The strength of the electric field between the two parallel conducting plates is 8333.33 V/m.
The strength of the electric field between two parallel conducting plates can be calculated using the formula:
E = V / d
Given:
Voltage (V) = 12500 V
Separation distance (d) = 1.500E+0 cm = 1.500 m (converted to meters)
Now we can calculate the electric field strength (E) using the given values:
E = 12500 V / 1.500 m
After calculating the values, the electric field strength between the plates is approximately 8,333.33 V/m.
Read more on Electric field here: https://brainly.com/question/19878202
#SPJ11
A 180 ohm resistor can dissipate a maximum power of .250W. Calculate the maximum current that it can carry and still meet this limitation.
As 180-ohm resistor can dissipate a maximum power of .250W The maximum current that can pass through the resistor while meeting the power limit is 0.027 A which can be obtained by the formula P = I²R
The resistance of the resistor, R = 180 Ω. The maximum power dissipated by the resistor, P = 0.250 W. We need to find the maximum current that can be passed through the resistor while maintaining the power limit. The maximum power that can be dissipated by the resistor is given by the formula;
P = I²R …………… (1)
Where; P = Power in watts, I = Current in amperes, and R = Resistance in ohms.
Rewriting the above equation, we get,
I = √(P / R) ………… (2)
Substitute the given values into the equation 2 and solve for the current,
I = √(0.250 / 180)
⇒I = 0.027 A
The maximum current that can pass through the resistor while meeting the power limit is 0.027 A.
Learn more about power: https://brainly.com/question/24858512
#SPJ11
QUESTION 3 What is the mutual inductance in nk of these two loops of wire? Loop 1 Leop 44 20 Both loops are rectangles, but the length of the horizontal components of loop 1 are infinite compared to the size of loop 2 The distance d-5 cm and the system is in vacuum
Mutual inductance is an electromagnetic quantity that describes the induction of one coil in response to a variation of current in another nearby coil.
Mutual inductance is denoted by M and is measured in units of Henrys (H).Given that both loops are rectangles, the length of the horizontal components of loop 1 are infinite compared to the size of loop 2. The distance d-5 cm and the system is in vacuum, we are to calculate the mutual inductance of both loops.
The formula for calculating mutual inductance is given as:
[tex]M = (µ₀ N₁N₂A)/L, whereµ₀ = 4π × 10−7 H/m[/tex] (permeability of vacuum)
N₁ = number of turns of coil
1N₂ = number of turns of coil 2A = area of overlap between the two coilsL = length of the coilLoop 1,Leop 44,20 has a rectangular shape with dimensions 44 cm and 20 cm, thus its area
[tex]A1 is: A1 = 44 x 20 = 880 cm² = 0.088 m²[/tex].
Loop 2, on the other hand, has a rectangular shape with dimensions 5 cm and 20 cm, thus its area A2 is:
[tex]A2 = 5 x 20 = 100 cm² = 0.01 m².[/tex]
To know more about electromagnetic visit:
https://brainly.com/question/23727978
#SPJ11
The position of an object connected to a spring varies with time according to the expression x = (4.7 cm) sin(7.9nt). (a) Find the period of this motion. S (b) Find the frequency of the motion. Hz (c) Find the amplitude of the motion. cm (d) Find the first time after t = 0 that the object reaches the position x = 2.6 cm.
The period of oscillation is `0.796 n` and the frequency of the motion`1.26 Hz`.
Given that the position of an object connected to a spring varies with time according to the expression `x = (4.7 cm) sin(7.9nt)`.
Period of this motion
The general expression for the displacement of an object performing simple harmonic motion is given by:
x = A sin(ωt + φ)Where,
A = amplitude
ω = angular velocity
t = timeφ = phase constant
Comparing the given equation with the general expression we get,
A = 4.7 cm,
ω = 7.9 n
Thus, the period of oscillation
T = 2π/ω`= 2π/7.9n = 0.796 n`...(1)
Thus, the period of oscillation is `0.796 n`.
Frequency of the motion The frequency of oscillation is given as
f = 1/T
Thus, substituting the value of T in the above equation we get,
f = 1/0.796 n`= 1.26 n^-1 = 1.26 Hz`...(2)
Thus, the frequency of the motion is `1.26 Hz`.
Amplitude of the motion
The amplitude of oscillation is given as
A = 4.7 cm
Thus, the amplitude of oscillation is `4.7 cm`.
First time after
t = 0 that the object reaches the position
x = 2.6 cm.
The displacement equation of the object is given by
x = A sin(ωt + φ)
Comparing this with the given equation we get,
4.7 = A,
7.9n = ω
Thus, the equation of displacement becomes,
x = 4.7 sin (7.9nt)
Now, we need to find the time t when the object reaches a position of `2.6 cm`.
Thus, substituting this value in the above equation we get,
`2.6 = 4.7 sin (7.9nt)`Or,
`sin(7.9nt) = 2.6/4.7`
Solving this we get,
`7.9nt = sin^-1 (2.6/4.7)``7.9n
t = 0.6841`Or,
`t = 0.0867/n`
Thus, the first time after t=0 that the object reaches the position x=2.6 cm is `0.0867/n`
To know more about displacement visit :
brainly.com/question/11934397
#SPJ11
A uniform magnetic field B has a strength of 5.5 T and a direction of 25.0° with respect to the +x-axis. A proton (1.602e-19)is traveling through the field at an angle of -15° with respect to the +x-axis at a velocity of 1.00 ×107 m/s. What is the magnitude of the magnetic force on the proton?
The magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.
Given values: B = 5.5 Tθ = 25°q = 1.602 × 10⁻¹⁹ VC = 1.00 × 10⁷ m/s Formula: The formula to calculate the magnetic force is given as;
F = qvBsinθ
Where ;F is the magnetic force on the particle q is the charge on the particle v is the velocity of the particle B is the magnetic field strengthθ is the angle between the velocity of the particle and the magnetic field strength Firstly, we need to determine the angle between the velocity vector and the magnetic field vector.
From the given data, The angle between velocity vector and x-axis;α = -15°The angle between magnetic field vector and x-axis;β = 25°The angle between the velocity vector and magnetic field vectorθ = 180° - β + αθ = 180° - 25° - 15°θ = 140° = 2.44346 rad Now, we can substitute all given values in the formula;
F = qvBsinθF
= (1.602 × 10⁻¹⁹ C) (1.00 × 10⁷ m/s) (5.5 T) sin (2.44346 rad)F
= 4.31 × 10⁻¹¹ N
Therefore, the magnitude of the magnetic force on the proton is 4.31 × 10⁻¹¹ N.
To learn more about magnetic force visit
https://brainly.com/question/10353944
#SPJ11
A current circulates around a 2. 10-mm-diameter superconducting ring. What is the ring's magnetic dipole moment? Express your answer in amper-meters squared with the appropriate units. What is the on-axis magnetic field strength 5.10 cm from the ring? Express your answer with the appropriate units.
The magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.
Given the following values:Diameter (d) = 2.10 mm Radius (r) = d/2
Magnetic Permeability of Free Space = μ = 4π × 10⁻⁷ T·m/A
The magnetic dipole moment (µ) of the superconducting ring can be calculated by the formula:µ = Iπr²where I is the current that circulates around the ring, π is a mathematical constant (approx. 3.14), and r is the radius of the ring.Substituting the known values, we have:µ = Iπ(2.10 × 10⁻³/2)²= 3.48 × 10⁻⁹ I A·m² .
The magnetic field strength (B) of the superconducting ring at a point 5.10 cm from the ring (on its axis) can be calculated using the formula:B = µ/4πr³where r is the distance from the ring to the point where the magnetic field strength is to be calculated.Substituting the known values, we have:B = (3.48 × 10⁻⁹ I)/(4π(5.10 × 10⁻²)³)= 1.70 × 10⁻⁸ I T (answer to second question)
Hence, the magnetic dipole moment of the superconducting ring is 3.48 × 10⁻⁹ I A·m² and the magnetic field strength of the ring is 1.70 × 10⁻⁸ I T.
For further information on Magnetic field strength visit :
https://brainly.com/question/31307493
#SPJ11
1. please show steps and procedure clearly
Ambulanti infolinia 1. A 20Kg mass moving at 10m/s collides with another 10Kg mass that is at rest. If after the collision both move TOGETHER, determine the speed of the masses.
Total momentum after collision is = 6.67 m/s.
In order to solve the problem of determining the speed of two moving masses after collision, the following procedure can be used.
Step 1: Calculate the momentum of the 20Kg mass before collision. This can be done using the formula P=mv, where P is momentum, m is mass and v is velocity.
P = 20Kg * 10m/s
= 200 Kg m/s.
Step 2: Calculate the momentum of the 10Kg mass before collision. Since the 10Kg mass is at rest, its momentum is 0 Kg m/s.
Step 3: Calculate the total momentum before collision. This is the sum of the momentum of both masses before collision.
Total momentum = 200 Kg m/s + 0 Kg m/s
= 200 Kg m/s.
Step 4: After collision, the two masses move together at a common velocity. Let this velocity be v. Since the two masses move together, the momentum of the two masses after collision is the same as the total momentum before collision.
Therefore, we can write: Total momentum after collision
= 200 Kg m/s
= (20Kg + 10Kg) * v.
Substituting the values, we get: 200 Kg m/s = 30Kg * v.
So, v = 200 Kg m/s / 30Kg
= 6.67 m/s.
To know more about momentum visit :
https://brainly.com/question/30677308
#SPJ11
10. [0/8.33 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 13.4.WA.031. TUTORIAL. Two planets P, and P, orbit around a star Sin crcular orbits with speeds v.46.2 km/s, and V2 = 59.2 km/s respectively (6) If the period of the first planet P, 7.60 years, what is the mass of the star it orbits around? x kg 5 585010 (b) Determine the orbital period of Py: yr
(a) The mass of the star that P1 orbits is 5.85 x 10^30 kg.
(b) The orbital period of P2 is 9.67 years.
The mass of a star can be calculated using the following formula:
M = (v^3 * T^2) / (4 * pi^2 * r^3)
here M is the mass of the star, v is the orbital speed of the planet, T is the orbital period of the planet, r is the distance between the planet and the star, and pi is a mathematical constant.
In this case, we know that v1 = 46.2 km/s, T1 = 7.60 years, and r1 is the distance between P1 and the star. We can use these values to calculate the mass of the star:
M = (46.2 km/s)^3 * (7.60 years)^2 / (4 * pi^2 * r1^3)
We do not know the value of r1, but we can use the fact that the orbital speeds of P1 and P2 are in the ratio of 46.2 : 59.2. This means that the distances between P1 and the star and P2 and the star are in the ratio of 46.2 : 59.2.
r1 / r2 = 46.2 / 59.2
We can use this ratio to calculate the value of r2:
r2 = r1 * (59.2 / 46.2)
Now that we know the values of v2, T2, and r2, we can calculate the mass of the star:
M = (59.2 km/s)^3 * (9.67 years)^2 / (4 * pi^2 * r2^3)
M = 5.85 x 10^30 kg
The orbital period of P2 can be calculated using the following formula:
T = (2 * pi * r) / v
where T is the orbital period of the planet, r is the distance between the planet and the star, and v is the orbital speed of the planet.
In this case, we know that v2 = 59.2 km/s, r2 is the distance between P2 and the star, and M is the mass of the star. We can use these values to calculate the orbital period of P2:
T = (2 * pi * r2) / v2
T = (2 * pi * (r1 * (59.2 / 46.2))) / (59.2 km/s)
T = 9.67 years
To learn more about orbital period click here: brainly.com/question/31543880
#SPJ11
Two identical waves traveling in the +x direction have a wavelength of 2m and a frequency of 50Hz. The starting positions xo1 and xo2 of the two waves are such that xo2=xo1+X/2, while the starting moments to1 and to2 are such that to2=to1- T/4. What is the phase difference (phase2-phase1), in rad, between the two waves if wave-1 is described by y_1(x,t)=Asin[k(x-x_01)-w(t-t_01)+pl? 0 11/2 3m/2 None of the listed options
The phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.
To find the phase difference between the two waves, we need to compare the phase terms in their respective wave equations.
For wave-1, the phase term is given by:
ϕ₁ = k(x - x₀₁) - ω(t - t₀₁)
For wave-2, the phase term is given by:
ϕ₂ = k(x - x₀₂) - ω(t - t₀₂)
Substituting the given values:
x₀₂ = x₀₁ + λ/2
t₀₂ = t₀₁ - T/4
We know that the wavelength λ is equal to 2m, and the frequency f is equal to 50Hz. Therefore, the wave number k can be calculated as:
k = 2π/λ = 2π/2 = π
Similarly, the angular frequency ω can be calculated as:
ω = 2πf = 2π(50) = 100π
Substituting these values into the phase equations, we get:
ϕ₁ = π(x - x₀₁) - 100π(t - t₀₁)
ϕ₂ = π(x - (x₀₁ + λ/2)) - 100π(t - (t₀₁ - T/4))
Simplifying ϕ₂, we have:
ϕ₂ = π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)
Now we can calculate the phase difference (ϕ₂ - ϕ₁):
(ϕ₂ - ϕ₁) = [π(x - x₀₁ - λ/2) - 100π(t - t₀₁ + T/4)] - [π(x - x₀₁) - 100π(t - t₀₁)]
= π(λ/2 - T/4)
Substituting the values of λ = 2m and T = 1/f = 1/50Hz = 0.02s, we can calculate the phase difference:
(ϕ₂ - ϕ₁) = π(2/2 - 0.02/4) = π(1 - 0.005) = π(0.995) ≈ 3π/2
Therefore, the phase difference (phase₂ - phase₁) between the two waves is approximately 3π/2.
Know more about wave equations:
https://brainly.com/question/4692600
#SPJ4
Which of the following does motional emf not depend upon for the case of a rod moving along a pair of conducting tracks? Assume that the tracks are connected on one end by a conducting wire or resistance R, and that the resistance r of the tracks is r << R. The rod itself has negligible resistance.
Group of answer choices
a. The resistances R and r
b. The speed of the rod
c. the length of the rod
d. the strength of the magnetic field
Motional emf does not depend on the resistances R and r, the length of the rod, or the strength of the magnetic field.
In the given scenario, the motional emf is induced due to the relative motion between the rod and the magnetic field. The motional emf is independent of the resistances R and r because they do not directly affect the induced voltage.
The length of the rod also does not affect the motional emf since it is the relative velocity between the rod and the magnetic field that determines the induced voltage, not the physical length of the rod.
Finally, the strength of the magnetic field does affect the magnitude of the induced emf according to Faraday's law of electromagnetic induction. Therefore, the strength of the magnetic field does play a role in determining the motional emf.
To learn more about magnetic field
Click here brainly.com/question/19542022
#SPJ11
"An electron in a 1D box has a minimum energy of 3 eV. What is
the minimum energy if the box is 2x as long?
A. 3/2 eV
B. 3 eV
C 3/4 eV
D. 0 eV"
We are given the minimum energy of an electron in a 1D box is 3 eV and we need to find the minimum energy of the electron if the box is 2x as long.The energy of the electron in a 1D box is given by:E = (n²π²ħ²)/(2mL²)Where, E is energy,n is a positive integer representing the quantum number of the electron, ħ is the reduced Planck's constant,m is the mass of the electron and L is the length of the box.
If we increase the length of the box to 2L, the energy of the electron will beE' = (n²π²ħ²)/(2m(2L)²)E' = (n²π²ħ²)/(8mL²)From the given data, we know that the minimum energy in the original box is 3 eV. This is the ground state energy, so n = 1 and substituting the given values we get:3 eV = (1²π²ħ²)/(2mL²)Solving for L², we get :L² = (1²π²ħ²)/(2m×3 eV)L² = (1.85×10⁻⁹ m²/eV)Now we can use this value to calculate the new energy:E' = (1²π²ħ²)/(8mL²)E' = (3/4) (1²π²ħ²)/(2mL²)E' = (3/4)(3 eV)E' = 2.25 eV. Therefore, the minimum energy of the electron in the 2x longer box is 2.25 eV. Hence, the correct option is C) 3/4 eV.
Learn more about electron:
brainly.com/question/2969220
#SPJ11
A spherical shell with a mass of 1.7 kg and a radius of 0.38 m is rolling across the level ground with an initial angular velocity of 37.9rad/s. It is slowing at an angular rate of 2.5rad/s2. What is its rotational kinetic energy after 5.1 s ? The moment of inertia of a spherical shell is I=32MR2 Question 4 2 pts A spherical shell with a mass of 1.49 kg and a radius of 0.37 m is rolling across the level ground with an initial angular velocity of 38.8rad/s. It is slowing at an angular rate of 2.58rad/s2. What is its total kinetic energy after 4.1 s ? The moment of inertia of a spherical shell is I=32MR2
For the first scenario, the rotational kinetic energy after 5.1 s is approximately 5.64 J. For the second scenario, the total kinetic energy after 4.1 s is approximately 6.55 J.
For both scenarios, we are dealing with a spherical shell. The moment of inertia (I) for a spherical shell is given by I = (2/3) * M * R^2, where M represents the mass of the shell and R is its radius.
For the first scenario:
Given:
Mass (M) = 1.7 kg
Radius (R) = 0.38 m
Initial angular velocity (ω0) = 37.9 rad/s
Angular acceleration (α) = -2.5 rad/s^2 (negative sign indicates slowing down)
Time (t) = 5.1 s
First, let's calculate the final angular velocity (ω) using the equation ω = ω0 + α * t:
ω = 37.9 rad/s + (-2.5 rad/s^2) * 5.1 s
= 37.9 rad/s - 12.75 rad/s
= 25.15 rad/s
Next, we can calculate the moment of inertia (I) using the given values:
I = (2/3) * M * R^2
= (2/3) * 1.7 kg * (0.38 m)^2
≈ 0.5772 kg·m^2
Finally, we can calculate the rotational kinetic energy (KE_rot) using the formula KE_rot = (1/2) * I * ω^2:
KE_rot = (1/2) * 0.5772 kg·m^2 * (25.15 rad/s)^2
≈ 5.64 J
For the second scenario, the calculations are similar, but with different values:
Mass (M) = 1.49 kg
Radius (R) = 0.37 m
Initial angular velocity (ω0) = 38.8 rad/s
Angular acceleration (α) = -2.58 rad/s^2
Time (t) = 4.1 s
Using the same calculations, the final angular velocity (ω) is approximately 20.69 rad/s, the moment of inertia (I) is approximately 0.4736 kg·m^2, and the total kinetic energy (KE_rot) is approximately 6.55 J.
Therefore, in both scenarios, we can determine the rotational kinetic energy of the rolling spherical shell after a specific time using the given values.
To learn more about kinetic click here brainly.com/question/999862
#SPJ11
A flat coil of wire consisting of 24 turns, each with an area of 44 cm2, is placed perpendicular to a uniform magnetic field that increases in magnitude at a constant rate of 2.0 T to 6.0 T in 2.0 s. If the coil has a total resistance of 0.84 ohm, what is the magnitude of the induced current (A)? Give your answer to two decimal places.
The magnitude of the induced current is 0.47 A.
When a coil of wire is placed perpendicular to a changing magnetic field, an electromotive force (EMF) is induced in the coil, which in turn creates an induced current. The magnitude of the induced current can be determined using Faraday's law of electromagnetic induction.
In this case, the coil has 24 turns, and each turn has an area of 44 cm². The changing magnetic field has a constant rate of increase from 2.0 T to 6.0 T over a period of 2.0 seconds. The total resistance of the coil is 0.84 ohm.
To calculate the magnitude of the induced current, we can use the formula:
EMF = -N * d(BA)/dt
Where:
EMF is the electromotive force
N is the number of turns in the coil
d(BA)/dt is the rate of change of magnetic flux
The magnetic flux (BA) through each turn of the coil is given by:
BA = B * A
Where:
B is the magnetic field
A is the area of each turn
Substituting the given values into the formulas, we have:
EMF = -N * d(BA)/dt = -N * (B2 - B1)/dt = -24 * (6.0 T - 2.0 T)/2.0 s = -48 V
Since the total resistance of the coil is 0.84 ohm, we can use Ohm's law to calculate the magnitude of the induced current:
EMF = I * R
Where:
I is the magnitude of the induced current
R is the total resistance of the coil
Substituting the values into the formula, we have:
-48 V = I * 0.84 ohm
Solving for I, we get:
I = -48 V / 0.84 ohm ≈ 0.47 A
Therefore, the magnitude of the induced current is approximately 0.47 A.
Learn more about induced current
brainly.com/question/31686728
#SPJ11
Calculate the de broglie wavelength of a neutron moving at 1.00 of the speed of light.
The de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nanometers (nm).
The de Broglie wavelength is a concept in quantum mechanics that relates the momentum of a particle to its wavelength. It can be calculated using the de Broglie wavelength formula:
λ = h / p
where λ is the de Broglie wavelength, h is the Planck's constant (approximately 6.626 × 10^-34 J·s), and p is the momentum of the particle.
Given:
Light Speed (c) = 3.00 × 10^8 m/s
Neutron Speed (v) = 1.00 × c
The momentum (p) of a particle can be calculated as:
p = m * v
where
m = mass of the neutron.
The mass of a neutron (m) is approximately 1.675 × 10^-27 kg.
Substituting the values into the equations:
p = (1.675 × 10^-27 kg) * (3.00 × 10^8 m/s)
≈ 5.025 × 10^-19 kg·m/s
calculate the de Broglie wavelength
λ = (6.626 × 10^-34 J·s) / (5.025 × 10^-19 kg·m/s)
≈ 1.315 × 10^-15 m
Converting the de Broglie wavelength to nanometers:
λ = (1.315 × 10^-15 m) * (10^9 nm/1 m)
≈ 0.0656 nm
Therefore, the de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nanometers (nm).
The de Broglie wavelength of a neutron moving at 1.00 of the speed of light is approximately 0.0656 nm.
To know more about wavelength, visit:
https://brainly.com/question/10750459
#SPJ11
17). If you were to live another 65 years and there was a starship ready to go right now, how fast would it have to be going for you to live long enough to get to the galactic center (30,000 1.y.)? How fast would you have to go to reach the Andromeda Galaxy (2.54 million 1.y.)? 18). A friend tells you that we should ignore claims of climate change on Earth, because the scientists making such claims are simply relying on their authority as scientists (argument from authority) to support their claims. What are the problems with your friend's claim? This friend is far from alone... 19). To get a de Broglie wave that is visible to human eyes (size-wise, not visibility-wise, so 1 > 0,1 mm), of an particle, what particle should it be and what is the greatest speed it can be moving?
17) The required speed to reach the galactic center or the Andromeda Galaxy is obtained by dividing the distance by the time.
18) Dismissing scientific claims solely based on authority (argument from authority) overlooks the rigorous scientific process and the wealth of evidence supporting claims like climate change.
19) Achieving a visible-sized de Broglie wave would require a particle with low mass (e.g., an electron) to approach speeds near the speed of light, which is currently not attainable.
17) To calculate the speed required to reach the galactic center or the Andromeda Galaxy within a given time frame, we can use the equation:
Speed = Distance / Time
For the galactic center:
Distance = 30,000 light-years = 30,000 * 9.461 × 10^15 meters (approx.)
Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)
Speed = (30,000 * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)
Calculating this value gives the required speed in meters per second.
For the Andromeda Galaxy:
Distance = 2.54 million light-years = 2.54 million * 9.461 × 10^15 meters (approx.)
Time = 65 years = 65 * 365 * 24 * 3600 seconds (approx.)
Speed = (2.54 million * 9.461 × 10^15 meters) / (65 * 365 * 24 * 3600 seconds)
Calculating this value gives the required speed in meters per second.
18) The claim made by your friend that scientists are simply relying on their authority as scientists (argument from authority) to support claims of climate change on Earth has several problems. Firstly, it is a logical fallacy to dismiss scientific claims solely based on the authority of the scientists making them. Scientific claims should be evaluated based on the evidence, data, and rigorous research methods used to support them.
Furthermore, the consensus on climate change is not solely based on the authority of individual scientists but is the result of extensive research, data analysis, and peer review within the scientific community. There is a wealth of scientific evidence supporting the existence and impact of climate change, including observed temperature increases, melting glaciers, and changing weather patterns. Ignoring or dismissing these claims without proper scientific analysis undermines the importance of scientific consensus and the rigorous process of scientific inquiry.
19) To obtain a de Broglie wave visible to human eyes (with a size greater than 0.1 mm), the particle should have a relatively small mass and a corresponding wavelength within the visible light range.
According to the de Broglie equation:
Wavelength = h / momentum
To achieve a visible-sized de Broglie wave, the wavelength needs to be on the order of 0.1 mm or larger. This corresponds to the visible light range of the electromagnetic spectrum.
Particles with low mass and high velocity can exhibit shorter wavelengths. For example, electrons or even smaller particles like neutrinos could potentially have wavelengths in the visible light range if they are moving at high speeds. However, the velocity of these particles would need to be extremely close to the speed of light, which is not currently achievable in practice.
In summary, to obtain a visible-sized de Broglie wave, a particle with low mass (such as an electron) would need to be moving at a velocity very close to the speed of light.
learn more about "distance ":- https://brainly.com/question/26550516
#SPJ11
Find the approximate electric field magnitude at a distance d from the center of a line of charge with endpoints (-L/2,0) and (L/2,0) if the linear charge density of the line of charge is given by A= A cos(4 mx/L). Assume that d>L.
The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density.
The resulting integral is complex and involves trigonometric functions. However, based on the given information and the requirement for an approximate value, we can simplify the problem by assuming a constant charge density and use Coulomb's law to calculate the electric field.
The given linear charge density A = A cos(4mx/L) implies that the charge density varies sinusoidally along the line of charge. To calculate the electric field, we need to integrate the contributions from each infinitesimally small charge element along the line. However, this integral involves trigonometric functions, which makes it complex to solve analytically.
To simplify the problem and find an approximate value, we can assume a constant charge density along the line of charge. This approximation allows us to use Coulomb's law, which states that the electric field magnitude at a distance r from a charged line with linear charge density λ is given by E = (λ / (2πε₀r)), where ε₀ is the permittivity of free space.
Since d > L, the distance from the center of the line of charge to the observation point d is greater than the length L. Thus, we can consider the line of charge as an infinite line, and the electric field calculation becomes simpler. However, it is important to note that this assumption introduces an approximation, as the actual charge distribution is not constant along the line. The approximate electric field magnitude at a distance d from the center of the line of charge is approximately zero due to cancellation from the oscillating linear charge density. Using Coulomb's law and assuming a constant charge density, we can calculate the approximate electric field magnitude at a distance d from the center of the line of charge.
Learn more about assumption here: brainly.com/question/31868402
#SPJ11
6) Find the buoyant force on a 0.1 m3 block of wood with density 700 kg/m3 floating in a freshwater lake. (5 pts)
The buoyant force on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
Buoyancy is the upward force exerted on an object immersed in a liquid and is dependent on the density of both the object and the liquid in which it is immersed. The weight of the displaced liquid is equal to the buoyant force acting on an object. In this case, the volume of the block of wood is 0.1 m3 and its density is 700 kg/m3. According to Archimedes' principle, the weight of the displaced water is equal to the buoyant force. Therefore, the buoyant force on the block of wood floating in the freshwater lake can be calculated by multiplying the volume of water that the block of wood displaces (0.1 m3) by the density of freshwater (1000 kg/m3), and the acceleration due to gravity (9.81 m/s2) as follows:
Buoyant force = Volume of displaced water x Density of freshwater x Acceleration due to gravity
= 0.1 m3 x 1000 kg/m3 x 9.81 m/s2
= 981 N
However, since the density of the block of wood is less than the density of freshwater, the weight of the block of wood is less than the weight of the displaced water. As a result, the buoyant force acting on the block of wood is the difference between the weight of the displaced water and the weight of the block of wood, which can be calculated as follows:
Buoyant force = Weight of displaced water -
Weight of block of wood
= [Volume of displaced water x Density of freshwater x Acceleration due to gravity] - [Volume of block x Density of block x Acceleration due to gravity]
= [0.1 m3 x 1000 kg/m3 x 9.81 m/s2] - [0.1 m3 x 700 kg/m3 x 9.81 m/s2]
= 686 N
Therefore, the buoyant force acting on the 0.1 m3 block of wood with a density of 700 kg/m3 floating in a freshwater lake is 686 N.
To learn more about buoyant force click brainly.com/question/11884584
#SPJ11
Q C Review. A light spring has unstressed length 15.5cm . It is described by Hooke's law with spring constant. 4.30 N/m .One end of the horizontal spring is held on a fixed vertical axle, and the other end is attached to a puck of mass m that can move without friction over a horizontal surface. The puck is set into motion in a circle with a period of 1.30s .Evaluate x for (b) m=0.0700kg
One end of the spring is attached to a fixed vertical axle, while the other end is connected to a puck of mass m. The puck moves without friction on a horizontal surface in a circular motion with a period of 1.30 s.
The unstressed length of the light spring is 15.5 cm, and its spring constant is 4.30 N/m.
To evaluate x, we can use the formula for the period of a mass-spring system in circular motion:
T = 2π√(m/k)
Rearranging the equation, we can solve for x:
x = T²k / (4π²m)
Substituting the given values:
T = 1.30 s
k = 4.30 N/m
m = 0.0700 kg
x = (1.30 s)²(4.30 N/m) / (4π²)(0.0700 kg)
Calculate this expression to find the value of x.
to learn more about vertical axle
https://brainly.com/question/34191913
#SPJ11
Pilings are driven into the ground at a buiding site by dropping a 2050 kg object onto theri. What ehange in gravitational potential enerify does the object undergo if it is released from rest 17,0 m above the jorvund and ends up 130 rabove the growad?
The change in gravitational potential energy that the object undergoes if it is released from rest 17.0 m above the ground and ends up 1.30m above the ground is -28,869.5 J.
The change in gravitational potential energy is equal to the product of the object's mass, gravitational acceleration, and the difference in height or altitude (initial and final heights) of the object.
In other words, the formula for gravitational potential energy is given by : ΔPEg = m * g * Δh
where
ΔPEg is the change in gravitational potential energy.
m is the mass of the object.
g is the acceleration due to gravity
Δh is the change in height or altitude
Here, the object has a mass of 2050 kg and is initially at a height of 17.0 m above the ground and then falls to 1.30 m above the ground.
Thus, Δh = 17.0 m - 1.30 m = 15.7 m
ΔPEg = 2050 kg * 9.81 m/s² * 15.7 m
ΔPEg = 319,807.35 J
The object gained 319,807.35 J of gravitational potential energy.
However, the question is asking for the change in gravitational potential energy of the object.
Therefore, the final step is to subtract the final gravitational potential energy from the initial gravitational potential energy.
The final gravitational potential energy can be calculated using the final height of the object.
Final potential energy = m * g * hfinal= 2050 kg * 9.81 m/s² * 1.30 m = 26,618.5 J
Thus, ΔPEg = PEfinal - PEinitial
ΔPEg = 26,618.5 J - 346,487.0 J
ΔPEg = -28,869.5 J
Therefore, the change in gravitational potential energy that the object undergoes is -28,869.5 J.
To learn more about gravitational potential energy :
https://brainly.com/question/3120930
#SPJ11
How much energy in calories (to 2 significant figures) is
required to melt 7.6 grams of 0C ice ?
The specific heat capacity of water is 4.18 J/(g⋅K), and the heat of fusion of water is 6.01 kJ/mol. Therefore, in order to find the energy required to melt 7.6 grams of 0°C ice, we can use the following formula:
Q = m × (ΔHfus); Q is the energy needed (joules), m is the mass, and ΔHfus is the heat of fusion.
Converting joules to calories: 1 cal = 4.184 J. So, the energy required in calories can be found by dividing Q by 4.184.
Using the molar mass of water, we can convert the heat of fusion from joules per mole to joules per gram. Water's molar mass is 18 g/mol. Therefore, the heat of fusion of water in joules per gram is:
ΔHfus = (6.01 kJ/mol) ÷ (18.02 g/mol)
ΔHfus = 334 J/g
Substituting the values we have in the formula for Q:
Q = (7.6 g) × (334 J/g)Q = 2538.4 J
To convert from joules to calories, we divide by 4.184:Q = 2538.4 J ÷ 4.184Q = 607 cal
Therefore, the energy required to melt 7.6 grams of 0°C ice is approximately 607 calories (to 2 significant figures).
Here's another question on calories: https://brainly.com/question/28589779
#SPJ11
The study of the interaction of electrical and magnetic fields, and of their interaction with matter is called superconductivity.
a. true
b. false
b. false. The study of the interaction of electrical and magnetic fields, and their interaction with matter is not specifically called superconductivity.
Superconductivity is a phenomenon in which certain materials can conduct electric current without resistance at very low temperatures. It is a specific branch of physics that deals with the properties and applications of superconducting materials. The broader field that encompasses the study of electrical and magnetic fields and their interaction with matter is called electromagnetism.
To learn more about magnetic, Click here: brainly.com/question/23881929?
#SPJ11
Match each description of property of a substance with the most appropriate of the three common states of matter. If the property may apply to more than one state of matter, match it to the choice that lists all states of matter that are appropriate. Some choices may go unused. Hint a ✓ Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. can carry a sound wave takes on the shape of the container retains its own shape and size takes on the size of the container g f a f fis included as "fluids" a. solids b. solids and gases c. liquids d. gases e. solids and liquids f. liquids and gases g. solids, liquids, and gases
Atoms and molecules in it are significantly attracted to neighboring atoms and molecules. - a. solids ,Can carry a sound wave - c. liquids ,Takes on the shape of the container - f. liquids and gases ,Retains its own shape and size - a. solids, Takes on the size of the container - g. solids, liquids, and gases,The property of being a fluid is included as "fluids" - f. liquids and gases
Matching the descriptions with the appropriate states of matter:
Atoms and molecules in it are significantly attracted to neighboring atoms and molecules: a. solids
Can carry a sound wave: c. liquids
Takes on the shape of the container: f. liquids and gases
Retains its own shape and size: a. solids
Takes on the size of the container: g. solids, liquids, and gases
The property of being a fluid is included as "fluids": f. liquids and gases
The descriptions of properties of substances are matched with the most appropriate states of matter as follows:
Solids are characterized by significant attraction between atoms and molecules, retaining their own shape and size.
Liquids can carry a sound wave, take on the shape of the container, and are included in the category of fluids.
Gases take on the size of the container and are also included in the category of fluids.
Solids are characterized by significant attractions between atoms and molecules, and they retain their own shape and size. Liquids can carry sound waves, take on the size of the container, and are included in the category of fluids. Gases take on the shape of the container. Both solids and liquids can take on the size of the container.
To know more about sound wave, visit:
https://brainly.com/question/1173066
#SPJ11
1. What is the gravitational energy (relative to the unstretched surface of the trampoline) of the 20 kg ball at its apex 2 m above the trampoline?
E= mgh = 20(10)(2) =400 J Therefore, the gravitational energy is 400 J.
2. What is the kinetic energy of the ball just before impacting the trampoline?
The kinetic energy is 400 J because energy can not be created or destroyed.
3. At maximum stretch at the bottom of the motion, what is the sum of the elastic and gravitational energy of the ball?
I need help with question 3
use g= 10 N/kg
At maximum stretch at the bottom of the motion, the sum of the elastic and gravitational energy of the ball is 800 J.
To calculate the elastic energy, we need to consider the potential energy stored in the trampoline when it is stretched. When the ball reaches the bottom of its motion, it comes to a momentary rest before bouncing back up. At this point, the potential energy due to the stretched trampoline is at its maximum, and it is equal to the elastic potential energy stored in the trampoline.
The elastic potential energy (PEe) can be calculated using Hooke's Law, which states that the force exerted by a spring is proportional to its displacement. The formula for elastic potential energy is given as:
PEe = (1/2)k[tex]x^2[/tex]
Where k is the spring constant and x is the displacement from the equilibrium position. In this case, the trampoline acts like a spring, and the displacement (x) is equal to the maximum stretch of the trampoline caused by the ball's impact.
Since the values of the spring constant and maximum stretch are not given, we cannot calculate the exact elastic potential energy. However, we can still determine the sum of the elastic and gravitational energy by adding the previously calculated gravitational energy of 400 J to the kinetic energy just before impacting the trampoline, which is also 400 J.
Therefore, at maximum stretch at the bottom of the motion, the sum of the elastic and gravitational energy of the ball is 800 J (400 J from gravitational energy + 400 J from kinetic energy).
To know more about gravitational energy here https://brainly.com/question/15896499
#SPJ4
A distant star has a single planet circling it in a circular orbit of radius 2.68×10 ^11 m. The period of the planet's motion about the star is 740 days. What is the mass of the star? The value of the universal gravitational constant is 6.67259×10 ^−11 N⋅m 2/kg2.
Assume that it takes 90 minutes for a satellite near the Earth's surface to orbit around Earth of radius R E . What distance does a geo-synchronous satellite (i.e. has a period around the Earth of 24 hours) have to be from Earth? 1. 3R E
2. 6R E
3. 13R E
4. 24R E
5. 16R E
The mass of the star is 9.77 * 10^30 kg.
The distance of a geo-synchronous satellite from Earth is 42,164 km.
Here is the solution for the mass of the star:
We can use Kepler's third law to calculate the mass of the star. Kepler's third law states that the square of the period of a planet's orbit is proportional to the cube of the semi-major axis of its orbit. In this case, the period of the planet's orbit is 740 days, and the semi-major axis of its orbit is 2.68 * 10^11 m. Plugging in these values, we get:
T^2 = a^3 * k
where:
* T is the period of the planet's orbit in seconds
* a is the semi-major axis of the planet's orbit in meters
* k is Kepler's constant (6.67259 * 10^-11 N⋅m^2/kg^2)
(740 * 24 * 60 * 60)^2 = (2.68 * 10^11)^3 * k
1.43 * 10^16 = 18.3 * 10^23 * k
k = 7.8 * 10^-6
Now that we know the value of Kepler's constant, we can use it to calculate the mass of the star. The mass of the star is given by the following formula
M = (4 * π^2 * a^3 * T^2) / G
where:
* M is the mass of the star in kilograms
* a is the semi-major axis of the planet's orbit in meters
* T is the period of the planet's orbit in seconds
* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)
M = (4 * π^2 * (2.68 * 10^11)^3 * (740 * 24 * 60 * 60)^2) / (6.67259 * 10^-11)
M = 9.77 * 10^30 kg
Here is the solution for the distance of the geo-synchronous satellite from Earth:
The geo-synchronous satellite is in a circular orbit around Earth, and it has a period of 24 hours. The radius of Earth is 6371 km. The distance of the geo-synchronous satellite from Earth is given by the following formula
r = a * (1 - e^2)
where:
* r is the distance of the satellite from Earth in meters
* a is the semi-major axis of the satellite's orbit in meters
* e is the eccentricity of the satellite's orbit
The eccentricity of the geo-synchronous satellite's orbit is very close to zero, so we can ignore it. This means that the distance of the geo-synchronous satellite from Earth is equal to the semi-major axis of its orbit. The semi-major axis of the geo-synchronous satellite's orbit is given by the following formula:
a = r_e * sqrt(GM/(2 * π^2))
where:
* r_e is the radius of Earth in meters
* G is the gravitational constant (6.67259 * 10^-11 N⋅m^2/kg^2)
* M is the mass of Earth in kilograms
* π is approximately equal to 3.14
a = 6371 km * sqrt(6.67259 * 10^-11 * 5.972 * 10^24 / (2 * (3.14)^2))
a = 42,164 km
Therefore, the distance of the geo-synchronous satellite from Earth is 42,164 km.
Learn more about mass with the given link,
https://brainly.com/question/86444
#SPJ11
Consider the following problems: a. A particle is moving with a speed of 400 m/s in a magnetic field of 2.20 T. What is the magnitude of the force acting on the particle? b. A wire is placed in a magnetic field of 2.10 T. If the length of the wire is 10.0 m and a 5.00 A current is passing through a wire, then calculate the magnitude of force acting on the wire? c. Consider a wire of 80.0 m length placed in a 1.70 T magnetic field. Then, calculate the current passing through the wire if a force of 50.0 N acts on the wire.
a. 176 N is the magnitude of the force acting on the particle b. The wire in the magnetic field, the magnitude of the force is 105 N. c. The current passing through the wire under a force of 50.0 N is 0.368 A.
(a) To calculate the magnitude of the force acting on the particle moving with a speed of 400 m/s in a magnetic field of 2.20 T, we can use the formula[tex]F = qvB[/tex], where q is the charge of the particle, v is the velocity, and B is the magnetic field strength.
[tex]F = 400 *(2.20 )/5 = 176 N[/tex]
(b) For a wire placed in a magnetic field of Magnetic force 2.10 T, with a length of 10.0 m and a current of 5.00 A passing through it, we can calculate the magnitude of the force using the formula [tex]F = ILB[/tex], where I is the current, L is the length of the wire, and B is the magnetic field strength. Substituting the given values, we find that the force acting on the wire is
[tex]F = (5.00 A) * (10.0 m) *(2.10 T) = 105 N[/tex]
(c) In the case of a wire with a length of 80.0 m placed in a magnetic field of 1.70 T, and a force of 50.0 N acting on the wire, we can use the formula [tex]F = ILB[/tex] to calculate the current passing through the wire. Rearranging the formula to solve for I, we have I = F / (LB). Substituting the given values, the current passing through the wire is
[tex]I = (50.0 N) / (80.0 m * 1.70 T) = 0.36 A.[/tex]
Therefore, the magnitude of the force acting on the particle is not determinable without knowing the charge of the particle. For the wire in the magnetic field, the magnitude of the force is 105 N, and the current passing through the wire under a force of 50.0 N is 0.368 A.
Learn more about Magnetic force here
https://brainly.com/question/31253200
#SPJ11
A solenoid with 32 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius of 2.7 cm and is perpendicular to the axis of the solenoid. If the speed of the electron is 4.0 x 105 m/s, what is I (in A)?
When a current flows through a solenoid, it generates a magnetic field. The magnetic field is strongest in the center of the solenoid and its strength decreases as the distance from the center of the solenoid increases.
The magnetic field produced by a solenoid can be calculated using the following formula:[tex]B = μ₀nI[/tex].
where:B is the magnetic fieldμ₀ is the permeability of free spacen is the number of turns per unit length of the solenoidI is the current flowing through the solenoid.The magnetic field produced by a solenoid can also be calculated using the following formula:B = µ₀nI.
When an electron moves in a magnetic field, it experiences a force that is perpendicular to its velocity. This force causes the electron to move in a circular path with a radius given by:r = mv/qB.
where:r is the radius of the circular path m is the mass of the electron v is the velocity of the electronq is the charge on the electronB is the magnetic fieldThe speed of the electron is given as v = 4.0 x 10⁵ m/s.
To know more about solenoid visit:
https://brainly.com/question/21842920
#SPJ11
Susan's 10.0 kg baby brother Paul sits on a mat. Susan pulls the mat across the floor using a rope that is angled 30∘ above the floor. The tension is a constant 31.0 N and the coefficient of friction is 0.210.
Use work and energy to find Paul's speed after being pulled 2.90 m .
Paul's speed after being pulled at distance of 2.90 m is approximately 2.11 m/s
Mass of Paul (m) = 10.0 kg
Angle of the rope (θ) = 30°
Tension force (T) = 31.0 N
Coefficient of friction (μ) = 0.210
Distance pulled (d) = 2.90 m
First, let's calculate the work done by the tension force:
Work done by tension force (Wt) = T * d * cos(θ)
Wt = 31.0 N * 2.90 m * cos(30°)
Wt = 79.741 J
Next, let's calculate the work done by friction:
Work done by friction (Wf) = μ * m * g * d
where g is the acceleration due to gravity (approximately 9.8 m/s²)
Wf = 0.210 * 10.0 kg * 9.8 m/s² * 2.90 m
Wf = 57.471 J
The net work done on Paul is the difference between the work done by the tension force and the work done by friction:
Net work done (Wnet) = Wt - Wf
Wnet = 79.741 J - 57.471 J
Wnet = 22.270 J
According to the work-energy principle, the change in kinetic energy (ΔKE) is equal to the net work done:
ΔKE = Wnet
ΔKE = 22.270 J
Since Paul starts from rest, his initial kinetic energy is zero (KE_initial = 0). Therefore, the final kinetic energy (KE_final) is equal to the change in kinetic energy:
KE_final = ΔKE = 22.270 J
We can use the kinetic energy formula to find Paul's final speed (v):
KE_final = 0.5 * m * v²
22.270 J = 0.5 * 10.0 kg * v²
22.270 J = 5.0 kg * v²
Dividing both sides by 5.0 kg:
v² = 4.454
Taking the square root of both sides:
v ≈ 2.11 m/s
Therefore, Paul's speed after being pulled at a distance of 2.90 m is approximately 2.11 m/s.
Learn more about tension force:
https://brainly.com/question/30343908
#SPJ11
A hair dryer and a curling iron have resistances of 15 Q2 and 25 Q2, respectively, and are connected in series. They are connected to a 60 V battery. Calculate the power used by the hair dryer. A hair dryer and a curling iron have resistances of 15 2 and 25 2, respectively, and are connected in series. They are connected to a 60 V battery. Calculate the power used by the curling iron.
The power used by the hair dryer is 240 watts. To calculate the power used by each appliance, we need to use the formulas for power and resistance. The power formula is:
P = V^2 / R:
P is the power in watts (W)
V is the voltage in volts (V)
R is the resistance in ohms (Ω)
Resistance of the hair dryer, R_hairdryer = 15 Ω
Voltage across the hair dryer, V_hairdryer = 60 V
P_hairdryer = V_hairdryer^2 / R_hairdryer
= (60 V)^2 / 15 Ω
= 3600 V^2 / 15 Ω
= 240 W
Therefore, the power used by the hair dryer is 240 watts.
Learn more about resistance here : brainly.com/question/14547003
#SPJ11
Simple Harmonic Oscillator. For a CO (carbon monoxide) molecule, assume that the system vibrates at o=4.0.1014 [Hz]. a. Wavefunction: Sketch the wave function for the n=5 state of the SHO. Points will be given on qualitative accuracy of the solution. Include a brief description to help me understand critical components of your sketch and label the sketch appropriately. b. Probabilities: Make a qualitatively correct sketch that indicates the probability of finding the state as a function of interatomic separation for n=5 indicate any important features. (Sketch plus 1 sentence). c. Classical turning points: Calculate the probability that the interatomic distance is outside the classically allowed region for the n=1 state
a. For the n=5 state of the SHO, the wavefunction is a symmetric Gaussian curve centered at the equilibrium position, with decreasing amplitudes as you move away from it.
b. The probability of finding the n=5 state as a function of interatomic separation is depicted as a plot showing a peak at the equilibrium position and decreasing probabilities as you move away from it.
c. The probability of the interatomic distance being outside the classically allowed region for the n=1 state of the SHO is negligible, as the classical turning points are close to the equilibrium position and the probability significantly drops away from it.
a. Wavefunction: The wave function for the n=5 state of the Simple Harmonic Oscillator (SHO) can be represented by a Gaussian-shaped curve centered at the equilibrium position. The amplitude of the curve decreases as you move away from the equilibrium position. The sketch should show a symmetric curve with a maximum at the equilibrium position and decreasing amplitudes as you move towards the extremes.
b. Probabilities: The probability of finding the state as a function of interatomic separation for the n=5 state of the SHO can be depicted as a plot with the probability density on the y-axis and the interatomic separation on the x-axis. The sketch should show a peak at the equilibrium position and decreasing probabilities as you move away from the equilibrium. The important feature to highlight is that the probability distribution extends beyond the equilibrium position, indicating the possibility of finding the molecule at larger interatomic separations.
c. Classical turning points: In the classical description of the Simple Harmonic Oscillator, the turning points occur when the total energy of the system equals the potential energy. For the n=1 state, the probability of the interatomic distance being outside the classically allowed region is negligible. The classical turning points are close to the equilibrium position, and the probability of finding the molecule significantly drops as you move away from the equilibrium.
Learn more about Probability from the link given below.
https://brainly.com/question/31828911
#SPJ4
Question 14 1 points A 865 kg car traveling east collides with a 2.241 kg truck traveling west at 24.8 ms. The car and the truck stick together after the colision. The wreckage moves west at speed of 903 m/s What is the speed of the car in (n)? (Write your answer using 3 significant figures
The speed of the car is given by the absolute value of its velocity, so the speed of the car is approximately 906 m/s (rounded to three significant figures).
Let's denote the initial velocity of the car as V_car and the initial velocity of the truck as V_truck. Since the car is traveling east and the truck is traveling west, we assign a negative sign to the truck's velocity.
The total momentum before the collision is given by:
Total momentum before = (mass of car * V_car) + (mass of truck * V_truck)
After the collision, the car and the truck stick together, so they have the same velocity. Let's denote this velocity as V_wreckage.
The total momentum after the collision is given by:
Total momentum after = (mass of car + mass of truck) * V_wreckage
According to the conservation of momentum, these two quantities should be equal:
(mass of car * V_car) + (mass of truck * V_truck) = (mass of car + mass of truck) * V_wreckage
Let's substitute the given values into the equation and solve for V_car:
(865 kg * V_car) + (2.241 kg * (-24.8 m/s)) = (865 kg + 2.241 kg) * (-903 m/s)
Simplifying the equation: 865V_car - 55.582m/s = 867.241 kg * (-903 m/s)
865V_car = -783,182.823 kg·m/s + 55.582 kg·m/s
865V_car = -783,127.241 kg·m/s
V_car = -783,127.241 kg·m/s / 865 kg
V_car ≈ -905.708 m/s
The speed of the car is given by the absolute value of its velocity, so the speed of the car is approximately 906 m/s (rounded to three significant figures).
To learn more about velocity:
https://brainly.com/question/18084516
#SPJ11
An open cylindrical tank with radius of 0.30 m and a height of 1.2 m is filled with water. Determine the spilled volume of the water if it was rotated by 90 rpm.
Choices:
a) 0.095 cu.m.
b) 0.085 cu.m.
c) 0.047 cu.m.
d) 0.058 cu.m.
The spilled volume of water from the open cylindrical tank, when rotated at 90 rpm, is approximately 0.095 cubic meters.
When the cylindrical tank is rotated, the water inside experiences centrifugal force. This force pushes the water towards the outer edges of the tank, causing it to rise and potentially spill over. To determine the spilled volume, we need to calculate the difference in height between the water level at rest and the water level when the tank is rotating at 90 rpm.
First, we calculate the circumference of the tank using the formula: circumference = 2πr, where r is the radius. Plugging in the given radius of 0.30 meters, we get a circumference of approximately 1.89 meters.
Next, we need to determine the distance traveled by a point on the water's surface when the tank completes one revolution at 90 rpm. To do this, we use the formula: distance = (circumference × rpm) / 60. Substituting the values, we find the distance traveled per minute is approximately 2.98 meters.
Since the tank has a height of 1.2 meters, the ratio of the distance traveled to the tank height is approximately 2.48. This means that the water level will rise by 2.48 times the height of the tank when rotating at 90 rpm.
Finally, we calculate the spilled volume by subtracting the initial height of the water from the increased height. The spilled volume is given by the formula: volume = πr^2(h_new - h_initial), where r is the radius and h_new and h_initial are the new and initial heights of the water, respectively.
Plugging in the values, we get: volume = π(0.3^2)(1.2 × 2.48 - 1.2) ≈ 0.095 cubic meters.Therefore, the spilled volume of water is approximately 0.095 cubic meters.
Learn more about spilled volume
brainly.com/question/11799197
#SPJ11