A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.
Answer:
P = 5.97 × 10^(5) Pa
Explanation:
We are given;
Mass of balloon;m_b = 4.3 kg
Radius;r = 1.54 m
Temperature;T = 289 K
Density;ρ = 1.19 kg/m³
We know that, density = mass/volume
So, mass = Volume x Density
We also know that Force = mg
Thus;
F = mg = Vρg
Where m = mass of balloon(m_b) + mass of helium (m_he)
So,
(m_b + m_he)g = Vρg
g will cancel out to give;
(m_b + m_he) = Vρ - - - eq1
Since a sphere shaped balloon, Volume(V) = (4/3)πr³
V = (4/3)π(1.54)³
V = 15.3 m³
Plugging relevant values into equation 1,we have;
(3 + m_he) = 15.3 × 1.19
m_he = 18.207 - 3
m_he = 15.207 kg = 15207 g
Molecular weight of helium gas is 4 g/mol
Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles
From ideal gas equation, we know that;
P = nRT/V
Where,
P is absolute pressure
n is number of moles
R is the gas constant and has a value lf 8.314 J/mol.k
T is temperature
V is volume
Plugging in the relevant values, we have;
P = (3802 × 8.314 × 289)/15.3
P = 597074.53 Pa
P = 5.97 × 10^(5) Pa
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline
Answer:
x = 46.54m
Explanation:
In order to find the length of the incline you use the following formula:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the soccer ball = 0 m/s
t: time
a: acceleration
You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):
[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex] (2)
Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:
[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex] (3)
The length of the incline is 46.54 m
A long horizontal hose of diameter 3.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.8 cm. Water squirts from the nozzle at velocity 14 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
A) What is the velocity of the water in the hose ?
B) What is the pressure differential between the water in the hose and water in the nozzle ?
C) How long will it take to fill a tub of volume 120 liters with the hose ?
Answer:
a) v₁ = 3.92 m / s , b) ΔP = = 9.0 10⁴ Pa, c) t = 0.0297 s
Explanation:
This is a fluid mechanics exercise
a) let's use the continuity equation
let's use index 1 for the hose and index 2 for the nozzle
A₁ v₁ = A₂v₂
in area of a circle is
A = π r² = π d² / 4
we substitute in the continuity equation
π d₁² / 4 v₁ = π d₂² / 4 v₂
d₁² v₁ = d₂² v₂
the speed of the water in the hose is v1
v₁ = v₂ d₂² / d₁²
v₁ = 14 (1.8 / 3.4)²
v₁ = 3.92 m / s
b) they ask us for the pressure difference, for this we use Bernoulli's equation
P₁ + ½ ρ v₁² + m g y₁ = P₂ + ½ ρ v₂² + mg y2
as the hose is horizontal y₁ = y₂
P₁ - P₂ = ½ ρ (v₂² - v₁²)
ΔP = ½ 1000 (14² - 3.92²)
ΔP = 90316.8 Pa = 9.0 10⁴ Pa
c) how long does a tub take to flat
the continuity equation is equal to the system flow
Q = A₁v₁
Q = V t
where V is the volume, let's equalize the equations
V t = A₁ v₁
t = A₁ v₁ / V
A₁ = π d₁² / 4
let's reduce it to SI units
V = 120 l (1 m³ / 1000 l) = 0.120 m³
d1 = 3.4 cm (1 m / 100cm) = 3.4 10⁻² m
let's substitute and calculate
t = π d₁²/4 v1 / V
t = π (3.4 10⁻²)²/4 3.92 / 0.120
t = 0.0297 s
A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere
Answer:
The radius of the sphere is 4.05 m
Explanation:
Given;
potential at surface, [tex]V_s[/tex] = 450 V
potential at radial distance, [tex]V_r[/tex] = 150
radial distance, l = 8.1 m
Apply Coulomb's law of electrostatic force;
[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]
[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]
Therefore, the radius of the sphere is 4.05 m