Answer:
257 cm
Step-by-step explanation:
hope this helps Please inform me when it hepls
and Please mark me as Brainlist
What’s a rational number between -1/6 and 1/9
Answer:
LCM of 6 and 9 are 18
1/6 = 1×3/6×3
= 3/18
= 3×10/18×10
= 30/180
1/9 = 1×2/9×2
= 2/18
=2×10/18×10
= 20/180
therefore rational no.s between 1/6 & 1/9 are
21/180,22/180,23/180,24/180,25/180,26/180,27/180,28/180,29/180
Step-by-step explanation:
sorry if im wrong
Answer:
1/18.
Step-by-step explanation:
-1/6 = -3/18 and 1/9 = 2/18
so one rational number between these values is 1/18.
LAST ATTEMPT IM MARKING AS BRAINLIEST!! ( Pythagorean theorem )
Answer:
x=sqrt(7)
Step-by-step explanation:
Since this is a right triangle, we can use the pythagorean theorem
a^2 + b^2 =c^2 where a and b are the legs and c is the hypotenuse
x^2 + ( sqrt(7))^2 = (sqrt(14))^2
x^2+7 = 14
x^2 = 14-7
x^2 = 7
Take the square root of each side
sqrt(x^2) = sqrt(7)
x=sqrt(7)
help me plzzzzzzzzzzzzz (NO LINKS)
Answer:
5^4Step-by-step explanation:
The rule when you divide two values with the same base is to subtract the exponents.
What do x equal to
Answer quickly pls
Answer:
= 130°
Step-by-step explanation:
a far away exterior angle is equal to the sum of two far interior angles
50+80 = x
Need help find the value of x
If the sales tax in your town was 7%, and you paid $1,400 in sales tax on your new car, then what was the original
price of the car? And what is the total price including sales tax?
Please be accurate of your answer and explain.
Answer:
$20,000
Step-by-step explanation:
20,000 / 0.07 = 1400
What is the least common multiple of x^2-16 and
x^2+4x-32?
The least common multiple is the smallest expression that can be divided by both of the given expressions.
x^2 - 16 = (x - 4)(x + 4)
x^2 + 4x - 32 = (x + 8)(x - 4)
Both of the factored versions of the expressions have an (x - 4) in them. Thus, that will automatically be included in the LCM. Next, we have to include the (x + 4) and the (x + 8) in our LCM.
LCM = (x - 4)(x + 4)(x + 8)
Hope this helps! :)
Answer:
(x - 4)(x + 4)(x + 8)Step-by-step explanation:
Factorize the given expressions:
x² - 16 = x² - 4² = (x - 4)(x + 4)x² + 4x - 32 = x² + 8x - 4x - 32 = x(x + 8) - 4(x + 8) = (x - 4)(x + 8)The LCM is the product of all unique factors of both expressions:
(x - 4)(x + 4)(x + 8)A line has a slope of and passes through the point (4, 7). What is its equation in
slope-intercept form?
Write your answer using integers, proper fractions, and improper fractions in simplest form.
Answer:
7=4m +c( y intercept)
Step-by-step explanation:
use the formula y= mx +c
The sales tax rate is 8% how much money is 8% of $14
Where us point c on the number line
Answer: - 0.3
Step-by-step explanation:
Correct me if I am incorrect.
Need help with a math problem If doing 5 stars and a good rating
Answer:
16:1
Step-by-step explanation:
Since there are 85 total people and 80 are students that means 5 are chaperones.(85-5) Therefore the ratio of students to chaperones is 80:5 or simplified 16:1.
If a triangle has a base of 6' and a height of 4' its area would be what?
A= bxh 2
A= 6x4 2
A= 12 sq. ft.
Answer:
Hello There!
According to the question,
Base=6
And
Height =4
Let's know the formula
[tex] \frac{1}{2} \times base \times height \\ so \\ \frac{1}{2} \times 6 \times 4 \\ [/tex]
simplify 2 with 6 then it will look like this
[tex] \frac{1}{1} \times3 \times 4 \\ \\ [/tex]
1 has no value so
[tex]3 \times 4 = 12 {ft}^{2} \\ [/tex]
So third option
[tex]a = 12 {ft}^{2} [/tex]
is correct.
[tex]\Large\textsf{Hope \: It \: Helped}[/tex]
Answer:
Area = 12 sq ft
Step-by-step explanation:
The formula to find the area of a triangle is
1/2 bh so we will replace the letters with their number value
1/2 (6x4)
1/2 x 24 = 12
So, 12 is your answer!
Question 1 (1 point)
Find the measure of the angle marked 4x
we need the image to solve the problem
The midpoint of GH is M( 6,-4). One endpoint is G(8,-2). Find the coordinates of endpoint H.
Using the midpoint formula, the coordinates of endpoint H are (4, -6).
The Midpoint FormulaThe midpoint formula is given as: [tex](x_m, y_m) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} )[/tex]
Where,
[tex](x_m, y_m)[/tex] = coordinates of the midpoint
[tex](x_1, y_1)[/tex] = coordinates of the first point
[tex](x_2, y_2)[/tex] = coordinates of the second point
Given the following:
[tex](x_m, y_m)[/tex] = M( 6,-4)
[tex](x_1, y_1)[/tex] = G(8,-2)
[tex](x_2, y_2)[/tex] = H(?, ?)
Plug in the values into the midpoint formula
[tex]M(6, -4) = (\frac{8 + x_2}{2}, \frac{-2 + y_2}{2} )[/tex]
Solve for the x-coordinate and y-coordinate separately
[tex]6 = \frac{8 + x_2}{2}[/tex]
Multiply both sides[tex]6 \times 2 = 8 + x_2\\\\12 = 8 + x_2\\\\12 - 8 = x_2\\\\4 = x_2\\\\\mathbf{x_2 = 4}[/tex]
[tex]-4 = \frac{-2 + y_2}{2}\\\\-8 = -2 + y_2\\\\-8 + 2 = y_2\\\\-6 = y_2\\\\\mathbf{y_2 = -6}[/tex]
Therefore, using the midpoint formula, the coordinates of endpoint H are (4, -6).
Learn more about midpoint formula on:
https://brainly.com/question/13115533
Translate the sentence into an inequality.
The sum of a number times 2 and 21 is at least 22.
Use the variable b for the unknown number.
2b + 21 < 22
b is the unknown number so multiply it by 2 to get 2b then add 21, bring the less than sign and write the 22 after the less than sign
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.
[tex]y = {x}^{2} [/tex]
[tex]y = 4x[/tex]
; about the y-axis
well, first off, when it comes to volumes by rotation, we'd want to graph them, Check the picture below. Our rotation over the axis will give us a "washer", so we'll be using the washer method.
now, our axis of rotation is the y-axis or namely x = 0, x = 0 is a vertical line, meaning we have to put the functions in y-terms, that is in f(y) form
[tex]y = x^2\implies \pm\sqrt{y}=x\implies \boxed{\pm\sqrt{y}=f(y)} \\\\\\ y = 4x\implies \cfrac{y}{4}=x\implies \boxed{\cfrac{y}{4}=g(y)}[/tex]
if we look at the picture, the parabola is the farthest from the axis of rotation and the line is the closest, or namely R² and r² respectively.
the way I get the area for R² and r², is by using the same I do with "area under the curve", so if I say call the axis of rotation h(y), the way I get the area is
R => f(y) - h(y)
r => g(y) - h(y)
so let's proceed.
[tex]\textit{area under the curve}\\ \begin{array}{llll} \sqrt{y}- 0\implies &\sqrt{y}\\ \frac{y}{4}-0\implies &\frac{y}{4} \end{array}\qquad \qquad \begin{array}{llll} \stackrel{R^2}{(\sqrt{y})^2}-\stackrel{r^2}{\left( \frac{y}{4} \right)^2}\\[-0.5em] \hrulefill\\ y\qquad -\qquad \frac{y^2}{16} \end{array}[/tex]
now, we want to get the area enclosed by both, and thus we'd need their points of intersection, setting both to [tex]\sqrt{y}=\cfrac{y}{4}[/tex] which in short gives us the bounds of 0 and 16.
[tex]\pi \displaystyle\int_{0}^{16}\left( y - \cfrac{y^2}{16} \right)dy\implies \pi \int_{0}^{16}y\cdot dy-\pi \int_{0}^{16}\cfrac{y^2}{16}\cdot dy\\\\\\\pi \cdot \left. \cfrac{y^2}{2} \right]_{0}^{16}-\pi \cdot \left. \cfrac{y^3}{48} \right]_{0}^{16}\implies 128\pi -\cfrac{256\pi }{3}\implies \boxed{\cfrac{128\pi }{3}}[/tex]
Order these from least to greatest [25 points]
Answer:
[tex]\frac{\sqrt{6} }{4}[/tex], 1.538..., [tex]\frac{19}{7}[/tex], [tex]\sqrt{29}[/tex]
Step-by-step explanation:
Solve them each on the calculator and then put in order
[tex]\frac{\sqrt{6} }{4}[/tex] = 0.6123...
19/7 = 2.714
[tex]\sqrt{29}[/tex] = 5.385...
Simplify the expression
-4 + 3 + 5 =
Answer:
4
Step-by-step explanation:
-4+3=-1
-1+5=4
round to the nearest thousandth
7500.98052
12 points **
A box contains 2 red marbles, 3 white marbles, 4 green marbles, and 1 blue marble. Two marbles are drawn at random without replacement. Find the probability of selecting a white marble, then a red marble.
pls help me in this question
a . If 3x,2x and (x+12) are supplymentary angles find the sizes of unknown angles
Answer:
x=28°
Step-by-step explanation:
supplementary angles equal 180°
So:
3x+2x+x+12=180°
6x+12=180
6x=168
x=28°
Therefore:
3x:
3(28)=84°
2x:
2(28)=26°
x+12:
28+12=40°
the sum and product of zeroes are 4 and 1 respectively then the quadratic equation is
A. x² - 4x + 1 =0
B. x + 1=0
C 4x² +x +1 =0
D . x² + 7x+1 =0
Answer:
A. x²- 4x+ 1
option A is the answer
a recipe calls for 2 cups of flour for every 3 cups of sugar. If you are planning to use 5 cups of flour, how many cups of sugar should you use
Answer:
7½ cups of sugar
Step-by-step explanation:
2 cups of flour needs 3 cups of sugar
1 cups of flour needs 3/2=1.5 cups of sugar
1×5 cups of flour needs 1.5×5=7.5 cups of sugar=7½ cups of sugar ANS
plz help me to answer
22/3 sorry I accidentally deleted steps
Let S1= 1, S2=2+3, S3= 4+5+6
Find S7
Find S17
Find Sn
Answer:
S7 = 175S17 = 2465Sn = 1/2(n³ +n)Step-by-step explanation:
The progression of sums is ...
1, 5, 15, 34, 65, ...
So, first differences are ...
4, 10, 19, 31
Second differences are ...
6, 9, 12, ...
Third differences are constant:
3, 3, ...
This means the expression for Sn will be a cubic expression. If dn is the first of the n-th differences, then the equation can be written as ...
Sn = S1 +(n -1)(d1 +(n -2)/2(d2 +(n -3)/3(d3)))
And this simplifies a little bit to ...
Sn = 1 +(n -1)(4 +(n -2)(n +3)/2)
In simpler form, we have ...
Sn = 1/2(n³ +n)
Then the two terms we're interested in are ...
S7 = (1/2)(7³ +7) = 175
S17 = (1/2)(17³ +17) = 2465
Each term Sₙ consists of the sum of a triangular number of terms, which are given by
[tex]T_n = \displaystyle \sum_{k=1}^n k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}2[/tex]
The triangular numbers are given recursively for n ≥ 1 by
[tex]T_n = T_{n-1} + n[/tex]
starting with T₀ = 0.
For example,
• S₁ = 1 and
[tex]\displaystyle S_1 = \sum_{k=T_0+1}^{T_1} k = \sum_{k=1}^1 k = 1[/tex]
• S₂ = 2 + 3 and
[tex]\displaystyle S_2 = \sum_{k=T_1+1}^{T_2} k = \sum_{k=2}^3 k = 2 + 3[/tex]
• S₃ = 4 + 5 + 6 and
[tex]\displaystyle S_3 = \sum_{k=T_2+1}^{T_3} k = \sum_{k=4}^6 k = 4 + 5 + 6[/tex]
Then the n-th term of the sequence we're considering is
[tex]S_n = \displaystyle \sum_{k=T_{n-1}+1}^{T_n} k = \sum_{k=T_{n-1}+1}^{T_{n-1}+n} k[/tex]
Expanding this sum, we have
[tex]S_n = \left(T_{n-1}+1\right) + \left(T_{n-1}+2\right) + \left(T_{n-1}+3\right) + \cdots + \left(T_{n-1}+n\right)[/tex]
There are n terms on the right side, and hence n copies of [tex]T_{n-1}[/tex], and the rest of the terms make up the next triangular number [tex]T_n[/tex] :
[tex]S_n = nT_{n-1} + 1 + 2 + 3 + \cdots + n[/tex]
[tex]S_n = nT_{n-1} + \displaystyle \sum_{k=1}^n k[/tex]
[tex]S_n = nT_{n-1} + T_n[/tex]
We have a closed form for [tex]T_n[/tex], so we end up with
[tex]S_n = n \cdot \dfrac{(n-1)n}2 + \dfrac{n(n+1)}2 \implies \boxed{S_n=\dfrac{n^3+n}2}[/tex]
From here it's easy to find S₇ and S₁₇.
[tex]S_7 = \dfrac{7^3+7}2 \implies \boxed{S_7 = 175}[/tex]
[tex]S_{17} = \dfrac{17^3+17}2 \implies \boxed{S_{17} = 2465}[/tex]
Which list of angle measures could be the angle measures of a triangle?
what is the exact value of cos(11 π/12)
Answer:
[tex]-\frac{1}{4}(\sqrt{2}+\sqrt{6})[/tex]
Step-by-step explanation:
[tex]cos(\frac{11\pi}{12})[/tex]
[tex]cos(\frac{2\pi}{3}+\frac{\pi}{4})[/tex]
[tex]cos(\frac{2\pi}{3})cos(\frac{\pi}{4})-sin(\frac{2\pi}{3})sin(\frac{\pi}{4})[/tex]
[tex](-\frac{1}{2})(\frac{\sqrt{2}}{2})-(\frac{\sqrt{3}}{2})(\frac{\sqrt{2}}{2})[/tex]
[tex]-\frac{\sqrt{2}}{4}- \frac{\sqrt{6}}{4}[/tex]
[tex]-\frac{1}{4}(\sqrt{2}+\sqrt{6})[/tex]
Helpful Tips:
Sum Identity: [tex]cos(\alpha+\beta)=cos(\alpha)cos(\beta)-sin(\alpha)sin(\beta)[/tex]
4. Mother pays Php 199.50 for 2.85 kg of rice. How much does a kilogram of rice cost?
a.35
b.70
c.75
d.105
please answer it correctly.
Answer:
B. 70
Step-by-step explanation:
If 199.50 PHP gets you 2.85KG of rice.
A kilogram of rice would cost = Total Amount / Total Weight.
199.50/2.85
= 70PHP
f(x)=x^2. what is g(x)?
rotate segment AE about point F 144 degrees
Answer:
DC
Step-by-step explanation:
If we rotate a segment around a point 360 degrees, we have rotated it around to its original point. Similarly, if we rotate it 180 degrees, we have rotated it to the side opposite of where it once was relative to the point.
What we can do is see how much 144 degrees is of 360 and use that to determine how far around we rotate AE around F.
144/360
divide by 12 because that is a common factor of both the numerator and denominator
12 / 30
divide by 2 because that is a common factor
6/15
divide by 3 because that is a common factor
2/5
Therefore, 144/360 = 2/5. This means that we rotate segment AE 2/5 of the way around point F. We have 5 sides in the polygon ABCDE, and each represents 1/5 of the way around. Going counterclockwise, ED represents 1/5, DC represents 2/5, and so on. We are looking for 2/5, so DC is our answer