what mass of water in grams contains 1.3 g of ca ? (1.3 g of ca is the recommended daily allowance of calcium for 19- to 24-year-olds.) express your answer using two significant figures.

Answers

Answer 1

the mass of water containing 1.3 g of Ca is 1.2 g.Calcium is a chemical element with the symbol Ca and atomic number 20. It is a soft, silvery-white metal that belongs to the alkaline earth group of the periodic table.

To determine the mass of water in grams containing 1.3 g of Ca, we can use the molecular mass of calcium and a bit of stoichiometry.

Calcium is a chemical element with the symbol Ca and atomic number 20. It is a soft, silvery-white metal that belongs to the alkaline earth group of the periodic table. Mass of calcium, Ca = 1.3 g.We can find the mass of water, w, using the following chemical equation:Ca + 2H2O → Ca(OH)2 + H2Using the molecular mass of Ca (40 g/mol), the equation above tells us that 1 mole of Ca reacts with 2 moles of H2O. Therefore,1 mole Ca = 2 moles H2O40 g Ca = 2 × 18 g H2O40 g Ca = 36 g H2O1 g Ca = 36 g/40 = 0.9 g H2O1.3 g Ca = 0.9 g H2O/g CaTherefore, the mass of water containing 1.3 g of Ca is:Mass of water = Mass of Ca × Mass of H2O/g CaMass of water = 1.3 g Ca × 0.9 g H2O/g CaMass of water = 1.17 g ≈ 1.2 g (to two significant figures)Therefore, the mass of water containing 1.3 g of Ca is 1.2 g.

To know more about stoichiometry Visit:

https://brainly.com/question/28780091

#SPJ11


Related Questions

Which one of the following uses your credit history to determine your credit score? Equifax Experian FICO TransUnion Continue

Answers

FICO uses your credit history to determine your credit score. FICO is a credit score system created by the Fair Isaac Corporation, which is a data analytics firm based in San Jose, California. FICO scores range from 300 to 850 and are frequently used by lenders, credit card issuers, and other financial institutions to determine creditworthiness.

The factors that determine a FICO score include the following:

Payment history - Whether or not you make payments on time.

Credit utilization - The proportion of available credit that you use.

Credit history length - The length of time you've had credit accounts.

Credit types - The kinds of credit you've utilized (e.g., mortgages, credit cards, student loans, etc.).

New credit - Your recent credit activity (e.g., how many accounts you've opened recently).

To learn more about credit visit;

https://brainly.com/question/24272208

#SPJ11

describe the atomic structure within the vicinity of a grain boundary.

Answers

A grain boundary is a region in a material where two or more crystal grains meet. At the atomic level, the structure within the vicinity of a grain boundary is highly complex. This is because there is a misalignment of crystal planes between the adjacent grains, leading to the formation of defects and dislocations.

These defects cause a change in the local atomic arrangement and create an interfacial region that is highly disordered. This region is referred to as the grain boundary region and is characterized by the presence of vacancies, impurities, and disordered atomic arrangements.

The atomic structure within the grain boundary region is constantly evolving, and as a result, it affects the properties of the material. The content loaded at the grain boundary also plays a significant role in determining the strength, ductility, and toughness of the material.

Overall, the atomic structure within the vicinity of a grain boundary is highly complex and plays a crucial role in determining the properties of the material.

To know more about the atomic level, visit:

https://brainly.com/question/24435918

#SPJ11

consider a general reaction a(aq)⥫⥬===enzymeb(aq) the δ°′ of the reaction is −6.060 kj·mol−1 . calculate the equilibrium constant for the reaction at 25 °c.

Answers

The equilibrium constant for the given reaction at 25 °c is approximately 11.54.

What is the standard Gibbs free energy ?

The standard Gibbs free energy (ΔG°) is a thermodynamic property that measures the maximum reversible work that can be obtained from a chemical reaction at standard conditions (usually at 25 °C or 298 K, 1 atmosphere pressure, and specified concentrations).

To calculate the equilibrium constant (K) for the given reaction at 25 °C, we need to use the standard Gibbs free energy change (ΔG°) and the relationship between ΔG° and K.

The equation relating ΔG° and K is as follows:

ΔG° = -RT ln(K)

Where:

ΔG° = the standard Gibbs free energy change (in joules/mol)

R= the gas constant (8.314 J/(mol·K))

T= the temperature in Kelvin (25 °C = 298 K)

K = the equilibrium constant

Given that the ΔG° of the reaction is -6.060 [tex]kJmol^{-1}[/tex], we need to convert it to joules:

ΔG° = -6.060 kJ/mol × 1000 J/kJ = -6060 J/mol

Plugging in the values into the equation:

-6060 J/mol = -8.314 J/(mol·K) × 298 K × ln(K)

Now, we can rearrange the equation to solve for ln(K):

ln(K) = -6060 J/mol / (-8.314 J/(mol·K) × 298 K)

ln(K) ≈ 2.446

Finally, we can calculate K by taking the exponential of both sides:

[tex]K = e^{ln(K)}\\= e^{2.446}[/tex]

K ≈ 11.54

Therefore, the equilibrium constant (K) for the given reaction at 25 °C is approximately 11.54.

To learn more about the standard Gibbs free energy  from the given link

brainly.com/question/13765848

#SPJ4



What will be the pressure if the temperature is lowered to 21.663 Celsius

Answers

1.73 atm will be the pressure if the temperature is lowered to 21.663 Celsius. The correct option is C.

Thus, the coupled gas law, which states that the product of pressure and volume is exactly proportional to the absolute temperature, may be used to calculate the pressure of the gas at 21.663 degrees Celsius. If the volume stays constant, the pressure of the gas will likewise fall correspondingly as the temperature drops.

We may use the proportionality relationship to compute the final pressure using the beginning circumstances of 2.1 atm pressure, 3.78 L volume, 82°C temperature, and 21.663°C temperature. Due to the drop in temperature, the final pressure will be 1.73 atm lower than the beginning pressure.

Thus, the ideal selection is option C.

Learn more about pressure here:

https://brainly.com/question/18431008

#SPJ1

he long run equilibrium condition for perfect competition is:
a. P=AVC=MR=MC.
b. Q=AVC=MR=MC.
c. Q=ATC=MR=MC.
d. P=ATC=MR=MC.

Answers

Option (d), P=ATC=MR=MC, accurately represents the long-run equilibrium condition for perfect competition, reflecting the balance between price and cost for firms operating in a competitive market.

The long-run equilibrium condition for perfect competition is that price (P) is equal to average total cost (ATC), which is also equal to marginal cost (MC), and marginal revenue (MR).

Option (d), P=ATC=MR=MC, best represents the long-run equilibrium condition for perfect competition. In perfect competition, firms operate at the minimum point of their average total cost curve, where price equals both average total cost and marginal cost. This condition ensures that firms are earning zero economic profit and are producing at an efficient level.

In the long run, if firms are earning economic profit, new firms will enter the market, increasing competition and driving prices down. Conversely, if firms are experiencing losses, some firms may exit the market, reducing competition and causing prices to rise. This process continues until firms reach a state where price equals average total cost, marginal cost, and marginal revenue, ensuring a long-run equilibrium.

Therefore, option (d), P=ATC=MR=MC, accurately represents the long-run equilibrium condition for perfect competition, reflecting the balance between price and cost for firms operating in a competitive market.

Know more about Equilibrium here:

https://brainly.com/question/30694482

#SPJ11

find all local minima, global minima, local maxima and global maxima of the function x1x2 x2x3 x3x1 over the sphere

Answers

The function x₁x₂ - x₂x₃ - x₃x₁ has no local or global minima or maxima over the given sphere x₁² + x₂² + x₃² = 1.

To find the local and global minima and maxima of the function f(x₁, x₂, x₃) = x₁x₂ - xx₃ - x₃x₁ over the sphere x₁² + x₂² + x₃² = 1, we can use Lagrange multipliers.

First, we define the Lagrangian function:

L(x₁, x₂, x₃, λ) = f(x₁, x₂, x₃) - λ(g(x₁, x₂, x₃) - 1)

where g(x₁, x₂, x₃) = x₁² + x₂² + x₃².

Taking partial derivatives and setting them equal to zero, we have;

∂L/∂x₁ = x₂ - x₃ - 2λx₁ = 0

∂L/∂x₂ = x₁ - x₃ - 2λx₂ = 0

∂L/∂x₃ = -x₂ - x₁ - 2λx₃ = 0

∂L/∂λ = -(x₁² + x₂² + x₃² - 1) = 0

Simplifying the first three equations, we get;

x₁ = λ(x₃ - x₂)

x₂ = λ(x₁ - x₃)

x₃ = -λ(x₁ + x₂)

Substituting these equations into the equation x₁² + x₂² + x₃² = 1, we have:

(λ(x₃ - x₂)² + (λ(x₁ - x₃)² + (-λ(x₁ + x₂)² = 1

Simplifying and rearranging, we obtain:

3λ² - 1 = 0

Solving this quadratic equation, we find two possible values for λ:

λ = ±1/√3

Case 1: λ = 1/√3

Using this value of λ, we can solve for x₁, x₂, and x₃:

x₁ = (1/√3)(x₃ - x₂)

x₂ = (1/√3)(x₁ - x₃)

x₃ = -(1/√3)(x₁ + x₂)

Substituting these expressions back into the function f(x₁, x₂, x₃), we get:

f(x₁, x₂, x₃) = (1/√3)(x₃ - x₂)(x₁) - (1/√3)(x₁ - x₃)(x₃) - (1/√3)(x₁ + x₂)(-x₁ - x₂)

Simplifying further, we have:

f(x₁, x₂, x₃) = (2/√3)(x₁² + x₂² + x₃²)

Since x₁² + x₂² + x₃² = 1 (on the surface of the sphere), we have;

f(x₁, x₂, x₃) = (2/√3)

Therefore, the value of the function f(x₁, x₂, x₃) is constant and equal to (2/√3) over the entire sphere. Thus, there are no local or global minima or maxima.

To know more about global minima here

https://brainly.com/question/30572403

#SPJ4

--The given question is incomplete, the complete question is

"Find all local minima, global minima, local maxima and global maxima of the function x₁x₂ − x₂x₃ − x₃x₁ over the sphere x₂₁ + x₂ + x₂₃ = 1."--

explain how t would be affected if a greater amount of surrounding solvent water is used assuming the mass of salt remains

Answers

ΔT will be affected in a way that it decreases if a greater amount of surrounding (solvent) water is used, assuming the mass of salt remains constant.

ΔT is directly proportional to the molality (m) of the solution.

ΔT = K f × m

Where K f is the freezing point depression constant and m is the molality of the solution (moles of solute per kilogram of solvent).

Molality (m) is inversely proportional to the mass of solvent.

m ∝ 1/mass of solvent

So, if a greater amount of surrounding (solvent) water is used while keeping the mass of salt constant, the mass of solvent will increase which leads to a decrease in the molality of the solution. Therefore, the value of ΔT will also decrease.

Learn more about mass of salt from this link.

https://brainly.in/question/7659750

#SPJ11

The Ka value for acetic acid, CH3COOH(aq), is 1.8x10^-5. Calculate the ph of a 2.80 M acetic acid solution.
PH=
Calculate the ph of the resulting solution when 3.00 mL of the 2.80 M acetic acid is diluted to make a 250.0 mL solution.
PH=
Answers are not 4.6 or 3.8

Answers

The pH of the solution containing 2.80 M acetic acid is 2.34.

Given, The Ka value for acetic acid, CH3COOH(aq), is 1.8x10^-5.Molar concentration of acetic acid, CH3COOH(aq), is 2.80 M.

Step 1 The equation for the ionization of acetic acid is as follows.CH3COOH(aq) + H2O(l) ⇆ H3O+(aq) + CH3COO-(aq)

Step 2Expression for Ka isKa = [H3O+][CH3COO-]/[CH3COOH(aq)]1.8 x 10-5 = [H3O+][CH3COO-]/2.80[H3O+] = √(Ka [CH3COOH(aq)]) = √(1.8 x 10-5 x 2.80) = 0.00462 M

Step 3pH = -log[H3O+] = -log(0.00462) = 2.34

So, the pH of the solution containing 2.80 M acetic acid is 2.34.

Acetic acid (CH3COOH) is a weak acid with a Ka value of 1.8x10⁻.

By utilizing this Ka value and the molar concentration of acetic acid, the pH of a 2.80 M acetic acid solution can be calculated.

Using the equation Ka = [H3O+][CH3COO-]/[CH3COOH(aq)], and after simplifying,

it can be determined that [H3O+] = √(Ka [CH3COOH(aq)]).

After substituting the values for Ka and [CH3COOH(aq)], [H3O+] is found to be 0.00462 M.

Finally, pH can be calculated by the expression pH = -log[H3O+], and we obtain the answer of pH=2.34.

To know more about acetic acid visit:

brainly.com/question/15202177

#SPJ11

whihc of the following will change the solubility of al(oh)3 in water

Answers

The solubility of a substance in water can be altered by temperature and pH. Changes in pH will affect the solubility of a substance in water. Let us now consider which of the following will change the solubility of al(oh)3 in water?Al(OH)3 is a hydroxide substance that is insoluble in water.

Al(OH)3 can dissolve in water, but it does so slowly, and the equilibrium of the reaction is established only if a long time is allowed for it. The equilibrium of the reaction shifts to the left in order to compensate for the loss of water molecules that are needed to dissolve Al(OH)3. When the pH of the solution is increased, the concentration of OH- ions increases. The equilibrium of the reaction shifts to the right as a result of this. This is due to the fact that the reaction that causes Al(OH)3 to dissolve in water is an acid-base reaction.Al(OH)3(s) + 3 H2O(l) ⇌ Al(OH)3(aq) + 3 H+(aq)When the pH of the solution is decreased, the concentration of H+ ions increases. As a result, the equilibrium of the reaction shifts to the left side. Therefore, the solubility of Al(OH)3 in water is affected by pH and not by changes in pressure or temperature. The answer to this question is changes in pH.

For more information on solubility visit:

brainly.com/question/31493083

#SPJ11

cu(s)+2ag+(aq)→cu2+(aq)+2ag(s) express the equilibrium constant to two significant digits.

Answers

The equilibrium constant expression for the reaction Cu(s) + 2Ag+(aq) → Cu2+(aq) + 2Ag(s) is [Cu2+(aq)]/[Ag+]^2, rounded to two significant digits.

The equilibrium constant (K) is a quantitative measure of the extent to which a reaction has reached equilibrium. It is determined by the concentrations of the reactants and products at equilibrium. In this reaction, the equilibrium constant expression can be derived from the balanced chemical equation. The brackets indicate the concentration of the species in the reaction.

According to the stoichiometry of the balanced equation, the concentration of Cu2+(aq) in the numerator is divided by the concentration of Ag+ ions raised to the power of 2 in the denominator. This is because the coefficients of Cu2+ and Ag+ in the balanced equation are 1 and 2, respectively. By using the concentrations of Cu2+ and Ag+ at equilibrium, the equilibrium constant can be calculated, providing a quantitative measure of the position of the equilibrium. Rounding the equilibrium constant to two significant digits ensures a reasonable level of precision for the value.

Learn more about  equilibrium constant :

https://brainly.com/question/28559466

#SPJ11

under which set of conditions will carbon dioxide exist as a supercritical fluid? select the correct answer below: 0∘c and 100 kpa 100∘c and 100 kpa 20∘c and 1,000 kpa 20∘c and 10,000 kpa

Answers

Carbon dioxide (CO2) will exist as a supercritical fluid under specific temperature and pressure conditions. To determine the correct conditions among the given options (0°C and 100 kPa, 100°C and 100 kPa, 20°C and 1,000 kPa, 20°C and 10,000 kPa), let's understand the critical point for CO2.

The critical point for CO2 is approximately 31.1°C (87.8°F) and 7,377 kPa (1,071 psi). A supercritical fluid exists above both the critical temperature and pressure.

Comparing the given conditions:
1. 0°C and 100 kPa: both temperature and pressure are below the critical point.
2. 100°C and 100 kPa: temperature is above, but pressure is below the critical point.
3. 20°C and 1,000 kPa: both temperature and pressure are below the critical point.
4. 20°C and 10,000 kPa: temperature is below, but pressure is above the critical point.

None of the given options provide conditions above both the critical temperature and pressure. Therefore, CO2 will not exist as a supercritical fluid under any of the provided conditions.

To know more about Carbon dioxide visit :

https://brainly.com/question/3049557

#SPJ11

Given the electronegativities below, arrange these linear molecules in order of increasing polarity. The central atom is underlined. least polar 1 NPO 2 PCCI 3 CS2 4 P20

Answers

The order of increasing polarity of the molecules is;

NPO < P2O < PCCl < P2O <CS2

What is the polarity of a molecule?

The difference in electronegativity between the atoms engaged in the chemical bonds determines the distribution of electrical charge within a molecule, which is known as polarity. It establishes a molecule's polarity or nonpolarity.

Because of the unequal distribution of electron density in polar molecules, these molecules have both partial positive and partial negative charges.

\Learn more about polarity:https://brainly.com/question/30002497

#SPJ1

A projectile is fired from ground level on horizontal plain. If the initial speed of the projectile is now doubled and we neglect air resistance. its range will be increased by squareroot 2. its range will double. its range will be decreased by a factor of two. its range will quadruple. its range will decrease by a factor of four. The x component of vector A vector is 5.3 units, and its component is -2.3 units. The angle that vector A vector makes with the + x axis is closest to 340 degree 160 degree 250 degree 110 degree 23 degree

Answers

Its range will quadruple this is the answer to the first question. The answer to the second question is: The angle that vector A makes with the +x axis is closest to 250 degrees.

Projectile motion is the motion of an object in the air that has been dropped or projected into the air and is affected only by the Earth's gravitational force. It's an example of two-dimensional motion. Any motion that occurs in a plane is referred to as two-dimensional motion. The range of the projectile fired from the ground level on a horizontal plane is given by R = u² sin(2θ) / g where R is the range, u is the initial velocity, θ is the angle of projection, and g is the acceleration due to gravity.

The horizontal range of the projectile depends on the initial velocity and the angle of projection. We need to find the ratio of the new range to the old range, given that the initial velocity is doubled.

Therefore, the new range will be four times greater than the old range, and the correct choice is "Its range will quadruple."For the second question, the x-component of vector A is 5.3 units, and its y-component is -2.3 units.To determine the angle, we'll use the equation:θ = tan-1(y/x)where x and y are the respective magnitudes of the x and y-components of the vector A.Plugging in the values, we have:θ = tan-1(-2.3/5.3)≈ -22.5° + 360°≈ 337.5°≈ 340°Therefore, the answer is closest to 340°.

To learn more about quadruple visit;

https://brainly.com/question/19248100

#SPJ11

Complete the Slater determinant for the ground-state configuration of Be. Drag the appropriate labels to their respective targets. Labels can be used once, or not at all Reset Help 1s(4)a(4) I 2 1s(4)B(4) 18(1)B(1) 1s(3)B(3) 1s(2)a(2) 1s(1)a(1) O O 23(3)B(3) 23(4)a(4) 1s(2)B(2) 28(1)a(1) 28(1)B(1) 0001 1s(3)a(3) 28(3)a(3) O O 2s(4)B(4) | 2! 2s(4)B(4) 2s(2)B(2) 18(1)a(1) 2s(2)a(2) 1s(2)B(2)

Answers

Slater determinant for the ground-state configuration of Be is as follows:The ground state electron configuration of beryllium is 1s2 2s2 where the four electrons are distributed as shown below. There are two electrons in the 1s orbital and two electrons in the 2s orbital. The 1s and 2s subshells are complete and the 2p subshell is vacant.


Thus, the Slater determinant for the ground-state configuration of Be is: 1s(1)a(1) 1s(2)a(2) 2s(1)a(1) 2s(2)a(2) The Slater determinant is a mathematical expression used in quantum mechanics that describes the antisymmetrical wave function of a system of electrons.

To know more about Electronic configuration Visit:

https://brainly.com/question/29184975

#SPJ11

Calculate the hydronium-ion concentration at 25°C in a 1.3 x 10-2 M Ba(OH)2 solution. Concentration ............ M

Answers

The hydronium-ion concentration of a Ba(OH)2 solution at 25°C is 1.2 × 10^-12 M. The chemical formula for barium hydroxide is Ba(OH)2.

Barium hydroxide is a strong base that is highly soluble in water. When it dissolves in water, it dissociates into Ba2+ and OH-.

The following is the equation for the reaction of Ba(OH)2 with water: Ba(OH)2 + H2O → Ba2+ + 2 OH-The molar concentration of Ba(OH)2 is 1.3 x 10^-2 M.

Since Ba(OH)2 is a strong base, it dissociates completely to give OH- ions. The amount of OH- ions generated by Ba(OH)2 is two times the amount of Ba(OH)2.

Therefore,[OH-] = 2 × 1.3 × 10^-2 M = 2.6 × 10^-2 M

Now that we have the OH- concentration, we can use the following equation to find the hydronium ion concentration: Kw = [H+][OH-] = 1.0 × 10^-14 M2[H+] = Kw / [OH-]= (1.0 × 10^-14 M2)/(2.6 × 10^-2 M)= 3.8 × 10^-13 M

Therefore, the hydronium-ion concentration of a Ba(OH)2 solution at 25°C is 3.8 × 10^-13 M.

To learn more about hydronium visit;

https://brainly.com/question/31947098

#SPJ11

what is the volume of a 0.12 m sulfuric acid (h2so4) solution that contains 0.33 mol sulfuric acid?

Answers

the volume of the 0.12 M sulfuric acid solution containing 0.33 mol of sulfuric acid is 2.75 liters.

To determine the volume of the sulfuric acid (H2SO4) solution, we need to use the relationship between moles, concentration, and volume.

The given information is:

Number of moles of sulfuric acid (H2SO4) = 0.33 mol

Concentration of sulfuric acid solution = 0.12 M

The formula relating moles, concentration, and volume is:

Moles = Concentration * Volume

Rearranging the formula to solve for Volume:

Volume = Moles / Concentration

Plugging in the given values:

Volume = 0.33 mol / 0.12 M

Calculating the volume:

Volume = 2.75 liters

To know more about moles visit;

brainly.com/question/30885025

#SPJ11

glucose binds to yeast hexokinase with a rate coefficient k = 3.7 × 106 m-1 s-1. is the reaction diffusion limited? explain your answer ...

Answers

The reaction between glucose and yeast hexokinase is diffusion-limited because of its high rate coefficient.

Yes, the reaction is diffusion limited. Diffusion-limited reaction is a chemical reaction between two reactants that is restricted by diffusion.

In other words, molecules need to collide in order to react, and the rate of this collision is influenced by the amount of space the molecules can diffuse through.

The rate coefficient k of glucose binding to yeast hexokinase is 3.7 × 106 M−1 s−1. The rate coefficient is an indication of how efficient the diffusion of reactants is. If the rate coefficient is high, the diffusion is efficient, and the reaction is diffusion-limited.

The high rate coefficient of glucose binding to yeast hexokinase indicates that the reaction is diffusion-limited.

Therefore, the reaction between glucose and yeast hexokinase is diffusion-limited because of its high rate coefficient.

To know more about Diffusion-limited reaction visit:

brainly.com/question/28983926

#SPJ11

Estimate the oxygen demand for composting mixed garden waste (units of kg of O2 required per kg of dry raw waste). Assume 1,000 dry kg mixed garden waste has a composition of 513 g C, 60 g H, 405 g O, and 22 g N. Assume 25 percent of the nitrogen is lost to NH3(g) during composting. The final C:N ratio is 9.43. The final molecular composition is c11H1404N.

Answers

The estimated oxygen demand for composting mixed garden waste is approximately 2.38 kg of O2 required per kg of dry raw waste.  

To estimate the oxygen demand for composting mixed garden waste, we can use the information provided.

1. Calculate the oxygen required for carbon oxidation:

The amount of oxygen required for carbon oxidation can be determined using the stoichiometry of the reaction. Assuming complete oxidation, each gram of carbon requires 2.67 grams of oxygen. Thus, for 513 g of carbon, the oxygen required is 513 g * 2.67 g [tex]O_2[/tex]/g C = 1370.71 g [tex]O_2[/tex].

2. Calculate the oxygen required for hydrogen oxidation:

Similar to carbon, each gram of hydrogen requires 8 grams of oxygen for complete oxidation. For 60 g of hydrogen, the oxygen required is 60 g * 8 g [tex]O_2[/tex]/g H = 480 g [tex]O_2[/tex].

3. Calculate the oxygen required for nitrogen oxidation:

Since 25% of the nitrogen is lost as NH3 during composting, only 75% of the initial nitrogen remains. The final molecular composition of c11H1404N indicates 1 nitrogen atom per molecule. Thus, the nitrogen content is 22 g * 0.75 = 16.5 g. This requires 16.5 g * 32 g [tex]O_2[/tex]/g N = 528 g [tex]O_2[/tex].

4. Calculate the total oxygen demand:

Summing up the oxygen required for carbon, hydrogen, and nitrogen oxidation, we have:

[tex]1370.71 g O_2 + 480 g O_2 + 528 g O_2 = 2378.71 g O_2.[/tex]

Finally, to convert this to a ratio, divide the oxygen demand by the dry weight of the mixed garden waste. Assuming 1000 kg of dry mixed garden waste, the oxygen demand is 2378.71 g [tex]O_2[/tex] / 1000 kg = 2.38 kg [tex]O_2[/tex] per kg of dry raw waste.

Therefore, the estimated oxygen demand for composting mixed garden waste is approximately 2.38 kg of [tex]O_2[/tex] required per kg of dry raw waste.  

To learn more about oxygen from the given link

https://brainly.com/question/28009615

#SPJ4

Calculate the volume, in milliliters, of solution required to supply each of the following.
a. 4.30 g of lithium chloride (LiCl) from a 0.089 M lithium chloride solution
b. 429 g of lithium nitrate (LiNO3) from an 11.2 M lithium nitrate solution
c. 2.25 moles of potassium sulfate (K2SO4) from a 0.300 M potassium ulfate solution
d. 0.103 mole of potassium hydroxide (KOH) from an 8.00 M potassium hydroxide solution

Answers

To calculate the volume of solution required to supply a certain amount of solute, we can use the formula Volume (in liters) = Amount of solute (in moles) / Concentration (in moles per liter)

To convert the volume from liters to milliliters, we multiply the volume by 1000.Let's calculate the volumes for each scenario 4.30 g of lithium chloride (LiCl) from a 0.089 M lithium chloride solution First, we need to convert grams to moles using the molar mass of LiCl. The molar mass of LiCl is approximately 42.39 g/mol.Amount of LiCl (in moles) = 4.30 g / 42.39 g/mol ≈ 0.1015 molVolume (in liters) = 0.1015 mol / 0.089 mol/L ≈ 1.14 L Volume (in milliliters) = 1.14 L * 1000 mL/L ≈ 1140 mLb. 429 g of lithium nitrate (LiNO3) from an 11.2 M lithium nitrate solution First, we need to convert grams to moles using the molar mass of LiNO3. The molar mass of LiNO3 is approximately 85.94 g/mol.

To know more about molar visit :

https://brainly.com/question/31545539

#SPJ11

the+yield+to+maturity+of+a+bond+with+a+6.8%+coupon+rate,+semiannual+coupons,+and+two+years+to+maturity+is+8.9%+apr,+compounded+semiannually.+what+is+its+price?

Answers

The price of the bond is $1683.27. The price of a bond can be calculated using the present value of its cash flows. The present value of the coupon payments and the present value of the principal payment are added together to obtain the price of the bond.

Since it is a bond with a semiannual coupon, the number of periods will be double the maturity period (in years). Hence, the number of periods is 4.

Hence, the semiannual coupon rate is given as: Semiannual coupon rate = Annual coupon rate / 2 = 6.8% / 2 = 3.4% The time to maturity is 2 years, and the bond pays semiannual coupons, so the number of periods is 4. The yield to maturity is given as 8.9% APR, compounded semiannually.

Therefore, the semiannual yield is given as: Semiannual yield to maturity = APR / 2 = 8.9% / 2 = 4.45% Using the formula for the present value of a bond, the price of the bond can be calculated.

The formula is given as: P = C * [(1 - (1 / (1 + r)^n)) / r] + FV / (1 + r)^n;  where, P = price of the bond C = coupon payment r = yield to maturity / 2 (semiannual yield) n = number of periods FV = face value of the bond P = C * [(1 - (1 / (1 + r)^n)) / r] + FV / (1 + r)^n P = 3.4% * 1000 * [(1 - (1 / (1 + 4.45%)⁴)) / (4.45%)] + 1000 / (1 + 4.45%)⁴ P = 897.25 + 786.02 P = 1683.27

The price of the bond is $1683.27.  Therefore, the price of the bond is $1683.27.

To know more about bond, refer

https://brainly.com/question/25965295

#SPJ11

the solid xy decomposes into gaseous x and y: xy(s)⇌x(g)+y(g)kp=4.1 (at 0 ∘c).

Answers

With initial amounts of 2.5 moles of gas X and 0.25 moles of gas Y, we will have the required pressure to form solid XY.

Hence, option D is the correct answer.

The chemical equation is given by:

XY(s)⟶X(g)+Y(g)Kp=4.1(at 0 °C)

The question asks for the initial amounts of X and Y that will result in the formation of solid XY in a 22.4 L container.

Since the container is closed, the reaction will reach equilibrium.

Now, to solve this problem, let's first write down the Kp expression. Kp is given by:

Kp=PC(PY)

where PC and PY are the partial pressures of X and Y, respectively.

In this case, PC and PY are given by:

XPC=PCVVRTand YPY=PYVVRT

In the given context, V represents the volume of the container, R denotes the gas constant, and T indicates the temperature measured in Kelvin.

Now, let's substitute the expressions for PC and PY in the Kp equation.

Kp=XPC(PY)=4.1=PCVVRT(PY)VVRT=PCPY

Multiplying by V2 on both sides, we get:

V2×PCPY=V2×22.4 mol of a gas at STP occupies a volume of 22.4 L.

Therefore, if we start with 2.5 moles of gas X and 0.25 moles of gas Y, we will have the required pressure to form solid XY.

Hence, option D is the correct answer.

The initial amounts of X and Y required for the formation of solid XY is none of the above.

Therefore, option D is the correct answer.

The question should be:
The solid xy decomposes into gaseous x and y: xy(s)⇌x(g)+y(g)kp=4.1 (at 0 ∘c), which initial amounts of X and Y will result in the formation of solid XY? a) 5 mol X; 0.5 mol Y

b) 2.0 mol X; 2.0 mol Y

c) 1 mol X; 1 mol Y

d) none of the above

Learn more about moles at: https://brainly.com/question/29367909

#SPJ11

What mass of liquid iron was formed?

Answers

If we start with 1 kg of Fe2O3 and all of the iron is reduced to liquid form, we would produce 698.13 g of liquid iron.

In order to determine the mass of liquid iron formed, some additional information is required. Assuming a known amount of iron ore was used and all the iron was reduced to liquid form, the mass of liquid iron can be calculated using stoichiometry.Stoichiometry is the branch of chemistry that deals with the quantitative relationships between the reactants and products in chemical reactions. In this case, we can use stoichiometry to determine the amount of iron produced from a known amount of iron ore.First, we need to balance the chemical equation for the reaction:Fe2O3 + 3CO → 2Fe + 3CO2This equation tells us that two moles of Fe are produced for every mole of Fe2O3 that reacts. We also know that the molar mass of Fe2O3 is 159.69 g/mol and the molar mass of Fe is 55.85 g/mol.Let's say we start with 1 kg of Fe2O3. We can use the molar mass of Fe2O3 to convert this to moles:1 kg Fe2O3 x (1 mol Fe2O3 / 159.69 g Fe2O3) = 6.26 mol Fe2O3From the balanced equation, we know that 2 moles of Fe are produced for every 1 mole of Fe2O3 that reacts. Therefore, we can calculate the number of moles of Fe produced:6.26 mol Fe2O3 x (2 mol Fe / 1 mol Fe2O3) = 12.5 mol FeFinally, we can use the molar mass of Fe to convert this to mass:12.5 mol Fe x (55.85 g Fe / 1 mol Fe) = 698.13 g Fe.

for such more questions on iron

https://brainly.com/question/30459969

#SPJ8

what is the order of the reaction with respect to no?what is the order of the reaction with respect to h2?what is the overall order of the reaction?what are the units of the rate constant?

Answers

The order of the reaction with respect to NO is 2, the order of the reaction with respect to H2 is 1, and the overall order of the reaction is 3.

The units of the rate constant depend on the overall order of the reaction.

The order of a reaction is the sum of the powers of the concentration of the reactants in the rate law. A rate law that contains only one reactant, A, is expressed as Rate = k[A]n where k is the rate constant and n is the order of the reaction with respect to A.

The rate law for the given reaction is [tex]Rate = k[NO]^{2}[H_{2}][/tex]

Therefore, the order of the reaction with respect to NO is 2 and the order of the reaction with respect to H2 is 1.The overall order of the reaction is the sum of the orders of all the reactants in the rate law. In this case, the overall order of the reaction is 3 (2 + 1).The units of the rate constant depend on the overall order of the reaction. For a general rate law of the form

Rate = k[A]m[B]n

The units of the rate constant, k, are given by

[tex]k =  \frac{(units  of rate)}{ ([A]^m[B]^n)}[/tex]

For the given rate law, the units of the rate constant are given by

Units of [tex]k = (M/s) / (M^2/s)(M) = 1/M s.[/tex] Therefore, the units of the rate constant are 1/M s

Therefore, the order of the reaction with respect to NO is 2, the order of the reaction with respect to H2 is 1, and the overall order of the reaction is 3. The units of the rate constant are 1/M s.

Thus, we have answered the question completely with the main answer and explanation.

For more information on order of reaction kindly visit to

https://brainly.com/question/32523522

#SPJ11

what is the molarity of a saline solution that contains 0.900 g nacl

Answers

Molarity of a saline solution that contains 0.900 g NaCl is 0.015 M.

To calculate the molarity of a saline solution that contains 0.900 g NaCl, the given data should be in moles. The molarity of a solution is the amount of solute present in a solution per unit volume of solution. It is measured in moles per liter (M).

The formula to calculate the molarity is: Molarity (M) = Moles of solute / Volume of solution (in liters)Given, Mass of NaCl = 0.900 g

Molar mass of NaCl = 58.44 g/mol

Number of moles of NaCl = mass of NaCl / molar mass of NaCl= 0.900 g / 58.44 g/mol= 0.0154 molGiven, Volume of solution is not given. Hence, we assume the volume of the solution to be 1 L.

Molarity (M) = Moles of solute / Volume of solution (in liters)= 0.0154 mol / 1 L= 0.015 M

Consequently, the molarity of a saline solution that contains 0.900 g NaCl is 0.015 M.

Molarity of a saline solution that contains 0.900 g NaCl is 0.015 M. It is calculated using the formula:Molarity (M) = Moles of solute / Volume of solution (in liters)

Given data is converted into moles of solute and the volume of the solution is assumed to be 1 L.

For more information on molarity kindly visit to

https://brainly.com/question/11748205

#SPJ11

In ionic bonding, during the transfer of electrons between two neutrally charged atoms, one electron moves from one atom to another. What are the new relative charges between the two atoms? a. The giving atom and receiving atom are both negatively charged. b. The giving atom is now positively charged and the receiving atom is now negatively charged. c. The giving and receiving atom are both positively charged. d. The giving atom is now negatively charged and the receiving atom is now positively charged.

Answers

In ionic bonding, one atom transfers an electron to another atom, resulting in the formation of positive and negative ions. The atom that loses an electron becomes positively charged, while the atom that gains an electron becomes negatively charged. Therefore, the correct answer is b.

The giving atom is now positively charged, and the receiving atom is now negatively charged. This creates an electrostatic attraction between the two ions, resulting in the formation of an ionic bond. It is important to note that ionic bonding usually occurs between a metal and a non-metal, where the metal atom loses electrons to the non-metal atom, resulting in the formation of an ionic compound.

Ionic compounds are characterized by their high melting and boiling points and their ability to conduct electricity when dissolved in water or in a molten state.

To know more about ionic bonding, visit:

https://brainly.com/question/29772028

#SPJ11

for a reaction with only one reactant, what is the minimum number of trials that will have to be done to gather sufficient initial rates data to be able to write the complete rate law?

Answers

A minimum of two trials are required to obtain sufficient initial rates data for a single reactant reaction to write the full rate law. A full rate law should be written once initial rates data have been collected for a single reactant reaction.

The full rate law describes the relationship between the rate of the reaction and the concentrations of the reactants as well as any catalysts. Furthermore, since only one reactant is involved, the reaction is referred to as a first-order reaction. When dealing with first-order reactions, the relationship between the rate constant and the half-life can be expressed as follows:t1/2 = 0.693/k = ln2/k where k is the rate constant and t1/2 is the half-life of the reaction.

The half-life is the length of time it takes for the initial concentration of a reactant to decrease to half of its original value. The time it takes for a first-order reaction to be complete is determined by the rate constant, which is specific to the reaction. Two or more trials are needed to obtain sufficient initial rates data for a single reactant reaction to write the complete rate law.

The half-lives are measured at different concentrations of reactant in these trials, and the data are utilized to compute the rate constant k. The rate constant k is then employed to create the complete rate law, which relates the rate of reaction to the concentration of the reactant(s) and any catalysts present.

To know more about rate law, refer

https://brainly.com/question/16981791

#SPJ11

how many molecules of hydrogen gas are needed to react with cs2 to produce 1.5 * 10^24 molecules of ch4 at stp

Answers

The number of the molecules of the hydrogen gas required is 6.02 * 10^24 molecules

What is the stoichiometry?

Based on their balanced chemical equation, stoichiometry entails calculating the amounts of the substances involved in a chemical process.

The equation of the reaction is;

CS2 + 4H2 → CH4 + 2H2S

If 1 mole of the CH4 contains 6.02 * 10^23 molecules

x moles of CH4 contains 1.5 * 10^24 molecules

x = 1.5 * 10^24 molecules/ 6.02 * 10^23 molecules

= 2.5 moles

If 4 moles of hydrogen gas produced 1 mole of CH4

x moles of hydrogen gas would produce 2.5 moles of CH4

x = 10 moles or 6.02 * 10^24 molecules

Learn more about stoichiometry:brainly.com/question/28780091

#SPJ4

what is the strongest interparticle force in a sample of nah2po4 solid ? select the single best answer.

Answers

The strongest interparticle force is ionic bonding forces.

What is the interparticle force?

Sodium cations (Na+) and dihydrogen phosphate anions (H2PO4-) make up the ionic compound NaH2PO4. Electrostatic attraction between positively charged cations and negatively charged anions is what creates ionic bonds.

The Na+ and H2PO4- ions organize themselves into a regular lattice structure in the solid state, which is kept together by powerful electrostatic forces. These ionic bonds are frequently more powerful than other interparticle forces like hydrogen bonding, dipole-dipole forces, and dispersion forces.

Learn more about interparticle force:https://brainly.com/question/30887256

#SPJ4

Missing parts;

What is the strongest interparticle force in a sample of solid NaH2PO4 ? Select the single best answer. dipole-induced dipole forces dispersion forces dipole-dipole forces ion-induced dipole forces hydrogen bonding forces ionic bonding forces ion-dipole forces

what component reduces the main pressure for a typical gas furnace?

Answers

The component that reduces the main pressure for a typical gas furnace is the gas valve.

What is a gas furnace?

A gas furnace is a heating device that burns natural gas or propane to generate heat. The heat is distributed through a duct system in the house, raising the temperature. Natural gas furnaces are more energy-efficient than oil furnaces, with gas being a cleaner and less expensive source of fuel for household heating applications.

What is a gas valve?

A gas valve, also known as a gas control valve, is a device that controls the flow of gas into a furnace, boiler, or other gas-powered heating appliance. The gas valve regulates the amount of gas released into the combustion chamber of the furnace, which is crucial to maintaining a safe and efficient heating system.

How is pressure reduction done?

The pressure reduction component for a typical gas furnace is the gas valve. The gas valve is responsible for reducing the pressure of the natural gas or propane gas that enters the furnace from the main gas line. The gas valve has an inlet and an outlet and a diaphragm. The diaphragm opens or closes the valve depending on whether or not there is a call for heat. When the thermostat sends a signal to the furnace that the temperature in the house has dropped below the desired level, the gas valve opens to allow gas to flow into the combustion chamber.

Learn more about pressure:

https://brainly.com/question/24719118

#SPJ11

the first-order rate constant for the decomposition of n2o5, 2n2o5(g)→4no2(g) o2(g) at 70∘c is 6.82×10−3 s−1. suppose we start with 2.00×10−2 mol of n2o5(g) in a volume of 1.6 l. Part A
How many moles of N2O5
will remain after 7.0 min ?
Express the amount in moles to two significant digits.
Part B
How many minutes will it take for the quantity of N2O5
to drop to 1.6x10^-2
mol ?
Express your answer using two significant figures.
Part C
What is the half-life of at 70 degree Celsius?

Answers

The answer is the half-life of N2O5 is approximately 100 seconds.

Given that the first-order rate constant for the decomposition of N2O5 is 6.82 × 10−3 s−1. The balanced equation for the decomposition of N2O5 is 2N2O5(g) → 4NO2(g) + O2(g).a) To calculate the moles of N2O5 remaining after 7.0 minutes, we use the first-order integrated rate law equation: ln ([A]t/[A]0) = −k Where [A]0 and [A]t are the initial and remaining amounts of N2O5 respectively.

Using the above equation, we get: ln ([N2O5]t/[N2O5]0) = −k × t Substituting the values:N2O5]0 = 2.00 × 10−2  mol  [N2O5]t = ?k = 6.82 × 10−3 s−1t = 7.0 min = 420 s\We get:  ln ([N2O5]t/2.00 × 10−2) = −6.82 × 10−3 × 420[N2O5]t/2.00 × 10−2 = e−6.82×10−3×420[N2O5]t = 0.0127 moles ≈ 1.3 × 10−2 moles  

Therefore, the number of moles of N2O5 that will remain after 7.0 minutes is approximately 1.3 × 10−2 moles.b) To calculate the time taken for the quantity of N2O5 to drop to 1.6 × 10−2 mol, we use the same equation: ln ([N2O5]t/[N2O5]0) = −k × t[N2O5]0 = 2.00 × 10−2 mol[N2O5]t = 1.6 × 10−2 molk = 6.82 × 10−3 s−1t = ?Substituting the values: ln (1.6 × 10−2/2.00 × 10−2) = −6.82 × 10−3 × t−0.2231 = −6.82 × 10−3 × tt = 32726.7 seconds ≈ 33000 seconds or 550 minutes

Therefore, the time taken for the quantity of N2O5 to drop to 1.6 × 10−2 mol is approximately 550 minutes or 9 hours (approximately).c)

To calculate the half-life of N2O5, we use the formula for a first-order reaction:t1/2 = 0.693/k Substituting the value of k, we get:t1/2 = 0.693/6.82 × 10−3s−1t1/2 = 101.6 seconds ≈ 100 seconds Therefore,

the half-life of N2O5 is approximately 100 seconds.

to know more about balanced equation visit :

https://brainly.com/question/20485252

#SPJ11

Other Questions
The AICPA's Statements on Standards for Tax Services (SSTS) have common concepts running through most of them. Which of the following statements is/are part(s) of the SSTSs?I.The preparer may in good faith rely upon, without verification, information furnished by the client.II.There is confidentiality of the CPA-client relationship.III.Taxpayer supplied estimates may be used to prepare returns if it is impractical to obtain exact data and the estimates are reasonable, given the facts and circumstances.IV.The preparer must never disclose to the IRS any facts about the client's tax return information unless the client approves the disclosure or the preparer is required to do so by law.a.Statements II and III are correct.b.Statements I, II, and IV are correct.c.Statements I, II, III, and IV are correct.d.Only statement II is correct.e.Statements I, II, and III are correct. 2. State the domain, range, asymptotes and graph the following function 4x - 3 f(x) = x+4 If f(x) = (1 + arctan x)^g(x) where g(x) = 1/x^2, then the left hand limit of f at 0/Select one: a. None of them b. is + [infinity] c. is - [infinity] d. is 0 Consider the region bounded by the same parametric curve as given in (a) but with different endpoints (t) - -* (t + 7) (6-3) te1-7-2 y(t) = -(+7) (6-3) and a line joining the endpoints of the parametric curve 4 Find the area, the moments of area about the coordinate axes, and the location of the centrol of this region. Round your answers to at least 3 significant figures Area 156,2500000 Moments of area about the y-axis 223E2 Moments of area about the s-axis -223E2 Centroid at ( A scientist claims that pneumonia causes weight loss in mice. The table shows the weights? (in grams) of six mice before infection and two days after infection. Atalpha=0.05?,is there enough evidence to support the? scientist's claim? Assume the samples are random and? dependent, and the population is normally distributed. It takes five hours to make each swimsuit. Employees are paid at $6,00 per hour. How much will the budgeted labor cost be if 100 units are manufactured? 10000 Match each phenotype description to its corresponding sex chromosome genotype in humans. XX with SRY on X XY with SRY deleted XXX XXY XYY Answer Bank phenotypically female but karyotype indicates presence of both sex chromosomes phenotypically male with an increase in average stature phenotypically male but karyotype indicates presence of only X chromosomes phenotypically female with some abnormalities and overexpression of X chromosome genes phenotypically male with sterility and hypogonadism GROSS INCOME DescriptionPer Unit quantityUnitQuantityQuantity Unit$/UnitTotalDry LandSoybeans110Bushels100Acres666000TotalRevenue 2. Let X and Y have the joint pdff(x, y) = 6, x y x, 0 x 1.(a) Are X and Y independent? Explain. (b) Find E(YX = xo) where 0 xo 1. (c) Find E(Y). Case 4.7 Straight Arrow Steam Beer Company Straight Arrow Steam Beer Company is a small brewery capitalizing on the growing demand of American beer drinkers for premium beers and ales. In its 10 years of operation, the company has grown from a single plant with local distribution to two plants and four distribution centers located around the country. Company policy is to produce at capacity at its two plants. It stores any excess beer at the plant during periods of lower demand, so that it can meet demand in periods when demand for their product exceeds capacity. Shirley White, who works on the marketing staff for Straight Arrow, schedules shipments each month from the companys two plants to its four distribution centers. She is currently working on the distribution schedule for next month. Table A shows the capacity at each plant and the anticipated demand at each of the four distribution centers. Table B shows the shipping cost, per barrel, from each plant to each distribution center. Table A Plant Capacity, Barrels Warehouse Demand, Barrels A 2500 W 1200 B 2900 X 1400 Y 1500 Z 1000 Table B Shipping Cost $/barrel From Plant A From Plant B To Warehouse W 10 3 To Warehouse X 9 5 To Warehouse Y 2 8 To Warehouse Z 6 7 a.) Develop a shipping schedule that will minimize transportation costs. List the shipping pattern and the total cost for this schedule. The companys long-range planning committee has recently completed an extensive analysis of future demand for our beer across the country. The committees statisticians have projected that over the next 5 years, monthly demand at each of the distribution centers will increase by 50% over the current monthly demand. It also projects a $1 increase in shipping costs from the two existing plants to the four distribution centers. To meet future demand projections, the company plans to build a new brewery. The monthly capacity of the new facility should be sufficient to allow Straight Arrow to cover anticipated demand five years from now, with their three facilities. Two sites for the new plant are under consideration. These will be labeled plant C and plant D. Table C lists the expected transportation costs, per barrel, from each proposed site to the 4 distribution centers. The company projects that production costs will be $0.75/barrel higher at plant C than they would be at plant D. Table C Transportation Cost, $/barrel From Plant C From Plant D To Warehouse W 8 9 To Warehouse X 3 7 To Warehouse Y 5 4 To Warehouse Z 6 3 b.) What should be the capacity of the new facility? c.) Develop a linear program that will determine which of the two candidate facilities should be constructed. This program should consider both facilities C and D, and use Binary Variables to select one of the facilities. Your goal is to minimize the total shipping cost for all product, factoring in the production cost differential if facility C is selected. Which facility should be selected, and what will be the total cost with that selection? Your findings should be in a well-labeled table that provides the information in a complete, easily understood format. ONLY NEED ANSWER C (Please show excel work, I have a table built but I'm struggling with showcasing a Binary function for building either C or D). Thanks Improvements in information technology have: a. decreased the demand for money. affected the demand for money. C. shifted the demand for cash to the right. d. increased the Find the inverse of matrix below and identify the value of element 4- 2 A, | Az | Az | A4 1 3 4 10 1 N 0 2 6 0 3 4 -1 3 1 4. -1 2 4 Ryan invested $7,300 into a 8-month term deposit at a rate of 3.2% p.a. After 8 months, he invested the entire maturity value from the first term deposit into a new 4-month term deposit at a rate of 5.5% p.a. What is the total amount of interest that Ryan earned? Round to the nearest cent. The monthly sales for your business for February to November, in thousand dollars, has been as follows: 12, 13, 10, 12, 15, 13, 14, 12, 20, and 15. Forecast December sales using a two-months weighted moving average where the weights are 4 and 1 (highest is for the most recent).A. 80 /4 B. 95 / 5 C. 95 /4 D. 80 / 5 E. (4)(20) / 5 + (1)(15) / 5 Which statement about projected human population growth below is incorrect?The population in 2050 will reach 10 billion if growth continues to increase.Innovation and technology have little influence on projected population growth.If population growth dramatically slows, the Earth's population will be 7.4 billion by 2050.Continuing to slow the growth at current rates will result in a population of 8.9 billion by mid-century. Use the information below to answer the following question(s).An inspector visually inspects 10 samples of 200 computer monitors each for defects. Using trained judgement, the inspector either accepts or rejects the monitors based on whether they are flawless. The table below gives the results of these inspections from the 10 samples: Using a sorting tree, put the words in the lyrics in alphabetical order words containing dashes are one word. Also, 7 9 1 10 18 5 7 4 2 12 5 into a balanced tree. Show step by step. Zip-a-dee-doo-dah, zip-a-dee-ay My, oh, my, what a wonderful day Plenty of sunshine headin' my way Zip-a-dee-doo-dah, zip-a-dee-ay! Nancy calculated her 2015 taxable income to be $120,450. Using the 2015 federal income tax brackets and rates, how much federal income tax should she report? 9.2 Parametric Equations Score: 2/5 3/5 answered Question 5 < > All of these problems concern a particle travelling around a circle with center (3, 4) and radius 2 at a constant speed. a) Find the par the three interactive factors included in bandura's concept of reciprocal determinism are