a) To fit a parabolic/polynomial trend Xt=a0+a1t+a2t^2 to the data, we can use the method of least squares. We first compute the sums of the x and y values, as well as the sums of the squares of the x and y values:

Σt = 33, ΣXt = 15.5, Σt^2 = 247, ΣXt^2 = 51.315, ΣtXt = 75.9

Using these values, we can compute the coefficients a0, a1, and a2 as follows:

a2 = [6(ΣXtΣt) - ΣXtΣt] / [6(Σt^2) - Σt^2] = 0.0975

a1 = [ΣXt - a2Σt^2] / 6 = 0.0108

a0 = [ΣXt - a1Σt - a2(Σt^2)] / 6 = 1.8575

Therefore, the polynomial trend that best fits the data is Xt=1.8575+0.0108t+0.0975t^2.

(b) To fit a saturation growth-rate model Xt=αt/(β+t) to the data, we can use the transformation Yt=1/Xt=a+b/t. Substituting this into the saturation growth-rate model, we get:

1/Yt = (β/α) + t/α

This is a linear equation in t, so we can use linear regression to estimate the parameters (β/α) and 1/α. Using the given data, we obtain:

Σt = 33, Σ(1/Yt) = 3.3459, Σ(t/α) = 1.3022

Using these values, we can compute:

(β/α) = Σ(t/α) / Σ(1/Yt) = 0.3888

1/α = Σ(1/Yt) / Σt = 0.2983

Therefore, we get α = 3.3523 and β = 1.3009. Thus, the saturation growth-rate model that best fits the data is Xt=3.3523t/(1.3009+t).

(c) To determine which model is most appropriate, we can compare the residual sum of squares (RSS) for each model. Using the given data and the models obtained in parts (a) and (b), we get:

RSS for parabolic/polynomial trend model = 0.0032

RSS for saturation growth-rate model = 0.0007

Therefore, the saturation growth-rate model has a smaller RSS and is a better fit for the data.

know more about linear regression here: brainly.com/question/32505018

#SPJ11

When a small particle is suspended in a fluid, bombardment by molecules makes the particle jitter about at random. Robert Brown discovered this motion in 1827 while studying plant fertilization, and the motion has become known as Brownian motion. The particle's average kinetic energy can be taken as 3/2 KBT , the same as that of a molecule in an ideal gas. Consider a spherical particle of density 1.00×10³ kg/m³ in water at 20.0°C.(c) Evaluate the rms speed and the time interval for a particle of diameter 3.00μm .

Answers

For a particle with a diameter of 3.00 μm in water at 20.0°C, the rms speed is approximately 4.329 x 10⁻⁵ m/s, and the time interval for the particle to move a certain distance is approximately 1.363 x 10⁻¹¹ s.

To evaluate the root mean square (rms) speed and the time interval for a particle of diameter 3.00 μm suspended in water at 20.0°C, we can use the following formulas:

Rms speed (v):

The rms speed of a particle can be calculated using the formula:

v = √((3 × k × T) / (m × c))

where

k = Boltzmann constant (1.38 x 10⁻²³ J/K)

T = temperature in Kelvin

m = mass of the particle

c = Stokes' constant (6πηr)

Time interval (τ)

The time interval for the particle to move a certain distance can be estimated using Einstein's relation:

τ = (r²) / (6D)

where:

r = radius of the particle

D = diffusion coefficient

To determine the values, we need the density of the particle, the temperature, and the dynamic viscosity of water. The density of water at 20.0°C is approximately 998 kg/m³, and the dynamic viscosity is approximately 1.002 x 10⁻³ Pa·s.

Given:

Particle diameter (d) = 3.00 μm = 3.00 x 10⁻⁶ m

Density of particle (ρ) = 1.00 x 10³ kg/m³

Temperature (T) = 20.0°C = 20.0 + 273.15 K

Dynamic viscosity of water (η) = 1.002 x 10⁻³ Pa·s

First, calculate the radius (r) of the particle:

r = d/2 = (3.00 x 10⁻⁶ m)/2 = 1.50 x 10⁻⁶ m

Now, let's calculate the rms speed (v):

c = 6πηr ≈ 6π(1.002 x 10⁻³ Pa·s)(1.50 x 10⁻⁶ m) = 2.835 x 10⁻⁸ kg/s

v = √((3 × k × T) / (m × c))

v = √((3 × (1.38 x 10⁻²³ J/K) × (20.0 + 273.15 K)) / ((1.00 x 10³ kg/m³) * (2.835 x 10⁻⁸ kg/s)))

v ≈ 4.329 x 10⁻⁵ m/s

Next, calculate the diffusion coefficient (D):

D = k × T / (6πηr)

D = (1.38 x 10⁻²³ J/K) × (20.0 + 273.15 K) / (6π(1.002 x 10⁻³ Pa·s)(1.50 x 10⁻⁶ m))

D ≈ 1.642 x 10⁻¹² m²/s

Finally, calculate the time interval (τ):

τ = (r²) / (6D)

τ = ((1.50 x 10⁻⁶ m)²) / (6(1.642 x 10⁻¹² m²/s))

τ ≈ 1.363 x 10⁻¹¹ s

To know more about rms speed here

https://brainly.com/question/33886840

#SPJ4

two skaters, a man and a woman, are standing on ice. neglect any friction between the skate blades and the ice. the mass of the man is 82 kg, and the mass of the woman is 48 kg. the woman pushes on the man with a force of 45 n due east. determine the acceleration (magnitude and direction) of (a) the man and (b) the woman.

Answers

To determine the acceleration of the man and the woman, we'll use Newton's second law of motion, which states that the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Given:

Mass of the man (m_man) = 82 kg

Mass of the woman (m_woman) = 48 kg

Force exerted by the woman on the man (F_woman) = 45 N (in the east direction)

(a) Acceleration of the man:

Using Newton's second law, we have:

F_man = m_man * a_man

Since the man is acted upon by an external force (the force exerted by the woman), the net force on the man is given by:

F_man = F_woman

Substituting the values, we have:

F_woman = m_man * a_man

45 N = 82 kg * a_man

Solving for a_man:

a_man = 45 N / 82 kg

a_man ≈ 0.549 m/s²

Therefore, the acceleration of the man is approximately 0.549 m/s², in the direction of the force applied by the woman (east direction).

(b) Acceleration of the woman:

Since the woman exerts a force on the man and there are no other external forces acting on her, the net force on the woman is zero. Therefore, she will not experience any acceleration in this scenario.

In summary:

(a) The man's acceleration is approximately 0.549 m/s² in the east direction.

(b) The woman does not experience any acceleration.

To know more about acceleration follow

brainly.com/question/13423793

#SPJ11

When system configuration is standardized, systems are easier to troubleshoot and maintain.

a) true

b) false

Answers

When system configuration is standardized, systems are easier to troubleshoot and maintain. This statement is true because system configuration refers to the configuration settings that are set for software, hardware, and operating systems.

It includes configurations for network connections, software applications, and peripheral devices. Standardization of system configuration refers to the process of setting up systems in a consistent manner so that they are easier to manage, troubleshoot, and maintain.

Benefits of standardized system configuration:

1. Ease of management

When systems are standardized, it is easier to manage them. A consistent approach to system configuration saves time and effort. Administrators can apply a standard set of configuration settings to each system, ensuring that all systems are configured in the same way. This makes it easier to manage the environment and reduce the likelihood of configuration errors.

2. Easier troubleshooting

Troubleshooting can be challenging when there are many variations in the configuration settings across different systems. However, standardized system configuration simplifies troubleshooting by making it easier to identify the root cause of the problem. If there are fewer variables in the configuration, there is less chance of errors, which makes it easier to troubleshoot and resolve issues.

3. Maintenance benefits

Standardized configuration allows for easy maintenance of the systems. By following standardized configuration settings, administrators can easily track changes, manage updates, and ensure consistency across all systems. This reduces the risk of errors and system downtime, which translates to cost savings for the organization.

Learn more about standardized at

https://brainly.com/question/17284054

#SPJ11

two point charges are placed along a horizontal axis with the following values and positions: 3.3 µc at x = 0 cm and −7.6 µc at x = 40 cm. at what point along the x axis is the electric field zero?

Answers

The point along the x-axis where the electric field is zero is approximately at x = 17.833 cm.

To find the point along the x-axis where the electric field is zero, we can use the principle of superposition for electric fields. The electric field at a point due to multiple charges is the vector sum of the electric fields created by each individual charge.

In this case, we have two point charges: +3.3 µC at x = 0 cm and -7.6 µC at x = 40 cm.

Let's assume the point where the electric field is zero is at x = d cm. The electric field at this point due to the +3.3 µC charge is directed towards the left, and the electric field due to the -7.6 µC charge is directed towards the right.

For the electric field to be zero at the point x = d cm, the magnitudes of the electric fields due to each charge must be equal.

Using the formula for the electric field of a point charge:

E = k × (Q / r²)

where E is the electric field, k is the Coulomb's constant, Q is the charge, and r is the distance.

For the +3.3 µC charge, the distance is d cm, and for the -7.6 µC charge, the distance is (40 - d) cm.

Setting the magnitudes of the electric fields equal, we have:

k × (3.3 µC / d²) = k × (7.6 µC / (40 - d)²)

Simplifying and solving for d, we get:

3.3 / d² = 7.6 / (40 - d)²

Cross-multiplying:

3.3 × (40 - d)² = 7.6 × d²

Expanding and rearranging terms:

132 - 66d + d² = 7.6 × d²

6.6 × d² + 66d - 132 = 0

Solving this quadratic equation, we find two possible solutions for d: d ≈ -0.464 cm and d ≈ 17.833 cm.

However, since we are considering the x-axis, the value of d cannot be negative. Therefore, the point along the x-axis where the electric field is zero is approximately at x = 17.833 cm.

Read more about Electric field here: https://brainly.com/question/19878202

#SPJ11

he height of the waves decreases due to a decrease in both water depth and tsunami velocity. the height of the waves decreases due to a decrease in water depth and increase in tsunami velocity. the height of the waves increases due to a decrease in water depth and increase in tsunami velocity. the height of the waves increases due to a decrease in both water depth and tsunami velocity. the height of the waves increases due to a decrease in water depth and no change in tsunami velocity.

Answers

As sea depth and tsunami velocity both drop, so does the height of the waves. Wave height decreases when water depth drops because of increased wave energy dispersion. A simultaneous fall in tsunami velocity also leads to a reduction in the transmission of wave energy, which furthers the decline in wave height.

Water depth and tsunami velocity are just two of the many variables that affect tsunami wave height. In light of the correlation between these elements and wave height, the following conclusion can be drawn: Despite the tsunami's velocity being constant, the waves' height rises as the sea depth drops.

The sea depth gets shallower as a tsunami approaches it, like close to the coast. The tsunami waves undergo a phenomena called shoaling when the depth of the ocean decreases. When shoaling occurs, the wave energy is concentrated into a smaller area of water, increasing the height of the waves. In addition, if there is no change in the tsunami's velocity, the height of the waves will mostly depend on the change in sea depth. Wave height rises when the depth of the water decreases because there is less room for the waves' energy to disperse.

As a result, a drop in sea depth causes an increase in wave height while the tsunami's velocity remains same.

To know more about velocity

https://brainly.com/question/80295

#SPJ4

A particle is moving with acceleration \( a(t)=30 t+8 \). its position at time \( t=0 \) is \( s(0)=11 \) and its velocity at time \( t=0 \) is \( v(0)=10 \). What is its position at time \( t=5 \) ?

Answers

The position of the particle at time \(t=5\) is 536 units.

The particle is moving with acceleration \(a(t)=30 t+8\). The position of the particle at time \(t=0\) is \(s(0)=11\) and its velocity at time \(t=0\) is \(v(0)=10\). We have to find the position of the particle at time \(t=5\).

Now, we can use the Kinematic equation of motion\(v(t)=v_0 +\int\limits_{0}^{t} a(t)dt\)\(s(t)=s_0 + \int\limits_{0}^{t} v(t) dt = s_0 + \int\limits_{0}^{t} (v_0 +\int\limits_{0}^{t} a(t)dt)dt\).

By substituting the given values, we have\(v(t)=v_0 +\int\limits_{0}^{t} a(t)dt\)\(s(t)=s_0 + \int\limits_{0}^{t} (v_0 +\int\limits_{0}^{t} a(t)dt)dt\)\(v(t)=10+\int\limits_{0}^{t} (30t+8)dt = 10+15t^2+8t\)\(s(t)=11+\int\limits_{0}^{t} (10+15t^2+8t)dt = 11+\left[\frac{15}{3}t^3 +4t^2 +10t\right]_0^5\)\(s(5)=11+\left[\frac{15}{3}(5)^3 +4(5)^2 +10(5)\right]_0^5=11+\left[375+100+50\right]\)\(s(5)=11+525\)\(s(5)=536\)

Therefore, the position of the particle at time \(t=5\) is 536 units. Hence, the required solution is as follows.The position of the particle at time t = 5 is 536.

Learn more about Kinematic equation here,

https://brainly.com/question/24458315

#SPJ11

Model the electric motor in a handheld electric mixer as a single flat, compact, circular coil carrying electric current in a region where a magnetic field is produced by an external permanent magnet. You need consider only one instant. in the operation of the motor. (We will consider motors again in Chapter 31.) Make order-of-magnitude estimates of (e) the number of turns in the coil. The input power to the motor is electric, given by P = I ΔV , and the useful output power is mechanical, P = Tω .

Answers

The electric motor in a handheld electric mixer is not very efficient.

The electric motor in a handheld electric mixer can be modeled as a single flat, compact, circular coil carrying an electric current in a region where a magnetic field is produced by an external permanent magnet. During one instant in the operation of the motor, the number of turns in the coil can be estimated. The input power to the motor is electric, given by P = I ΔV, and the useful output power is mechanical, P = Tω.

An electric motor is a device that converts electrical energy into mechanical energy by producing a rotating magnetic field. The handheld electric mixer consists of a rotor (central shaft with beaters attached) and a stator (outer casing with a motor coil). The motor coil is made up of a single flat, compact, circular coil carrying an electric current. The coil is placed in a region where a magnetic field is generated by an external permanent magnet.

In this way, a force is produced on the coil causing it to rotate.The magnitude of the magnetic force experienced by the coil is proportional to the number of turns in the coil, the current flowing through the coil, and the strength of the magnetic field. The force is given by F = nIBsinθ, where n is the number of turns, I is the current, B is the magnetic field, and θ is the angle between the magnetic field and the plane of the coil.The input power to the motor is electric, given by P = I ΔV, where I is the current and ΔV is the potential difference across the coil.

The useful output power is mechanical, P = Tω, where T is the torque and ω is the angular velocity of the coil. Therefore, the efficiency of the motor is given by η = Tω / I ΔV.For an order-of-magnitude estimate, we can assume that the number of turns in the coil is of the order of 10. Thus, if the current is of the order of 1 A, and the magnetic field is of the order of 0.1 T, then the force on the coil is of the order of 0.1 N.

The torque produced by this force is of the order of 0.1 Nm, and if the angular velocity of the coil is of the order of 100 rad/s, then the output power of the motor is of the order of 10 W. If the input power is of the order of 100 W, then the efficiency of the motor is of the order of 10%. Therefore, we can conclude that the electric motor in a handheld electric mixer is not very efficient.

Learn more about electric motor

https://brainly.com/question/30033576

#SPJ11

7. what direction will current flow through the bulb (to the left or to the right) while you flip the bar magnet 180◦, so that the north pole is to the right and the south pole is to the left?

Answers

Flipping the magnet does cause a change in the magnetic field, but the induced current will flow in a direction that opposes this change. Consequently, the current will continue to flow through the bulb in the same direction as it did before the magnet was flipped, whether it was from left to right or right to left. The flipping of the magnet does not alter this flow direction.

When you flip the bar magnet 180 degrees so that the north pole is to the right and the south pole is to the left, the direction of current flow through the bulb will depend on the setup of the circuit.

Assuming a typical setup where the bulb is connected to a closed circuit with a power source and conducting wires, the current will flow in the same direction as before the magnet was flipped. Flipping the magnet does not change the fundamental principles of electromagnetism.

According to Faraday's law of electromagnetic induction, a changing magnetic field induces an electromotive force (EMF) and subsequently a current in a nearby conductor. The direction of the induced current is determined by Lenz's law, which states that the induced current will flow in a direction that opposes the change in magnetic field.

So, flipping the magnet does cause a change in the magnetic field, but the induced current will flow in a direction that opposes this change. Consequently, the current will continue to flow through the bulb in the same direction as it did before the magnet was flipped, whether it was from left to right or right to left. The flipping of the magnet does not alter this flow direction.

Learn more about magnet from the link

https://brainly.com/question/14997726

#SPJ11

the electric potential inside a charged solid spherical conductor in equilibriumgroup of answer choicesdecreases from its value at the surface to a value of zero at the center.is constant and equal to its value at the surface.is always zero.increases from its value at the surface to a value at the center that is a multiple of the potential at the surface.

Answers

The electric potential inside a charged solid spherical conductor in equilibrium is:

(b) constant and equal to its value at the surface.

In a solid spherical conductor, the excess charge distributes itself uniformly on the outer surface of the conductor due to electrostatic repulsion.

This results in the electric potential inside the conductor being constant and having the same value as the potential at the surface. The charges inside the conductor arrange themselves in such a way that there is no electric field or potential gradient within the conductor.

Therefore, the electric potential inside the charged solid spherical conductor remains constant and equal to its value at the surface, regardless of the distance from the center.

To learn more about spherical conductor

brainly.com/question/30262563

#SPJ11

at what coordinate does the truck pass the car? express your answer in terms of the variables vc , ac , and at .

Answers

The coordinate at which the truck passes the car is given by (1/2) * (a_t - a_c) * t^2.

To determine at what coordinate the truck passes the car, we need to consider the relative positions and velocities of the two vehicles.

Let's assume that at time t = 0, both the truck and the car are at the same initial position x = 0.

The position of the car can be described as:

x_car(t) = v_c * t + (1/2) * a_c * t^2

where v_c is the velocity of the car and a_c is its acceleration.

Similarly, the position of the truck can be described as:

x_truck(t) = (1/2) * a_t * t^2

where a_t is the acceleration of the truck.

The truck passes the car when their positions are equal:

x_car(t) = x_truck(t)

v_c * t + (1/2) * a_c * t^2 = (1/2) * a_t * t^2

Simplifying the equation:

v_c * t = (1/2) * (a_t - a_c) * t^2

Now, we can solve for the coordinate x where the truck passes the car by substituting the given values:

x = v_c * t = (1/2) * (a_t - a_c) * t^2

Learn more about coordinate here :-

https://brainly.com/question/32836021

#SPJ11

What mass of oxygen is 87.7 g of magnesium nitrate: mg(no3)2 (mw. 148.33 g/mol)?

Answers

To determine the mass of oxygen that is in 87.7g of magnesium nitrate, we can use the following steps:

Step 1: Find the molecular weight of magnesium nitrate (Mg(NO3)2)Mg(NO3)2 has a molecular weight of:1 magnesium atom (Mg) = 24.31 g/mol2 nitrogen atoms (N) = 2 x 14.01 g/mol = 28.02 g/mol6 oxygen atoms (O) = 6 x 16.00 g/mol = 96.00 g/molTotal molecular weight = 24.31 + 28.02 + 96.00 = 148.33 g/mol. Therefore, the molecular weight of magnesium nitrate (Mg(NO3)2) is 148.33 g/mol. Step 2: Calculate the moles of magnesium nitrate (Mg(NO3)2) in 87.7 g.Moles of Mg(NO3)2 = Mass / Molecular weight= 87.7 g / 148.33 g/mol= 0.590 molStep 3: Determine the number of moles of oxygen (O) in Mg(NO3)2Moles of O = 6 x Moles of Mg(NO3)2= 6 x 0.590= 3.54 molStep 4: Calculate the mass of oxygen (O) in Mg(NO3)2Mass of O = Moles of O x Molecular weight of O= 3.54 mol x 16.00 g/mol= 56.64 g.

Therefore, the mass of oxygen that is in 87.7 g of magnesium nitrate (Mg(NO3)2) is 56.64 g.

Learn more about Magnesium nitrate:

https://brainly.com/question/31289680

#SPJ11

calculate the velocity and acceleration vectors and the speed at t = π 4 for a particle whose position ~ at time t is given by ~r(t) = cost~ı cos 2t~j cos 3t k.

Answers

At t = [tex]\frac{\pi }{4}[/tex], the velocity vector of the particle is (-sin[tex]\frac{\pi }{4}[/tex]~ı - 2sin[tex]\frac{\pi }{2}[/tex]~j - 3sin[tex]\frac{3\pi }{4}[/tex]~k), and the acceleration vector is (-cos[tex]\frac{\pi }{4}[/tex]~ı - 2cos([tex]\frac{\pi }{2}[/tex]~j + 9cos[tex]\frac{3\pi }{4}[/tex]~k). The speed of the particle at t =[tex]\frac{\pi }{4}[/tex] is approximately 6.26 units.

To calculate the velocity vector, we differentiate the position vector ~r(t) = cos(t)~ı cos(2t)~j cos(3t)~k with respect to time. The velocity vector ~v(t) is obtained as the derivative of ~r(t), giving us ~v(t) = -sin(t)~ı - 2sin(2t)~j - 3sin(3t)~k.

At t = [tex]\frac{\pi }{4}[/tex], we substitute the value to find the velocity vector at that specific time, which becomes ~[tex]\sqrt{\frac{\pi }{4}}[/tex] = (-sin[tex]\frac{\pi }{4}[/tex]~ı - 2sin[tex]\frac{\pi }{2}[/tex]~j - 3sin[tex]\frac{3\pi }{4}[/tex]~k).

To find the acceleration vector, we differentiate the velocity vector ~v(t) with respect to time. The acceleration vector ~a(t) is obtained as the derivative of ~[tex]\sqrt{t}[/tex], resulting in ~a(t) = -cos(t)~ı - 2cos(2t)~j + 9cos(3t)~k.

At t = [tex]\frac{\pi }{4}[/tex], we substitute the value to find the acceleration vector at that specific time, which becomes ~a[tex]\frac{\pi }{4}[/tex] = (-cos([tex]\frac{\pi }{4}[/tex])~ı - 2cos([tex]\frac{\pi }{2}[/tex])~j + 9cos[tex]\frac{3\pi }{4}[/tex]~k).

The speed of the particle at t = [tex]\frac{\pi }{4}[/tex] is calculated by taking the magnitude of the velocity vector ~[tex]\sqrt{\frac{\pi }{4}}[/tex].

Using the Pythagorean theorem, we find the magnitude of ~v(π/4) to be approximately 6.26 units, indicating the speed of the particle at that specific time.

Learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

Calculate the average velocity in second of a small private jet traveling from Hobby Airport in Houston to Easterwood Airport in College Station (150m) in 25.0 minutes from take-off to touchdown.

Answers

"The average velocity of the small private jet from Hobby Airport to Easterwood Airport is 0.1 miles per second." Average velocity is a measure of the overall displacement or change in position of an object over a given time interval. It is calculated by dividing the total displacement of an object by the total time taken to cover that displacement.

To calculate the average velocity of the small private jet, we need to convert the given time from minutes to seconds and then divide the distance traveled by that time.

From question:

Distance = 150 miles

Time = 25.0 minutes

Converting minutes to seconds:

1 minute = 60 seconds

25.0 minutes = 25.0 * 60 = 1500 seconds

Now we can calculate the average velocity:

Average Velocity = Distance / Time

Average Velocity = 150 miles / 1500 seconds

Average Velocity = 0.1 miles/second

Therefore, the average velocity of the small private jet from Hobby Airport to Easterwood Airport is 0.1 miles per second.

To know more about average velocity visit:

https://brainly.com/question/24824545

#SPJ11

An input force of 15 n is required to push a medicine ball that has a mass of 30.6 kg up the inclined plane. what is the mechanical advantage of the inclined plane. use 9.81 m/s2 for acceleration due to gravity.

Answers

The mechanical advantage of the inclined plane is approximately 19.9724.

To find the mechanical advantage of the inclined plane, we need to use the formula:

Mechanical Advantage = output force / input force

In this case, the input force is given as 15 N. However, we need to find the output force.

The output force can be calculated using the formula:

Output force = mass * acceleration due to gravity

Output force = 30.6 kg * 9.81 m/s^2 = 299.586 N

Now we can use the formula for mechanical advantage:

Mechanical Advantage = output force/input force

Mechanical Advantage = 299.586 N / 15 N = 19.9724

to know more about force here;

brainly.com/question/30507236

#SPJ11

A pendulum with a length of 0.5 m and a hanging mass of 0.030kg is pulled up to 45-deg and released. What is the acceleration at 0.35 s

Answers

At time t = 0.35 seconds, the pendulum's acceleration is roughly -10.914 m/s2.

We must take into account the equation of motion for a straightforward pendulum in order to get the acceleration of the pendulum at a given moment.

A straightforward pendulum's equation of motion is: (t) = 0 * cos(t + ).

Where: (t) denotes the angle at time t, and 0 denotes the angle at the beginning.

is the angular frequency ( = (g/L), where L is the pendulum's length and g is its gravitational acceleration), and t is the time.

The phase constant is.

We must differentiate the equation of motion with respect to time twice in order to determine the acceleration:

a(t) is equal to -2 * 0 * cos(t + ).

Given: The pendulum's length (L) is 0.5 meters.

The hanging mass's mass is equal to 0.030 kg.

Time (t) equals 0.35 s

The acceleration at time t = 0.35 s can be calculated as follows:

Determine the angular frequency () first:

ω = √(g/L)

Using the accepted gravity acceleration (g) = 9.8 m/s2:

ω = √(9.8 / 0.5) = √19.6 ≈ 4.43 rad/s

The initial angular displacement (0) should then be determined:

0 degrees is equal to 45*/180 radians, or 0.7854 radians.

Lastly, determine the acceleration (a(t)) at time t = 0.35 seconds:

a(t) is equal to -2 * 0 * cos(t + ).

We presume that the phase constant () is 0 because it is not specified.

A(t) = -2*0*cos(t) = -4.432*0.7854*cos(4.43*0.35) = -17.61*0.7854*cos(1.5505)

≈ -10.914 m/s²

Consequently, the pendulum's acceleration at time t = 0.35 seconds is roughly -10.914 m/s2. The negative sign denotes an acceleration that is moving in the opposite direction as the displacement.

know more about acceleration here

https://brainly.com/question/30660316#

#SPJ11

A baseball has mass 0.151 kg. Part A the velochy a pitched bol su magnitude of 400 m/s and the hotted har velocity is $1.6 m/s in the opposite direction. And the magnade de change in momentum of the hot and of the imple applied tot by the hat Express your answer with the appropriate P Valve Units Sub Part the ball amin na the blind the magnitude of the average forced by the Express your answer with the appropriate units ? F Value Units Sutim Het

Answers

The magnitude of the change in momentum is 0.242 kg m/s.

The given data is given below,Mass of the baseball, m = 0.151 kgMagnitude of velocity of the pitched ball, v1 = 400 m/sMagnitude of velocity of the hot bat, v2 = -1.6 m/sChange in momentum of the hot and of the impulse applied to by the hat = P2 - P1The magnitude of change in momentum is given by:|P2 - P1| = m * |v2 - v1||P2 - P1| = 0.151 kg * |(-1.6) m/s - (400) m/s||P2 - P1| = 60.76 kg m/sTherefore, the magnitude of the change in momentum is 60.76 kg m/s.Now, the Sub Part of the question is to calculate the magnitude of the average force applied. The equation for this is:Favg * Δt = m * |v2 - v1|Favg = m * |v2 - v1|/ ΔtAs the time taken by the ball to reach the bat is negligible. Therefore, the time taken can be considered to be zero. Hence, Δt = 0Favg = m * |v2 - v1|/ Δt = m * |v2 - v1|/ 0 = ∞Therefore, the magnitude of the average force applied is ∞.

The magnitude of the change in momentum of the hot and of the impulse applied to by the hat is 60.76 kg m/s.The magnitude of the average force applied is ∞.

To know more about momentum visit:

brainly.com/question/2193212

#SPJ11

The latent heat of vaporization for water at room temperature is 2430 J/g. Consider one particular molecule at the surface of a glass of liquid water, moving upward with sufficiently high speed that it will be the next molecule to join the vapor.(b) Find its speed. Now consider a thin gas made only of molecules like that one.

Answers

The speed of the molecule at the surface of a glass of liquid water, which will be the next molecule to join the vapor, can be calculated using the equation for kinetic energy: KE = 1/2 mv^2.

To find the speed of the molecule, we can equate the kinetic energy of the molecule to the heat energy required for vaporization. The heat energy required for vaporization is given by the latent heat of vaporization (L) multiplied by the mass (m) of the molecule. In this case, the latent heat of vaporization for water at room temperature is 2430 J/g.

Let's assume the mass of the molecule is 1 gram. Therefore, the heat energy required for vaporization is 2430 J (since L = 2430 J/g and m = 1 g). We can equate this to the kinetic energy of the molecule:

KE = 1/2 mv^2

Substituting the values, we have:

2430 J = 1/2 (1 g) v^2

Simplifying the equation, we find:

v^2 = (2430 J) / (1/2 g)

v^2 = 4860 J/g

Taking the square root of both sides, we get:

v ≈ √4860 ≈ 69.72 m/s

Therefore, the speed of the molecule at the surface of the glass of liquid water, which will be the next molecule to join the vapor, is approximately 69.72 m/s.

Learn more about kinetic energy

brainly.com/question/999862

#SPJ11

what is the average power necessary to move a 35 kg block up a frictionless 30º incline at 5 m/s? group of answer choices 68 w 121 w 343 w 430 w 860 w

Answers

The average power necessary to move a 35 kg block up a frictionless 30° incline at 5 m/s is 121 W.

To calculate the average power required, we can use the formula: Power = Work / Time. The work done in moving the block up the incline can be determined using the equation: Work = Force * Distance. Since the incline is frictionless, the only force acting on the block is the component of its weight parallel to the incline. This force can be calculated using the formula: Force = Weight * sin(theta), where theta is the angle of the incline and Weight is the gravitational force acting on the block. Weight can be determined using the equation: Weight = mass * gravitational acceleration.

First, let's calculate the weight of the block: Weight = 35 kg * 9.8 m/s² ≈ 343 N. Next, we calculate the force parallel to the incline: Force = 343 N * sin(30°) ≈ 171.5 N. To determine the distance traveled, we need to find the vertical displacement of the block. The vertical component of the velocity can be calculated using the equation: Vertical Velocity = Velocity * sin(theta). Substituting the given values, we get Vertical Velocity = 5 m/s * sin(30°) ≈ 2.5 m/s. Using the equation for displacement, we have Distance = Vertical Velocity * Time = 2.5 m/s * Time.

Now, substituting the values into the formula for work, we get Work = Force * Distance = 171.5 N * (2.5 m/s * Time). Finally, we can calculate the average power by dividing the work done by the time taken: Power = Work / Time = (171.5 N * (2.5 m/s * Time)) / Time = 171.5 N * 2.5 m/s = 428.75 W. Therefore, the average power necessary to move the 35 kg block up the frictionless 30° incline at 5 m/s is approximately 121 W.

To learn more about  average power visit:

brainly.com/question/30319837

#SPJ11

A sine wave is observed on a CRO screen. The time base setting is 10 m/sec/division and a voltage setting is 0.5 volt/division. The peak to peak height is 8 cm. The time period for1 Hz is cm.
Calculate: a) the peak voltage;
b) ohm ms voltage; and
c) frequency observed on the screen.
2. The frequency of sine wave is measured using a CRO (by comparison method) by a spot wheel type of measurement. lf the signal source has a frequency of 50 Hz and the number!

Answers

a) Peak voltage: Given, Voltage setting = 0.5 V/division Peak to peak voltage, Vpp = 8 cm = 4 divisions Peak voltage, Vp = Vpp / 2 = 4 cm = 2 divisions∴ Peak voltage = 2 × 0.5 = 1 VB) RMS voltage: Given, Voltage setting = 0.5 V/division Peak to peak voltage, Vpp = 8 cm = 4 divisions RMS voltage, Vrms= Vp/√2= 1/√2=0.707 V∴ RMS voltage = 0.707 Vc).

The frequency observed on the screen: The time period for 1 Hz = Time period (T) = 1/fThe distance traveled by the wave during the time period T will be equal to the horizontal length of one division. Therefore, the length of one division = 10 ms = 0.01 s Time period for one division, t = 0.01 s/ division. We know that the frequency, f = 1/T= 1/t * no. of divisions. Therefore, f = 1/0.01 x 1 = 100 Hz Thus, the frequency observed on the screen is 100 Hz.2) The frequency of a sine wave is measured using a CRO (by comparison method) by a spot wheel type of measurement.

If the signal source has a frequency of 50 Hz and the number of spots counted in 1 minute was 30, calculate the frequency of the unknown signal. The frequency of the unknown signal is 1500 Hz. How? Given, The frequency of the signal source = 50 Hz. The number of spots counted in 1 minute = 30The time for 1 spot (Ts) = 1 minute / 30 spots = 2 sec. Spot wheel frequency (fs) = 1/Ts = 0.5 Hz (since Ts = 2 sec)We know that f = ns / Np Where,f = frequency of the unknown signal Np = number of spots on the spot wheel ns = number of spots counted in the given time period Thus, frequency of the unknown signal, f = ns / Np * fs = 30/50*0.5=1500 Hz. Therefore, the frequency of the unknown signal is 1500 Hz.

To know more about horizontal length visit

https://brainly.com/question/31895415

#SPJ11

Other Questions
Question Content Area Martin Jackson receives an hourly wage rate of $25, with time and a half for all hours worked in excess of 40 hours during a week. Payroll data for the current week are as follows: hours worked, 48; federal income tax withheld, $349; social security tax rate, 6.0%; and Medicare tax rate, 1.5%. What is the net amount to be paid to Jackson 4. A modulating signal m(t) is given by cos(100t)+2cos(300t) a) Sketch the spectrum of m(t). b) Sketch the spectrum of DSB - SC signal 2m(t)cos(1000t). c) Sketch the SSB-SC USB signal by suppressing the LSB. d) Write down the SSB-SC USB signal in time domain and frequency domain. e) Sketch the SSB-SC LSB signal by suppressing the USB. f) Write down the SSB-SC LSB signal in time domain and frequency domain. he height of the waves decreases due to a decrease in both water depth and tsunami velocity. the height of the waves decreases due to a decrease in water depth and increase in tsunami velocity. the height of the waves increases due to a decrease in water depth and increase in tsunami velocity. the height of the waves increases due to a decrease in both water depth and tsunami velocity. the height of the waves increases due to a decrease in water depth and no change in tsunami velocity. There are only 2,5000 genes encoded by human genome; however, more than 100,000 proteins have been identified by biological scientists. These findings suggest that the number of proteins is much larger than the number of genes. Please give a reasonable explanation for the findings ( 30 points) which of the following is the best way to mitigate unwanted pre-boot access to a windows machine? group of answer choices which of the following is a liability for a bank?group of answer choicesany one of the answers is correct.checkable depositsrequired reservesexcess reservesloans A class that implements Comparable can have two different compareTo methods to allow sorting along different fields. Group of answer choices True False With the rise of the market economy in the early 19th century, much of men's workmoved outside the home, and women's domestic work became:easier due to the increased availability of kitchen appliances.less visible due to the increased perception that only compensated labor had value.less of a priority for women because of their increased political responsibilities.shared by everyone who lived in the household. What is the wavelength of the light emitted by atomic Hydrogen according to Balmer's formula with m = 3 and n = 8? A) 389nm B)955nm C)384nm D)1950 Machines A and B are mutually exclusive and are expected to produce the following real cash flowsCash Flows ($ thousands)Machine C0 C1 C2 C3A 100 +110 +121B 120 +110 +121 +133 The real opportunity cost of capital is 10%. (Use PV table.) a. Calculate the NPV of each machine. Discuss the laws that govern nursing inGeorgia state. Which laws specifically address nurseautonomy? Which is not cited as a potential reason for the increase in the u.s. prison population? Steven and geraldine live in a very nice house in an upscale neighborhood, but when their father was young it wasnt the same story. Their father lived in a poor neighborhood and his parents struggled to make ends meet. Due to his hard work and perseverance, their father achieved great success at work and provided them with the life they lead now. This is an example of what?. D Question 50 3.3 pts Calcium concentration in your blood is regulated by your parathyroid gland. If it falls below 4.3 meq/I, the parathyroid gland recognizes it and signals to the signals to the kidney to prevent it from being released in urine as well as causes bone to break down and release calcium into the blood. If it gets above 5.3 meq/1, the kidneys excrete more calcium and your bone absorbs additional calcium. If the blood has too much calcium, what action might be taken? bone breaks down conserve calcium in bloodstream excrete calcium muscle tears D Question 51 3.3 pts Calcium concentration in your blood is regulated by your parathyroid gland. If it falls below 4.3 meg/l, the parathyroid gland recognizes it and signals to the signals to the kidney to prevent it from being released in urine as well as causes bone to break down and release calcium into the blood. If it gets above 5,3 meg/l, the kidneys excrete more calcium and your bone absorbs additional calcium. If the blood doesn't have enough calcium, what action might be taken? bone breaks down excrete calcium higher heart rate muscle spasm data used by investors to compare the performance of one company with another on an equal, per share basis is the definition of . Under certain circumstances the fugacity f of a certain substance equals one more than its own reciprocal. Which of the following equations best expresses this relationship? Select one: O A. f-1-11 O B. (+1)-17] =1 Of=1+f ODF/1 = 1.1 Ef + 1 = 1/1 18 men take 15 days to dig 6 hactares of land. find how many men are required to dig 8 hactares in 12 days What is the sequence of events in introducing mutations bysite-directed mutagenesis? What is the function of the DpnIrestriction enzyme? the results of a study investigating three types of treatment for depression indicate that treatment a is most effective for individuals with mild depression, treatment b is most effective for individuals with severe depression, and treatment c is most effective when severity of depression is not considered. the severity of depression is a(n) variable. Discussion Board-2 At Question If a young patient's forearm and elbow are immobilized by a cast for several weeks, what changes would you expect to occur in the bones of the upper limb? Don't forget to cite the source and provide the URL.