What value of D is required to make vt = 42.7 m/s the terminal velocity of a skydiver of mass 85.0 kg . Express your answer using two significant figures.

Answers

Answer 1

Complete Question

For a human body falling through air  in  a spread edge position , the numerical value of the constant D is about [tex]D = 0.2500 kg/m[/tex]

What value of D is required to make vt = 42.7 m/s the terminal velocity of a skydiver of mass 85.0 kg . Express your answer using two significant figures?

Answer:

The value of D is   [tex]D = 0.457 \ kg/m[/tex]

Explanation:

From the question we are told that

     The terminal velocity is  [tex]v_t = 42.7 \ m/s[/tex]

     The mass of the skydiver is  [tex]m = 85.0 \ kg[/tex]

      The numerical value of  D  is  [tex]D = 0.2500 kg/m[/tex]

From the unit of D  in the question we can evaluate D as  

       [tex]D = \frac{m * g }{v^2}[/tex]

substituting values  

        [tex]D = \frac{85 * 9.8 }{(42.7)^2}[/tex]

         [tex]D = 0.457 \ kg/m[/tex]


Related Questions

A horizontal spring with spring constant 290 N/m is compressed by 10 cm and then used to launch a 300 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23. What is the box's launch speed?

Answers

Answer:

Explanation:

check it out and rate me

You have a 160-Ω resistor and a 0.430-H inductor. Suppose you take the resistor and inductor and make a series circuit with a voltage source that has a voltage amplitude of 30.0 V and an angular frequency of 220 rad/s .
Part A: What is the impedance of the circuit? ( Answer: Z = ? Ω )
Part B: What is the current amplitude? ( Answer: I = ? A )
Part C: What is the voltage amplitude across the resistor? ( Answer: VR = ? V )
Part D: What is the voltage amplitudes across the inductor? ( Answer: VL = ? V )
Part E: What is the phase angle ϕ of the source voltage with respect to the current? ( Answer: ϕ = ? degrees )
Part F: Does the source voltage lag or lead the current? ( Answer: the voltage lags the current OR the voltage leads the current )

Answers

Answer:

A.  Z = 185.87Ω

B.  I  =  0.16A

C.  V = 1mV

D.  VL = 68.8V

E.  Ф = 30.59°

Explanation:

A. The impedance of a RL circuit is given by the following formula:

[tex]Z=\sqrt{R^2+\omega^2L^2}[/tex]       (1)

R: resistance of the circuit = 160-Ω

w: angular frequency = 220 rad/s

L: inductance of the circuit = 0.430H

You replace in the equation (1):

[tex]Z=\sqrt{(160\Omega)^2+(220rad/s)^2(0.430H)^2}=185.87\Omega[/tex]

The impedance of the circuit is 185.87Ω

B. The current amplitude is:

[tex]I=\frac{V}{Z}[/tex]                     (2)

V: voltage amplitude = 30.0V

[tex]I=\frac{30.0V}{185.87\Omega}=0.16A[/tex]

The current amplitude is 0.16A

C. The current I is the same for each component of the circuit. Then, the voltage in the resistor is:

[tex]V=\frac{I}{R}=\frac{0.16A}{160\Omega}=1*10^{-3}V=1mV[/tex]            (3)

D. The voltage across the inductor is:

[tex]V_L=L\frac{dI}{dt}=L\frac{d(Icos(\omega t))}{dt}=-LIsin(\omega t)\\\\V_L=-(0.430H)(160\Omega)sin(220 t)=68.8sin(220t)\\\\V_L_{max}=68.8V[/tex]

E. The phase difference is given by:

[tex]\phi=tan^{-1}(\frac{\omega L}{R})=tan^{-1}(\frac{(220rad/s)(0.430H)}{160\Omega})\\\\\phi=30.59\°[/tex]

distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the pote my jobntA total electric charge of 3.50 nC is distributed uniformly over the surface of a metal sphere with a radius 24.0 cm. If the potential is zero at a point at infinity, find the value of the potential at the following distances from the center of the sphere: (a) 48.0 cm (b) 2ial at the following distances from the center of the sphere: (a) 48.0 cm (b) 24.0 cm  (c) 12.0 cm

Answers

Answer:

(a) V = 65.625 Volts

(b) V = 131.25 Volts

(c) V = 131.25 Volts

Explanation:

Recall that:

1) in a metal sphere the charges distribute uniformly around the surface, and the electric field inside the sphere is zero, and the potential is constant equal to:

[tex]V=k\frac{Q}{R}[/tex]

2) the electric potential outside of a charged metal sphere is the same as that of a charge of the same value located at the sphere's center:

[tex]V=k\frac{Q}{r}[/tex]

where k is the Coulomb constant ( [tex]9\,\,10^9\,\,\frac{N\,m^2}{C^2}[/tex] ), Q is the total charge of the sphere, R is the sphere's radius (0.24 m), and r is the distance at which the potential is calculated measured from the sphere's center.

Then, at a distance of:

(a) 48 cm = 0.48 m, the electric potential is:

[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.48} =65.625\,\,V[/tex]

(b) 24 cm = 0.24 m, - notice we are exactly at the sphere's surface - the electric potential is:

[tex]V=k\frac{Q}{r}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]

(c) 12 cm (notice we are inside the sphere, and therefore the potential is constant and the same as we calculated for the sphere's surface:

[tex]V=k\frac{Q}{R}=9\,\,10^9 \,\frac{3.5\,\,10^{-9}}{0.24} =131.25\,\,V[/tex]

Answer:

c) a difference in electric potential

Explanation:

my insta: priscillamarquezz

If two radio telescope dishes are wired together in the right way, the "D" used in determining the angular resolution is determined by

Answers

Answer:

D is determined by distance between the telescopes.

Explanation:

A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t = 4. f(t) = 12 + 35 t + 1

Answers

A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t = 4. f(t) = 12t² + 35 t + 1

Answer:

Velocity = 131 m/s

Speed = 131 m/s

Explanation:

Equation of motion, s = f(t) = 12t² + 35 t + 1

To get velocity of the particle, let us find the first derivative of s

v (t) = ds/dt = 24t + 35

At t = 4

v(4) = 24(4) + 35

v(4) = 131 m/s

Speed is the magnitude of velocity. Since the velocity is already positive, speed is also 131 m/s

When you release the mass, what do you observe about the energy?

Answers

Explanation:

Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy, and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy. For example, after heating an object, its increase in energy could be measured as a small increase in mass, with a sensitive enough scale.

Earth orbiting the Sun The Earth is 1.5 ⋅ 10 8 km from the Sun (on average). How fast is the Earth orbiting the Sun in kilometers per second (on average)? You can assume the orbit of the Earth is a circle and that the circumference of a circle is equal to C = 2 π R where R is the radius of a circle (the distance between the center and the edge. Note that for our purposes, it is perfectly fine to assume π = 3 which allows for a pretty good approximation C = 6 R . Your answer does not need to be put into scientific notation, but if you choose to do so it will be marked correct! kilometers per second

Answers

Answer:

1 yr = 24 * 3600 * 365 = 3.2 * 10E7 sec

C = 6 R = 1.5 * 10E8 * 6 = 9 * 10E8 km     circumference of orbit

v = C / t = 9 * 10E8 km / 3 * 10E7  sec = 30 km / sec = 18 mi/sec

a beam of 1mev electrons strike a thick target. for a beam current of 100 microampere, find the power dissipated in the target

Answers

Answer:

power dissipated in the target is 100 W

Explanation:

given data

electrons = 1 mev = [tex]10^{6}[/tex] eV

1 eV = 1.6 × [tex]10^{-19}[/tex] J

current =  100 microampere = 100 × [tex]10^{-6}[/tex] A

solution

when energy of beam strike with 1 MeV so energy of electron is

E = e × v   ...................1

e is charge of electron and v is voltage

so put here value and we get voltage

v = 1 ÷ 1.6 × [tex]10^{-19}[/tex]

v =  [tex]10^{6}[/tex] volt

so power dissipated in target

P = voltage × current   ..............2

put here value

P =  [tex]10^{6}[/tex]  × 100 × [tex]10^{-6}[/tex]

P = 100 W

so power dissipated in the target is 100 W

A square copper plate, with sides of 50 cm, has no net charge and is placed in a region where there is a uniform 80 kN / C electric field directed perpendicular to the plate. Find a) the charge density of each side of the plate and b) the total load on each side.

Answers

Answer:

a) ±7.08×10⁻⁷ C/m²

b) 1.77×10⁻⁷ C

Explanation:

For a conductor,

σ = ±Eε₀,

where σ is the charge density,

E is the electric field,

and ε₀ is the permittivity of space.

a)

σ = ±Eε₀

σ = ±(8×10⁴ N/C) (8.85×10⁻¹² F/m)

σ = ±7.08×10⁻⁷ C/m²

b)

σ = q/A

7.08×10⁻⁷ C/m² = q / (0.5 m)²

q = 1.77×10⁻⁷ C

Two small charged spheres are 7.59 cmcm apart. They are moved, and the force on each of them is found to have been tripled. How far apart are they now?

Answers

Answer:

The two small charged spheres are now 4.382 cm apart

Explanation:

Given;

distance between the two small charged sphere, r = 7.59 cm

The force on each of the charged sphere can be calculated by applying Coulomb's law;

[tex]F = \frac{kq_1q_2}{r^2}[/tex]

where;

F is the force on each sphere

q₁ and q₂ are the charges of the spheres

r is the distance between the spheres

[tex]F = \frac{kq_1q_2}{r^2} \\\\kq_1q_2 = Fr^2 \ \ (keep \ kq_1q_2 \ constant)\\\\F_1r_1^2 = F_2r_2^2\\\\r_2^2 = \frac{F_1r_1^2}{F_2} \\\\r_2 = \sqrt{\frac{F_1r_1^2}{F_2}} \\\\r_2 = r_1\sqrt{\frac{F_1}{F_2}}\\\\(r_1 = 7.59 \ cm, \ F_2 = 3F_1)\\\\r_2 = 7.59cm\sqrt{\frac{F_1}{3F_1}}\\\\r_2 = 7.59cm\sqrt{\frac{1}{3}}\\\\r_2 = 7.59cm *0.5773\\\\r_2 = 4.382 \ cm[/tex]

Therefore, the two small charged spheres are now 4.382 cm apart.

Which characteristic gives the most information about what kind of element an atom is ?

Answers

Answer:

The atomic number

Explanation:

Answer :

The atomic number

A street light is at the top of a pole that has a height of 17 ft . A woman 5 ft tall walks away from the pole with a speed of 8 ft/s along a straight path. How fast is the tip of his shadow moving when he is 40ft from the pole?

Answers

Answer:

8 ft/s

Explanation:

This is a straight forward question without much ado.

It is given from the question that she walks with a speed of 8 ft/s

Zuckerman’s test for sensation seeking measures which of the following characteristics?

dangerousness, antisocial traits, “letting loose,’ and intolerance for boredom

thrill and adventure seeking, experience seeking, disinhibition, and susceptibility to boredom

adventurousness, physical prowess, creative morality, and charisma

dangerousness, adventurousness, creativity, and thrill and adventure seeking

Answers

The correct answer is B. thrill and adventure seeking, experience seeking, disinhibition, and susceptibility to boredom

Explanation:

Marvin Zuckerman was an important American Psychologists mainly known for his research about personality and the creation of a model to study this aspect of human psychology. This model purposes five factors define personality, these are the thrill and adventure-seeking that involves seeking for adventures and danger; experience seeking that implies a strong interest in participating in new activities; disinhibition that implies being open and extrovert; and susceptibility to boredom that implies avoiding boredom or repetition. Thus, option B correctly describes the characteristics used in Zuckerman's test.

g If the interaction of a particle with its environment restricts the particle to a finite region of space, the result is the quantization of ____ of the particle.

Answers

Answer:

the result is the quantization of __Energy__ of the particle

Explanation:

The relationship between the Period (T) caused by the oscillation of the mass on the end of a hanging spring and the mass (m) is:

Answers

Answer:

T= 2p√m/k

Explanation:

This is because the period of oscillation of the mass of spring system is directly proportional to the square root of the mass and it is inversely proportional to the square root of the spring constant.

The period of a mass on a spring is given by the equation

T=2π√m/k.

Where T is the period,

M is mass

K is spring constant.

An increase in mass in a spring increases the period of oscillation and decrease in mass decrease period of oscillation.

When there is the relationship between the Period (T) caused by the oscillation of the mass should be considered as the T= 2p√m/k.

Oscillation of the mass:

The mass of the spring system with respect to period of oscillation should be directly proportional to the square root of the mass and it is inversely proportional to the square root of the spring constant.

So the following equation should be considered

T=2π√m/k.

Here,

T is the period,

M is mass

K is spring constant.

An increase in mass in a spring rises the period of oscillation and reduce in mass decrease period of oscillation.

Learn more about mass here: https://brainly.com/question/21860379

Two blocks of masses m1 and m2 are placed in contact with each other on a smooth, horizontal surface. Block m1 is on the left of block m2 . A constant horizontal force F to the right is applied to m1 . What is the horizontal force acting on m2?

Answers

Answer:

The horizontal force acting on m2 is F + 9.8m1

Explanation:

Given;

Block m1 on left of block m2

Make a sketch of this problem;

                         F →→→→→→→→→→→-------m1--------m2

Apply Newton's second law of motion;

F = ma

where;

m is the total mass of the body

a is the acceleration of the body

The horizontal force acting on block m2 is the force applied to block m1 and force due to weight of block m1

F₂ = F + W1

F₂ = F + m1g

F₂ = F + 9.8m1

Therefore, the horizontal force acting on m2 is F + 9.8m1

The force acting on the block of mass m₂ is  [tex]\frac{m_2F}{m_1+m_2}[/tex]

Force acting on the block:

Given that there are two blocks of mass m₁ and m₂.

m₁ is on the left of block m₂. They are in contact with each other.

A force F is applied on m₁ to the right.

According to Newton's laws of motion:

The equation of motion of the blocks can be written as:

F = (m₁ + m₂)a

here, a is the acceleration.

so, acceleration:

a = F / (m₁ + m₂)

Now, the force acting on the block of mass m₂ is:

f = m₂a

[tex]f = \frac{m_2F}{m_1+m_2}[/tex]

Learn more about laws of motion:

https://brainly.com/question/26083484?referrer=searchResults

The gravitational energy of a swimmer on a driving board at different heights is shown in the table below. What is the driver's gravitational energy at 5m high? (A) 5500 J (B) 2750 J (C) 8800 J (D) 3300 J

Answers

Answer:

E = 2750 J at h = 5 m

Explanation:

The gravitational potential energy is given by :

[tex]E=mgh[/tex]

In this case, m is the mass of swimmer is constant at every heights. So,

At h = 1 m, E = 550 J

[tex]550=m\times 10\times 1\\\\m=55\ kg[/tex]

So, at h = 5 m, gravitational potential energy is given by :

[tex]E=55\times 10\times 5\\\\E=2750\ J[/tex]

So, the correct option is (B).

An object of mass 2 kg has a speed of 6 m/s and moves a distance of 8 m. What is its kinetic energy in joules?

Answers

Answer:

36 Joules

Explanation:

Mass ( m ) = 2 kg

Speed of the object (v) = 6 metre per second

Kinetic energy =?

Now,

We have,

Kinetic Energy = [tex] \frac{1}{2} \times m \times {v}^{2} [/tex]

Plugging the values,

[tex] = \frac{1}{2} \times 2 \times {(6)}^{2} [/tex]

Reduce the numbers with Greatest Common Factor 2

[tex] = {(6)}^{2} [/tex]

Calculate

[tex] = 36 \: joule[/tex]

Hope this helps...

Good luck on your assignment...

The Kinetic energy of the object will be "36 joules".

Kinetic energy

The excess energy of moving can be observed as that of the movement of an object, component, as well as the group of components. There would never be a negative (-) amount of kinetic energy.

According to the question,

Mass of object, m = 2 kg

Speed of object, v = 6 m/s

As we know the formula,

→ Kinetic energy (K.E),

= [tex]\frac{1}{2}[/tex] × m × v²

By substituting the values, we get

= [tex]\frac{1}{2}[/tex] × 2 × (6)²

=  [tex]\frac{1}{2}[/tex] × 2 × 36

= 36 joule

Thus the above answer is appropriate.

Find out more information about Kinetic energy here:

https://brainly.com/question/25959744

The only factor connecting horizontal and vertical components of projectile motion is _____.

Answers

Answer:

Velocity

Explanation:

When a body is launched in air and allowed to fall freely under the influence of gravity, the motion experienced by the body is known as a projectile motion. The body is launched at a particular velocity and at an angle theta to the horizontal. The velocity of the body ca be resolved towards the horizontal component and the vertical component.

Along the horizontal Ux = Ucos(theta)

Along the vertical Uy = Ucos(theta)

Ux and Uy are the velocities of the body along the horizontal and vertical components respectively.

This means that the only factor connecting horizontal and vertical components of projectile motion is its velocity since we are able to calculate the velocity of the body along both components irrespective of its initial velocity.

What is the length of the shadow cast on the vertical screen by your 10.0 cm hand if it is held at an angle of θ=30.0∘ above horizontal? Express your answer in centimeters to three significant figures. View Available Hint(s)

Answers

Answer:

The  length is  [tex]D = 5 \ cm[/tex]

Explanation:

From the question we are told  that

     The  length of the  hand is  [tex]l = 10.0 \ cm[/tex]

      The  angle at the hand is  held is  [tex]\theta = 30 ^o[/tex]

Generally resolving the length the length of the hand to it vertical component we obtain that the length of the shadow on the vertical wall is mathematically evaluated as

             [tex]D = l * sin(\theta )[/tex]

substituting values

             [tex]D = 10 * sin (30)[/tex]

             [tex]D = 5 \ cm[/tex]

A car is traveling down a highway. It was moving with a velocity of 50m/s when the driver reads the speed limit and has to decelerate with an acceleration of -5m/s for 2 seconds. What is the momentum of this 500kg car after it decelerates?

Answers

Answer:

20,000 kg m/s

Explanation:

Given:

v₀ = 50 m/s

a = -5 m/s²

t = 2 s

Find: v

v = at + v₀

v = (-5 m/s²) (2 s) + (50 m/s)

v = 40 m/s

p = mv

p = (500 kg) (40 m/s)

p = 20,000 kg m/s

Accelerating charges radiate electromagnetic waves. Calculate the wavelength of radiation produced by a proton in a cyclotron with a magnetic field of 0.547 T.

Answers

Answer:

Wavelength is 0.359 m

Explanation:

Given that,

Magnetic field, B = 0.547 T

We need to find the wavelength of radiation produced by a proton in a cyclotron with a magnetic field of 0.547 T.

The frequency of revolution of proton in the cyclotron is given by :

[tex]f=\dfrac{qB}{2\pi m}[/tex]

m is mass of proton

q is charge on proton

So,

[tex]f=\dfrac{1.6\times 10^{-19}\times 0.547}{2\pi \times 1.67\times 10^{-27}}\\\\f=8.34\times 10^6\ Hz[/tex]

We know that,

Speed of light, [tex]c=f\lambda[/tex]

[tex]\lambda[/tex] = wavelength

[tex]\lambda=\dfrac{c}{f}\\\\\lambda=\dfrac{3\times 10^8}{834\times 10^6}\\\\\lambda=0.359\ m[/tex]

So, the wavelength of the radiation produced by a proton is 0.359 m.

Two parallel plates 0.800 cm apart are equally and oppositely charged. An electron is released from rest at the surface of the negative plate and simultaneously a proton is released from rest at the surface of the positive plate.
How far from the negative plate is the point at which the electron and proton pass each other?

Express your answer with the appropriate units.

Answers

Answer:

0.79 cm

Explanation:

The computation is shown below:-

Particle acceleration is

[tex]a = \frac{qE}{m}[/tex]

We will take d which indicates distance as from the negative plate, so the travel by proton is 0.800 cm - d at the same time

[tex]d = \frac{1}{2} a_et^2\\\\0.800 cm - d = \frac{1}{2} a_pt^2\\\\\frac{d}{0.800 cm - d} = \frac{a_e}{a_p} \\\\\frac{d}{0.800 cm - d} = \frac{m_p}{m_e} \\\\\frac{d}{0.800 cm - d} = \frac{1836m_e}{m_e}[/tex]

After solving the equation we will get 0.79 cm from the negative plate.

Therefore it is 0.79 cm far from the negative pate i.e the point at which the electron and proton pass each other

The point at which the electron and proton pass each other will be 0.79 cm.

What is the charge?

When the matter is put in an electromagnetic field, it has an electric charge, which causes it to experience a force. A positive or negative electric charge can exist.

The given data in the problem is;

d' is the distance between the two parallel plates= 0.800 cm

The acceleration is given as;

[tex]\rm a= \frac{qE}{m} \\\\[/tex]

The distance from Newton's law is found as;

[tex]d = ut+\frac{1}{2} at^2 \\\\ u=0 \\\\ d= \frac{1}{2} at^2 \\\\ d-d' = \frac{1}{2} a_pt^2 \\\\ 0.800-d= \frac{1}{2} a_pt^2 \\\\\ \frac{d}{0.800-d} =\frac{a}{a_p} \\\\ \frac{d}{0.800-d} =\frac{m_p}{m} \\\\ \frac{d}{0.800-d} =\frac{1836m_e}{m_e} \\\\ d=0.79 \ cm[/tex]

Hence the point at which the electron and proton pass each other will be 0.79 cm.

To learn more about the charge refer to the link;

https://brainly.com/question/24391667

Parallel rays of monochromatic light with wavelength 583 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. If the intensity at the center of the central maximum is 5.00×10^−4W/m^2. What is the intensity at a point on the screen that is 0.900 mm from the center of the central maximum?

Answers

Answer:

  I = 2.18 10⁻⁴ W / m²

Explanation:

The two-slit interference pattern is described by the expression for constructive interference.

             d sin θ = m λ

If we also want to know the distribution of intensities we must perform the su of the electric field of the two waves, and find the intensity as the square of the velvet field, obtaining the expression

              I = I_max cos² ((π d /λ L) y)

where d is the separation of the slits, λ  the wavelength, L the distance to the screen e and the separation of the interference line with respect to the central maximum

 

let's reduce the magnitudes to the SI system

λ  = 583 nm = 583 10⁻⁹ m

L = 75.0 cm = 75.0 10⁻² m

d = 0.640 mm = 0.640 10⁻³ m

y = 0.900 mm = 0.900 10⁻³ m

let's calculate the intensity of this line

        I = 5 10⁻⁴ cos² ((π 0.640 10⁻³ /583 10⁻⁹ 0.75 10⁻²) 0.900 10⁻³)

        I = 5 10⁻⁴ cos2 (413.84)

         I = 5 10⁻⁴ 0.435

        I = 2.18 10⁻⁴ W / m²

A car has a mass of 1200 kg and an acceleration of 4 m/s^2. If the friction on the car is 200 N, how much force is the thrust providing?

Answers

Answer:

5000N

Explanation:

According to Newton's second law of motion, the net force (∑F) acting on a body is the product of the mass (m) of the body and the acceleration (a) of the body caused by the force. i.e

∑F = m x a             -------------(i)

From the question, the net force is the combined effect of the thrust (F) and the friction force (Fₓ). i.e

∑F = F + Fₓ             -------------(ii)

Where;

Fₓ = -200N       [negative sign because the friction force opposes motion]

Combine equations(i) and (ii) together to get;

F + Fₓ = m x a

F = ma - Fₓ         -------------(iii)

Where;

m = mass of car = 1200kg

a = acceleration of the car = 4m/s²

Now substitute the values of m, a and Fₓ into equation (iii) as follows;

F = (1200 x 4) - (-200)

F = 4800 + 200

F = 5000N

Therefore, the force the thrust is providing is 5000N

A hungry 177 kg lion running northward at 81.8 km/hr attacks and holds onto a 32.0 kg Thomson's gazelle running eastward at 59.0 km/hr. Find the final speed of the lion–gazelle system immediately after the attack.

Answers

Answer:

The final speed of the lion-gazelle system immediately after the attack is 69.862 kilometers per hour.

Explanation:

Let suppose that lion and Thomson's gazelle are running at constant speed before and after collision and that collision is entirely inelastic. Given the absence of external force, the Principle of Momentum Conservation is applied such that:

[tex]\vec p_{L} + \vec p_{G} = \vec p_{F}[/tex]

Where:

[tex]\vec p_{L}[/tex] - Linear momentum of the lion, measured in kilograms-meters per second.

[tex]\vec p_{G}[/tex] - Linear momentum of the Thomson's gazelle, measured in kilograms-meters per second.

[tex]\vec p_{F}[/tex] - Linear momentum of the lion-Thomson's gazelle, measured in kilograms-meters per second.

After using the definition of momentum, the system is expanded:

[tex]m_{L}\cdot \vec v_{L} + m_{G}\cdot \vec v_{G} = (m_{L} + m_{G})\cdot \vec v_{F}[/tex]

Vectorially speaking, the final velocity of the lion-gazelle system is:

[tex]\vec v_{F} = \frac{m_{L}}{m_{L}+m_{G}}\cdot \vec v_{L} + \frac{m_{G}}{m_{L}+m_{G}}\cdot \vec v_{G}[/tex]

Where:

[tex]m_{L}[/tex], [tex]m_{G}[/tex] - Masses of the lion and the Thomson's gazelle, respectively. Measured in kilograms.

[tex]\vec v_{L}[/tex], [tex]\vec v_{G}[/tex], [tex]\vec v_{F}[/tex] - Velocities of the lion, Thomson's gazelle and the lion-gazelle system. respectively. Measured in meters per second.

If [tex]m_{L} = 177\,kg[/tex], [tex]m_{G} = 32\,kg[/tex], [tex]\vec v_{L} = 81.8\cdot j\,\left[\frac{km}{h} \right][/tex] and [tex]\vec v_{G} = 59.0\cdot i\,\left[\frac{km}{h} \right][/tex], the final velocity of the lion-gazelle system is:

[tex]\vec v_{F} = \frac{177\,kg}{177\,kg+32\,kg}\cdot \left(81.8\cdot j\right)\,\left[\frac{km}{h} \right] + \frac{32\,kg}{177\,kg+32\,kg}\cdot \left(59.0\cdot i\right)\,\left[\frac{km}{h} \right][/tex]

[tex]\vec v_{F} = 9.033\cdot i + 69.276\cdot j\,\left[\frac{km}{h} \right][/tex]

The speed of the system is the magnitude of the velocity vector, which can be found by means of the Pythagorean theorem:

[tex]\|\vec v_{F}\| = \sqrt{\left(9.033\frac{km}{h} \right)^{2}+\left(69.276\frac{km}{h} \right)^{2}}[/tex]

[tex]\|\vec v_{F}\| \approx 69.862\,\frac{km}{h}[/tex]

The final speed of the lion-gazelle system immediately after the attack is 69.862 kilometers per hour.

A 54.0 kg ice skater is moving at 3.98 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.802 m around the pole.
(a) Determine the force exerted by the horizontal rope on her arms.N
(b) What is the ratio of this force to her weight?(force from part a / her weight)

Answers

Answer:

(a) force is 1066.56N

Explanation:

(a) MV²/R

A cyclotron operates with a given magnetic field and at a given frequency. If R denotes the radius of the final orbit, then the final particle energy is proportional to which of the following?
A. 1/RB. RC. R^2D. R^3E. R^4

Answers

Answer:

C. R^2

Explanation:

A cyclotron is a particle accelerator which employs the use of electric and magnetic fields for its functioning. It consists of two D shaped region called dees and the magnetic field present in the dee is responsible for making sure the charges follow the half-circle and then to a gap in between the dees.

R is denoted as the radius of the final orbit then the final particle energy is proportional to the radius of the two dees. This however translates to the energy being proportional to R^2.

A motorcyclist changes his speed from 20 km / h to 100 km / h in 3 seconds, maintaining a constant acceleration in that time interval. If the mass of the motorcycle is 200 kg and that of its rider is 80 kg, what is the value of the net force to accelerate the motorcycle? Help!

Answers

Answer:

2000 N

Explanation:

20 km/h = 5.56 m/s

100 km/h = 27.78 m/s

F = ma

F = m Δv/Δt

F = (200 kg + 80 kg) (27.78 m/s − 5.56 m/s) / (3 s)

F = 2074 N

Rounded to one significant figure, the force is 2000 N.

A student slides her 80.0-kg desk across the level floor of her dormitory room a distance 4.40 m at constant speed. If the coefficient of kinetic friction between the desk and the floor is 0.400, how much work did she do

Answers

Answer:

F = umg where u is coefficient of dynamic friction

Explanation:

F = 0.4 x 80 x 9.81 = 313.92 N

Other Questions
Marla Staples is concerned with identity theft. One of the ways that she can protect her information from leaking out to the wrong hands is to: limit her purchases with vendors that she knows do not store her information in a database. limit her travels to only the U.S. because identity theft is an international problem. avoid all e-commerce transactions because this is the only type of buying transaction where websites and others handle sensitive, personal information. install antivirus software, firewalls, and anti-spyware software on her computer. Suppose you pay a dollar to roll two dice. if you roll 5 or a 6 you Get your dollar back +2 more just like it the goal will be to find the amount of money you can expect to win or lose if you play this game 100 times. How many times would you win? how many times would you lose? Monique is researching local recycling.What is the best action to take if she faces challenges while locating sources?A.She should ask a fellow student.B.She should question her neighbors.C.She should consult a teacher or librarian.D.She should talk to her parents or grandparents. During William or Normandys rule, England: ASSIGNMENTSCOURSESAssignmentAttempt 1 of 3SECTION 101QUESTION 9 OF 35A box is suspended from a series of cables as shown below. The angle of the cable attached to the ceiling is 30relative to the horizontal. The cable to the left has a tension force of 40 N. What is the approximate weight of the box?3040N23N Which of the following is NOT an indicator of a chemicalreaction?O A. Breaking into small piecesOB. Producing a solidOC. Changing colorOD. Producing light What is the solution to 2|2.2x 3.3| = 6.6? x = 3 x = 3 x = 3 or x = 0 x = 0 or x = 3 In a survey, 205 people indicated they prefer cats, 160 indicated they prefer dots, and 40 indicated they dont enjoy either pet. Find the probability that if a person is chosen at random, they prefer cats The pathologic changes that occur in the development of coronary atherosclerotic lesions include cell damage resulting from which of the following? (Select all that apply.) A decrease in smooth muscle cells A chronic calcium buildup The effects of oxidized lipids An inflammatory response The formation of plaques When a production possibilities frontier is bowed out it shows... Group of answer choices that there is no transaction cost going from one good to the next. an example of increasing opportunity cost. that resources are perfectly shiftable from the production of one good to another. All of these answers are correct. The following data represent the miles per gallon for a particular make and model car for six randomly selected vehicles. Compute the mean, median, and mode miles per gallon 24.2. 22.2. 37.8, 22.7. 35 4. 31.61. Compute the mean miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean mileage per gallon is _______B. The mean does not exist 2. Compute the median miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice A. The median mileage per gallon is __________B. The median does not exist. 3. Compute the mode miles per gallon. Select the correct choice below and, if necessary,fill in the answer box to complete your choice. A. The mode is _________B. The mode does not exist. How to solve the equation 431532+1 A government's policies do not affect the everyday lives of its citizens.True False What was the direct effect ofNicholas putting the frog inhis bread-and-milk bowl?A. The aunt watches the garden all day.B. The aunt falls into the rain-water tank.C. Nicholas misses the trip to Jagborough. Fill in the table using this function rule. A college student is taking two courses. The probability she passes the first course is 0.7. The probability she passes the second course is 0.67. The probability she passes at least one of the courses is 0.79. Give your answer to four decimal places. a. What is the probability she passes both courses Modify the DemoSalesperson application so each Salesperson has a successive ID number from 111 through 120 and a sales value that ranges from $25,000 to $70,000, increasing by $5,000 for each successive Salesperson. Save the file as DemoSalesperson2.java. Read the excerpt from John Burns: The Unlikely Civil War Hero. It wasnt long before John came upon the 150th Pennsylvania Infantry. They were moving quickly toward the battlefront when John offered his services to Major Thomas Chamberlain, the first officer he saw. Although the major eyed him doubtfully, he directed John toward his commander, Colonel Langhorne Wister. As John made his way to the man in charge, many of the privates laughed at the old mans getup: yellow vest, brass-buttoned blue coat, and silk hat. Even though the air was thick with tension over the coming fight, the men could not take John seriously. However, the soldiers would soon learn that the man who wore the unusual outfit was someone to respect. Which best retells the central idea of this excerpt? John Burns wore old-fashioned clothing, but his fellow soldiers learned that he was still strongly devoted to the Union. John Burns was not permitted to join the Union army because commanders did not understand his outfit. John Burns was silly looking, and he was therefore unable to help the Union army at Gettysburg. John Burns wore an old-fashioned uniform, and the other soldiers were jealous of his attire. Which of the following uses a conjunction, but is not a compound sentence? Alexis is wearing a jacket, so she will stay warm all afternoon. Eduardo plays the violin, but he'd rather play the flute. Erin ran, skipped, and jumped to cross the finish line. Please write a report about Morality and Religion are the Main Objects in Everyman play. Divide the report into: (intoduction + Body + conclusion + Referances) . Please I need help in this report.