Plz check attachment for answer.
Hope it's helpful
A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/m2. Find the total mass in terms of C and L, and then calculate the moment of inertia of the rod for an axis at the left end note: you need the total mass in order to get the answer in terms of ML^2
Answer:
ML²/6
Explanation:
Pls see attached file
The total mass is M = CL²/2, and the moment of inertia is I = ML²/2,
Moment of inertia:The length of the rod is L. It has a non-uniform distribution of mass given by:
dm/dx = Cx
where C has units kg/m²
dm = Cxdx
the total mass M of the rod can be calculated by integrating the above relation over the length:
[tex]M =\int\limits^L_0 {} \, dm\\\\M=\int\limits^L_0 {Cx} \, dx\\\\M=C[x^2/2]^L_0\\\\M=C[L^2/2]\\\\[/tex]
Thus,
C = 2M/L²
Now, the moment of inertia of the small element dx of the rod is given by:
dI = dm.x²
dI = Cx.x²dx
[tex]dI = \frac{2M}{L^2}x^3dx\\\\I= \frac{2M}{L^2}\int\limits^L_0 {x^3} \, dx \\\\I= \frac{2M}{L^2}[\frac{L^4}{4}][/tex]
I = ML²/2
Learn more about moment of inertia:
https://brainly.com/question/6953943?referrer=searchResults
5) What is the weight of a body in earth. if its weight is 5Newton
in moon?
Answer:
8.167
Explanation:
A spherical shell rolls without sliding along the floor. The ratio of its rotational kinetic energy (about an axis through its center of mass) to its translational kinetic energy is:
Answer:
The ratio is [tex]\frac{RE}{TE} = \frac{2}{3}[/tex]
Explanation:
Generally the Moment of inertia of a spherical object (shell) is mathematically represented as
[tex]I = \frac{2}{3} * m r^2[/tex]
Where m is the mass of the spherical object
and r is the radius
Now the the rotational kinetic energy can be mathematically represented as
[tex]RE = \frac{1}{2}* I * w^2[/tex]
Where [tex]w[/tex] is the angular velocity which is mathematically represented as
[tex]w = \frac{v}{r}[/tex]
=> [tex]w^2 = [\frac{v}{r}] ^2[/tex]
So
[tex]RE = \frac{1}{2}* [\frac{2}{3} *mr^2] * [\frac{v}{r} ]^2[/tex]
[tex]RE = \frac{1}{3} * mv^2[/tex]
Generally the transnational kinetic energy of this motion is mathematically represented as
[tex]TE = \frac{1}{2} mv^2[/tex]
So
[tex]\frac{RE}{TE} = \frac{\frac{1}{3} * mv^2}{\frac{1}{2} * m*v^2}[/tex]
[tex]\frac{RE}{TE} = \frac{2}{3}[/tex]
Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z
The question is not complete, the value of z is not given.
Assuming the value of z = 4.0m
Answer:
the magnitude of the electric field at any point having z(4.0 m) =
E = 5.65 N/C
Explanation:
given
σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²
z = 4.0 m
Recall
E =F/q (coulumb's law)
E = kQ/r²
σ = Q/A
A = 4πr²
∴ The electric field at point z =
E = σ/zε₀
E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)
E = 5.65 N/C