Answer:
C. A positive and a negative ion
Explanation:
Acids and bases are made up of charged particles known as ions. The ions present in acids are oppositely charged and are held together by strong electrostatic forces. When acids or bases are dissolved in water, the electrostatic forces holding their individual molecules together are weakened and these ions are free to move apart in a process known as dissociation. Dissociation occurs because of the attraction between the positive and negative ions in the acid and bases and the negative and positive polarity of water.
For example, when an acid like hydrochloric acid is dissolved in water it dissociates into positive and negative ions as follows:
HCl(aq) -----> H+ + Cl-
When a base like sodium hydroxide is dissolved in water, it dissociates into positive and negative ions as follows:
NaOH(aq) ----> Na+ + OH-
Answer:
yeah C is correct
Explanation:
Lewis structure of methyl metcaptain
Answer:
The lewis structure of the compounds can be drawn by making the skeleton of the molecule first. Then the different atoms are arranged and the electrons are arranged in their bonding pattern. The lone pair of the atoms, which are not involved in the bonding are represented by the dots.
So the lewis structures of both the compound methyl mercaptan has been in the attached image:
Spelling of methyl metcaptain is wrong, the correct spelling is methyl mercaptan.
Answer:
Methyl mercaptan is also known as Methanethiol with the chemical formula CH3SH and it is an organosulfur compound.
For lewis structure of methyl mercaptan (CH3SH), there are total 14 valence electrons. Four hydrogen atoms has one valence electron each, carbon has four valence electrons and sulfur has six valence electrons. Carbon form one bond with three hydrogen atoms by sharing one electron with each, carbon form one single bond with sulfur atom by sharing one electron with it and sulfur form one single bond with hydrogen. Sulfur left with four unpair electrons.
What volume of 6.00 M hydrochloric acid is needed to prepare 500 mL of 0.100 M solution?
Answer:
8.33mL or .0083L
Explanation:
Use m1 * V1 = m2 * V2
6.00M(x) = 0.100M(500mL)
solve for x
x= (.1 * 500) / 6
x=8.333 mL
Write the empirical formula
Answer:
[tex]Pb(CO_{3})_{2} \\Pb(NO_{3})_{4} \\FeCO_{3}\\Fe(NO_{3})_{2}[/tex]
Explanation:
[tex]Pb^{4+}(CO_{3}^{2-})_{2} --->Pb(CO_{3})_{2} \\Pb^{4+} (NO_{3}^{-})_{4} --->Pb(NO_{3})_{4} \\Fe^{2+} CO_{3}^{2-} --->FeCO_{3}\\Fe^{2+} (NO_{3}^{-})_{2}--->Fe(NO_{3})_{2}[/tex]
(a) How many stereoisomers are possible for 4-methyl-1,2-cyclohexanediol? ___ (b) Name the stereoisomers formed by oxidation of (S)-4-methylcyclohexene with osmium tetroxide. If there is only one stereoisomer formed, leave the second space blank. Isomer #1: Isomer #2: (c) Is the product formed in step (b) optically active? _____
Answer:
See explanation
Explanation:
For the first part of the question, we have to check the chiral carbons in 4-methyl-1,2-cyclohexanediol. In this case carbons, 1 and 2 are chiral, if we have 2 chiral carbons we will have 4 isomers. We have to remember that formula 2^n in which "n" is the number of chiral carbons, so:
2^n = 2^2 = 4 isomers
And the isomers that we can have are:
1) (1R,2S)-4-methylcyclohexane-1,2-diol
2) (1S,2S)-4-methylcyclohexane-1,2-diol
3) (1S,2S)-4-methylcyclohexane-1,2-diol
4) (1S,2R)-4-methylcyclohexane-1,2-diol
See figure 1
For the second part of the question, we have to remember that the oxidation with [tex]OsO_4[/tex] is a syn addition. In other words, the "OHs" are added in the same plane. In this case, we have the methyl group with a wedge bond, so the "OH" groups will have a dashed bond due to the steric hindrance. Due to this we only can have 1 isomer ((1S,2R,4S)-4-methylcyclohexane-1,2-diol). Finally, on this molecule, we dont have any symmetry planes (this characteristic will cancel out the optical activity), so the product of this reaction has optical activity.
See figure 2
I hope it helps!
which process is used to produce gases from solutions of salts dissolved in water or another liquid?
A.Electrolysis
B.Metallic bonding
C.Ionic bonding
D. Polar covalent bonding
Answer:
A.Electrolysis
Explanation:
A.Electrolysis
For example, electrolysis of solution of NaCl in water gives H2 and O2.
Description (with words) of water just above melting temperature. What intermolecular forces do you expect to find in water in liquid state
Answer:
intermolecular dipole-dipole hydrogen bonds
Explanation:
Water is a polar molecule. Recall that the central atom in water is oxygen. The molecule is bent, hence it has an overall dipole moment directed towards the oxygen atom. Since it has a permanent dipole moment, we expect that it will show dipole-dipole interactions in the liquid state.
Similarly, water contains hydrogen and oxygen. Recall that hydrogen bonds are formed when hydrogen is covalently bonded to highly electronegative elements. Hence, water in the liquid state exhibits strong hydrogen bonding. The unique type of dipole-dipole interaction in liquid water is actually hydrogen bonding, hence the answer.
Draw the structure 2 butylbutane
Answer:
please look at the picture below.
Explanation:
Which correctly lists three characteristics of minerals?
solid, crystal structure, definite chemical composition
organic, crystal structure, definite chemical composition
human-made, solid, organic
crystal structure, definite chemical composition, human-made
Answer:a
Explanation:
The three characteristics of minerals are that they are solid, have definite crystal structure and definite chemical composition.
What are minerals?Minerals are defined as a chemical compound which has a well -defined composition and possesses a specific crystal structure.It occurs naturally in the pure form.
If a compound occurs naturally in different crystal structure then each structure is considered as a different mineral.The chemical composition of a mineral varies depending on the presence of small impurities which are present in small quantities.
Some minerals can have variable proportions of two or more chemical elements which occupy equivalent position in the crystal structure.It may also have variable composition which is split into separate species.
Physical properties of minerals include color,streak, luster,specific gravity and cleavage.
Learn more about minerals ,here:
https://brainly.com/question/1333886
#SPJ6
what is the molarity of a solution that contains 49.8 grams of nai and is dissolved in enough water to make 1.50 liters
Answer: The molarity of solution is 0.221 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
[tex]Molarity=\frac{n}{V_s}[/tex]
where,
n = moles of solute
[tex]V_s[/tex] = volume of solution in L
moles of [tex]NaI[/tex] = [tex]\frac{\text {given mass}}{\text {Molar mass}}=\frac{49.8g}{149.89g/mol}=0.332mol[/tex]
Now put all the given values in the formula of molality, we get
[tex]Molarity=\frac{0.332mol}{1.50L}[/tex]
[tex]Molarity=0.221mol/L[/tex]
Therefore, the molarity of solution is 0.221 M
What is the specific heat of a 85.01 g piece of an unknown metal that exhibits a 45.2°C temperature change upon absorbing 1870 J of heat?
Answer:
[tex]0.48~\frac{J}{g~^{\circ}C}[/tex]
Explanation:
In this question, we have to remember the relationship between Q (heat) and the specific heat (Cp) the change in temperature (ΔT), and the mass (m).
[tex]Q=m*Cp*ΔT[/tex]
The next step is to identify what values we have:
[tex]Q~=~1870~J[/tex]
[tex]m~=~85.01~g[/tex]
[tex]ΔT~=~45.2~^{\circ}C[/tex]
[tex]Cp~=~X[/tex]
Now, we can plug the values and solve for "Cp":
[tex]1870~J=~85.01~g~*Cp*45.2~^{\circ}C[/tex]
[tex]Cp=\frac{1870~J}{85.01~g~*45.2~^{\circ}C}[/tex]
[tex]Cp=0.48~\frac{J}{g~^{\circ}C}[/tex]
The unknow metal it has a specific value of [tex]0.48~\frac{J}{g~^{\circ}C}[/tex]
I hope it helps!
What is the mass of 3.45 moles
NO2?
(N = 14.01 g/mol, O = 16.00 g/mol)
Answer:
158.7 g
Its the right answer
When hydrocarbons are burned in a limited amount of air, both CO and CO2 form. When 0.430 g of a particular hydrocarbon was burned in air, 0.446 g of CO, 0.700 g of CO2, and 0.430 g of H2O were formed.
Required:
a. What is the empirical formula of the compound?
b. How many grams of O2 were used in the reaction?
c. How many grams would have been required for complete combustion?
Answer:
(a) The empirical formula of the compound is
m(CxHy) + m(O2) = m(CO) + m(CO2) + m(H2O).
(b) The grams of O2 that were used in the reaction is 1.146 g
(c) The amount of O2 that would have been required for complete combustion is 1.401 g.
Explanation:
a. m(CxHy) + m(O2) = m(CO) + m(CO2) + m(H2O)
(b) Using law of conservation of mass from above
m(O2) = m(CO) + m(CO2) + m(H2O) - m(CxHy)
m(O2) = 0.446 + 0.700 + 0.430 - 0.430
m(O2) = 1.146 g
The grams of O2 that were used in the reaction is 1.146 g
(c) for complete combustion, we need to oxidized CO to CO2
Then, 2CO +O2 = 2CO2
m(add)(O2) = M(O2)*¢(O2)/2 = M(O2) * {(m(CO))/(2M(CO))}
m(add)(O2) = 32 * {(0.446)/(2*28)} = 0.255 g
Note; Molar mass of O2 = 32, CO = 28
m(total)(O2) = m(O2) + m(add)(O2)
m(total)(O2) = 1.146 + 0.255 = 1.401 g
The amount of that grams would have been required for complete combustion is 1.401 g.
Note (add) and (total) were used subscript to "m"