Answer:
v₀ = 0.5058 m/s
Explanation:
From the question, for the block to hit the bottle, the elastic potential energy of the spring at the bottle (x = 0.08 m) should be equal to the sum of the elastic potential energy of the spring at x = 0.05 m and the kinetic energy of block at x = 0.05 m
Now, the potential energy of the block at x = 0.08 m is ½kx²
where;
k is the spring constant given by; k = ω²m
ω is the angular velocity of the oscillation
m is the mass of the block.
Thus, potential energy of the spring at the bottle(x = 0.08 m) is;
U = ½ω²m(0.08m)²
Also, potential energy of the spring at the bottle(x = 0.05 m) is;
U = ½ω²m(0.05m)²
and the kinetic energy of the block at x = 0.05 m is;
K = ½mv₀²
Thus;
½ω²m(0.08)² = ½ω²m(0.05)² + ½mv₀²
Inspecting this, ½m will cancel out to give;
ω²(0.08)² = ω²(0.05)² + v₀²
Making v₀ the subject, we have;
v₀ = ω√((0.08)² - (0.05)²)
So,
v₀ = 8.1√((0.08)² - (0.05)²)
v₀ = 0.5058 m/s
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline
Answer:
x = 46.54m
Explanation:
In order to find the length of the incline you use the following formula:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the soccer ball = 0 m/s
t: time
a: acceleration
You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):
[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex] (2)
Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:
[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex] (3)
The length of the incline is 46.54 m
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]