What is the equation of the given line in the point slope -form ?

What Is The Equation Of The Given Line In The Point Slope -form ?

Answers

Answer 1

Answer:

see below

Step-by-step explanation:

We are given two points (3,4) and (0,1)

so we can find the slope

m = ( y2-y1)/(x2-x1)

    = (1-4)/(0-3)

  = -3/-3

  = 1

The point slope form is

( y-y1) = m(x-x1)

y - (4) = 1 (x-3)

y - (4) =  (x-3)

or using the other point

y - 1 = 1( x-0)

y - 1 = x


Related Questions

Which values are in the solution set of the compound inequality? Select two options. 4(x + 3) ≤ 0 or x+1>3 answer choices: –6 –3 0 3 8

Answers

Answer:

-6, -3

3, 8

Step-by-step explanation:

In order to find the number that are solutions to the compound inequalities, you first solve fr x on each inequality.

First inequality:

[tex]4(x+3)\leq 0\\\\4x+12\leq0\\\\4x\leq-12\\\\x\leq-3[/tex]  interval = (-∞ , -3]

Second inequality:

[tex]x+1>3\\\\x>2[/tex]   interval = (2 , ∞)

The interval solution is (-∞ , -3] U (2 , ∞)

The number that are included in the previous interval are:

-6, -3

or

3, 8

Answer: any except 0

Step-by-step explanation:

PLS HELP ME WITH MY GEOMETRY ITS MY LAST QUESTION

Answers

Answer:

12, 1

Step-by-step explanation:

12- 6(1)=

12-6= 6

Rebecca collected data from a random sample of 500 homeowners in her state asking whether or not they use electric heat. Based on the results, she reports that 51% of the homeowners in the nation use electric heat. Why is this statistic misleading?

Answers

Answer:

She makes conclusion about a population that is not well represented by the sample.

Step-by-step explanation:

The conclusion she is making is about a population that is not well represented by her sample: the population is the homeowners in the nation, but the sample is made of homeowners or only her state.

The population about which she can make conclusions with this sample is the homeowners of her state, given that the sampling is done right.

Answer: The sample is biased

PLZ HELP ME!!! Which of the following equations has both -6 and 6 as possible values of c? Choose all that apply A. c^2=36 B. c^3=216 C. None Of The Above

Answers

Let's solve the first equation and see if both -6−6minus, 6 and 666 are possible values of ccc.

Hint #22 / 4

\begin{aligned} c^2&=36\\\\ \sqrt{c^2}&=\sqrt{36}&\\\\ c &=\pm 6 \end{aligned}

c

2

c

2

c

 

=36

=

36

=±6

 

Yes, both -6−6minus, 6 and 666 are possible values of ccc for the first equation!

Hint #33 / 4

Let's do the same for the second equation.

\begin{aligned} c^3&=216\\\\ \sqrt[\scriptstyle 3]{c^3}&=\sqrt[\scriptstyle 3]{216}&\\\\ c &=6 \end{aligned}

c

3

3

 

c

3

c

 

=216

=

3

 

216

=6

 

No, both -6−6minus, 6 and 666 are not possible values of ccc for the second equation.

Hint #44 / 4

The following equation has both -6−6minus, 6 and 666 as possible values of ccc:

c^2 = 36c

2

=36

The equation that has both -6 and 6 as possible values is c² = 36.

Option A is the correct answer.

What is an equation?

An equation contains one or more terms with variables connected by an equal sign.

Example:

2x + 4y = 9 is an equation.

2x = 8 is an equation.

We have,

If c is a possible value of 6, then c - 6 = 0.

Similarly, if c is a possible value of -6, then c + 6 = 0.

A)

c² = 36

We can factor this equation as c² - 36 = 0, which gives us (c - 6) (c + 6) = 0. Therefore, both c = 6 and c = -6 are solutions to this equation.

B)

c³ = 216

We can factor 216 as 6³, so c³ - 6³ = (c - 6) (c² + 6c + 36) = 0.

The quadratic factor c² + 6c + 36 does not have any real roots, so the only solution to this equation is c = 6.

Therefore, -6 is not a possible solution to this equation.

Thus,

The equation that has both -6 and 6 as possible values is c² = 36.

Learn more about equations here:

https://brainly.com/question/17194269

#SPJ3

Stat 3309 - Statistical Analysis for Business Applications I

Consider the following data representing the starting salary (in $1,000) at some company and years of prior working experience in the same ï¬eld. The sample of 10 employees was taken and the following data is reported.

Years of experience

Starting Salary (in $1,000)
0
45

2 50
5 55
7 62
8 63
10 70
12 68
15 75
18 81
20 92
Part 1: Use the formulas provided on the 3rd formula sheet to compute the following quantities. Open an Excel spreadsheet and write the table with data given above. Add columns for x2, y2, and xy, as well as the last row for Σ. For each of the following quantities, write the formula for it in a cell and evaluate it.

(a) Find the sample correlation coeï¬cient r.

(b) Find the slope b1 of the sample regression line.

(c) Find the y-intercept b0 of the sample regression line.

(d) What is the equation of the sample regression line?

(e) Find the predicted starting salary for a person who spent 15 years working in the same ï¬eld.

(f) Find the observed starting salary for a person who spent 15 years working in the same ï¬eld.

(g) What is the diï¬erence between the observed and the predicted starting salary for a person who spent 15 years working in the same ï¬eld?

(h) Find the total sum of squares SST.

(i) Find the sum of squares error SSE.

(j) Find the sum of squares regression SSR.

(k) Use the answers from (h)-(j) to conï¬rm that SST = SSR + SSE. (l) Find the coeï¬cient of determination R2.

(m) Use your answers for (a), (b) and (l), to conï¬rm that r = ±âR2.

(n) What proportion of variation is explained using the regression model?

(o) Find the standard error of the estimate se.

(p) Find the standard error of the regression slope sb.

(q) Does the number of years of prior working experience in the same ï¬eld aï¬ect the starting salary at this company ? Use the sample provided above and the signiï¬cance level of 0.05.

(hint: perform the hypothesis test for H0 : β1 = 0 vs. H1 : β1 6= 0.)

Part 2: Find and use Excel built-in-functions to check your answers for r, b1, and b0. Next to each cell from Part 1, calculate these three quantities using Excel built-in-functions and conï¬rm your answers from Part 1.

(hint: for example, for r the Excel built-in function is "CORREL")

Part 3: Bellow your answers from Parts 1 and 2, perform the regression analysis using Excel built-in-module which can be found under "DATA" â "Data Analysis" â "Regression" and double check your answers from Part 1. Draw the scatter plot of the data and, by visually observing the graph, determine if there is a linear relationship between the number of years of prior working experience in the same ï¬eld and the starting salary at this company.

Answers

Answer:

Solved below.

Step-by-step explanation:

The data is provided for the starting salary (in $1,000) at some company and years of prior working experience in the same field for randomly selected 10 employees.

(a)

The formula to compute the correlation coefficient is:

[tex]r=~\frac{n\cdot\sum{XY} - \sum{X}\cdot\sum{Y}} {\sqrt{\left[n \sum{X^2}-\left(\sum{X}\right)^2\right] \cdot \left[n \sum{Y^2}-\left(\sum{Y}\right)^2\right]}} \\[/tex]

The required values are computed in the Excel sheet below.

[tex]\begin{aligned}r~&=~\frac{n\cdot\sum{XY} - \sum{X}\cdot\sum{Y}} {\sqrt{\left[n \sum{X^2}-\left(\sum{X}\right)^2\right] \cdot \left[n \sum{Y^2}-\left(\sum{Y}\right)^2\right]}} \\r~&=~\frac{ 10 \cdot 7252 - 97 \cdot 661 } {\sqrt{\left[ 10 \cdot 1335 - 97^2 \right] \cdot \left[ 10 \cdot 45537 - 661^2 \right] }} \approx 0.9855\end{aligned}[/tex]

Thus, the sample correlation coefficient r is 0.9855.

(b)

The slope of the regression line is:

[tex]b_{1} &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\= \frac{ 10 \cdot 7252 - 97 \cdot 661 }{ 10 \cdot 1335 - \left( 97 \right)^2} \\\\\approx 2.132[/tex]

Thus, the slope of the regression line is 2.132.

(c)

The y-intercept of the line is:

[tex]b_{0} &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\= \frac{ 661 \cdot 1335 - 97 \cdot 7252}{ 10 \cdot 1335 - 97^2} \\\\\approx 45.418[/tex]

Thus, the y-intercept of the line is 45.418.

(d)

The equation of the sample regression line is:

[tex]y=45.418+2.132x[/tex]

(e)

Compute the predicted starting salary for a person who spent 15 years working in the same field as follows:

[tex]y=45.418+2.132x\\\\=45.418+(2.132\times15)\\\\=45.418+31.98\\\\=77.398\\\\\approx 77.4[/tex]

Thus, the predicted starting salary for a person who spent 15 years working in the same field is $77.4 K.

Answer:

Yes correct

Step-by-step explanation:

I think this is correct becase: 2 50

5 55

7 62

etc

these are all correct

Find the 61st term of the following arithmetic sequence.
15, 24, 33, 42,

Answers

Answer:

The answer is

555

Step-by-step explanation:

For an nth term in an arithmetic sequence

[tex]U(n) = a + (n - 1)d[/tex]

where n is the number of terms

a is the first term

d is the common difference

From the question

a = 15

d = 24 - 15 = 9

n = 61

So the 61st term of the arithmetic sequence is

U(61) = 15 + (61-1)9

= 15 + 9(60)

= 15 + 540

= 555

Hope this helps you.

What is the slope of a line that is perpendicular to the line whose equation is 2x+7y=5?

Answers

Answer:

7/2x

Step-by-step explanation:

Well first we need to put,

2x + 7y = 5,

into slope intercept

-2x

7y = -2x + 5

Divide y to all numbers

y = -2/7x + 5/7

So the slope for the given line is -2/7,

the slope of the line that is perpendicular to it is its reciprocal.

Meaning the slope of the perpendicular line is 7/2.

Thus,

the slope of the perpendicular line is 7/2x.

Hope this helps :)

Answer:

The slope of the perpendicular line is 7/2

Step-by-step explanation:

2x+7y=5

Solve for y to find the slope

2x-2x+7y=5-2x

7y = -2x+5

Divide by 7

7y/7 = -2/7 x +5/7

y = -2/7x + 5/7

The slope is -2/7

The slope of perpendicular lines multiply to -1

m * -2/7 = -1

Multiply each side by -7/2

m * -2/7 *-7/2 = -1 * -7/2

m = 7/2

The slope of the perpendicular line is 7/2

Use the information given to write an equation in standard form (If possible please show work)

Answers

Answer:

-2x + y = -1.

Step-by-step explanation:

The slope of the line = rise / run

= (11-9) / (6-5) = 2.

The point-slope form of the line is

y - y1 = 2(x - x1) where (x1, y1) is a point on the line so we have:

y - 11 = 2(x - 6)     ( using the point  (6, 11)

y = 2x - 12 + 11

y = 2x - 1

Convert to standard form:

-2x + y = -1.

You are interested in purchasing a new car. One of the many points you wish to consider is the resale value of the car after 5 years. Since you are particularly interested in a certain foreign​ sedan, you decide to estimate the resale value of this car with a 95​% confidence interval. You manage to obtain data on 17 recently resold​ 5-year-old foreign sedans of the same model. These 17 cars were resold at an average price of $ 12 comma 100 with a standard deviation of $ 800. What is the 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model?

Answers

Answer:

The 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model

(11,688.68 , 12,511.32)

Step-by-step explanation:

Step(i):-

Given sample size 'n' = 17

mean of the sample x⁻ = 12,100

Standard deviation of the sample (S) = 800

The 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model

[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} } )[/tex]

Step(ii):-

Degrees of freedom ν =n-1 = 17-1 =16

[tex]t_{(16 , 0.05)} = 2.1199[/tex]

The 95​% confidence interval for the true mean resale value of a​ 5-year-old car of this​ model

[tex](x^{-} - t_{0.05} \frac{S}{\sqrt{n} } , x^{-} + t_{0.05} \frac{S}{\sqrt{n} } )[/tex]

[tex](12,100 - 2.1199\frac{800}{\sqrt{17} } , 12,100 + 2.1199 \frac{800}{\sqrt{17} } )[/tex]

(12,100 - 411.32 , 12,100 + 411.32)

(11,688.68 , 12,511.32)

Solve the equation: 1. 3y+(y−2)=2(2y−1) 2. 6(1+5x)=5(1+6x)

Answers

Answer:

Step-by-step explanation:

I'm not sure what are u asking exactly

Please answer this correctly

Answers

Answer:

The rising tide gobbled up the sandcastle that the children had so carefully crafted.

Step-by-step explanation:

personification is when you use human characteristics to describe something non-human.

The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?

Answers

Answer:

Ans) 42.7%

Step-by-step explanation:

For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.

in the given range -

The probability that a continuous random variable = equal to the area under the probability density function curve

The probability that the value of a random variable is equal to 'something' is 1.

As per the diagram,

Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.

Hence required probability

=0.42739/1=0.42739

Ans) 42.7%

Round to nearest tenth of a percent

Charlie's teacher claims that he does not study you just guess it on the exam with 201 true-false questions Charlie answers 53.7% of equations correctly calculator calculating using these results show that if we were really guessing they would be probably one in one chance and 7 that he would do well in this difficult evidence significant evidence that Charlie is just guessing why or why not​

Answers

Answer: No there isn't

Explanation:

A score of 53.7% is quite close to 50% and this is a true or false exam. Charlie could have easily gotten this result by indeed guessing and not studying. This test mark is therefore not high enough to disregard the teachers's claim. Were the results to be significantly high enough above 50% then it could be said that indeed Charlie does study for his exams.

The length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. Find the domain in this situation.

Answers

Answer:2/3

Step-by-step explanation:

Given that the length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. The domain of the function is (0, ∞).

What is domain of a function?

The domain of a function is the set of all possible inputs for the function. In other words, domain is the set of all possible values of x. In this question, x is the width of the rectangle. Width of a rectangle existing in two dimensional space, cannot be negative or zero. Thus it is the set of all positive real numbers, or we say, (0, ∞).

Learn more about domain of a function here

https://brainly.com/question/13113489

#SPJ2

Plz help ASAP I’ll give lots of points

Answers

Answer:

8

Step-by-step explanation:

Because it is equal to the 4 side

Suppose that a fashion company determines that the​ cost, in​ dollars, of producing x cellphone cases is given by ​C(x)equalsnegative 0.05 x squared plus 55 x. Find StartFraction Upper C (251 )minus Upper C (250 )Over 251 minus 250 EndFraction ​, and interpret the significance of this result to the company. StartFraction Upper C (251 )minus Upper C (250 )Over 251 minus 250 EndFraction equals nothing ​(Simplify your​ answer.) Interpret the significance of this result to the company. Choose the correct answer below. A. It represents the additional cost to produce one more item after making 250 items. B. It represents the additional cost to produce one item after the fixed costs have been paid. C. It represents the average cost per item to produce 250 items. D. It represents the average cost of producing 251 items.

Answers

Answer:

(a)$29.95

(b)A

Step-by-step explanation:

The​ cost, in​ dollars, of producing x cellphone cases is given by:

[tex]C(x)=-0.05 x^2+55 x.[/tex]

We are required to evaluate: [tex]\dfrac{C(251)-C(250)}{251-250}[/tex]

[tex]C(251)=-0.05(251)^2+55(251)=10654.95\\C(250)=-0.05(250)^2+55(250)=10625\\\text{Therefore:}\\\\\dfrac{10654.95-10625}{251-250}=29.95[/tex]

[tex]\dfrac{C(251)-C(250)}{251-250}=\$29.95[/tex]

The value calculated above represents the additional cost to produce one more item after making 250 items.

Identify all the central angles

Answers

Answer:

Option 4

Step-by-step explanation:

The central angles are "Angles in the center"

So,

Central Angles are <AOB, <BOC and <AOC

Answer:

<AOB, <BOC and < AOC

Step-by-step explanation:

There are 3 angles at center O . The largest is <AOC ( = 180 degrees). Thn you have 2 more each equal to 90 degrees.

Solve the triangles with the given parts: a=103, c=159, m∠C=104º

Answers

Answer:

Sides:

[tex]a= 103[/tex].[tex]b \approx 99[/tex].[tex]c - 159[/tex].

Angles:

[tex]\angle A \approx 39^\circ[/tex].[tex]\angle B \approx 37^\circ[/tex].[tex]\angle C = 104^\circ[/tex].

Step-by-step explanation:

Angle A

Apply the law of sines to find the sine of [tex]\angle A[/tex]:

[tex]\displaystyle \frac{\sin{A}}{\sin{C}} = \frac{a}{c}[/tex].

[tex]\displaystyle\sin A = \frac{a}{c} \cdot \sin{C} = \frac{103}{159} \times \left(\sin{104^{\circ}}\right) \approx 0.628556[/tex].

Therefore:

[tex]\angle A = \displaystyle\arcsin (\sin A) \approx \arcsin(0.628556) \approx 38.9^\circ[/tex].

Angle B

The three internal angles of a triangle should add up to [tex]180^\circ[/tex]. In other words:

[tex]\angle A + \angle B + \angle C = 180^\circ[/tex].

The measures of both [tex]\angle A[/tex] and [tex]\angle C[/tex] are now available. Therefore:

[tex]\angle B = 180^\circ - \angle A - \angle C \approx 37.1^\circ[/tex].

Side b

Apply the law of sines (again) to find the length of side [tex]b[/tex]:

[tex]\displaystyle\frac{b}{c} = \frac{\sin \angle B}{\sin \angle C}[/tex].

[tex]\displaystyle b = c \cdot \left(\frac{\sin \angle B}{\sin \angle C}\right) \approx 159\times \frac{\sin \left(37.1^\circ\right)}{\sin\left(104^\circ\right)} \approx 98.8[/tex].

PLS AWNSER ASAP!!Which expression can be used to determine the length of segment ZY? On a coordinate plane, triangle X Y Z has points (3, 1), (3, 4), (negative 5, 1). 8 squared + 3 squared StartRoot 8 squared + 3 squared EndRoot 8 squared minus 3 squared StartRoot 8 squared minus 3 squared EndRoot

Answers

Sqrt(8^2 + 3^2)

Y is 3,4
Z is -5,1

3-(-5) = 8 (difference between x coords)
4-1 = 3 (difference between y coords)
Equation is: sqrt( (xdiff)^2 + (ydiff)^2 )

Answer:Sqrt(8^2 + 3^2)

Step-by-step explanation:

An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed with a mean equal to 13.00 and a standard deviation equal to 0.2 seconds. What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

Answers

Answer:

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question, we have that:

[tex]\mu = 13, \sigma = 0.2[/tex]

What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster

We have to find the pvalue of Z when X = 13.36.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{13.36 - 13}{0.2}[/tex]

[tex]Z = 1.8[/tex]

[tex]Z = 1.8[/tex] has a pvalue of 0.9641

96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster

Will give brainliest answer

Answers

Answer:

[tex]153.86 \: {units}^{2} [/tex]

Step-by-step explanation:

[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]

Answer:

153.86 [tex]units^{2}[/tex]

Step-by-step explanation:

Areaof a circle = πr^2

[tex]\pi = 3.14[/tex](in this case)

[tex]r^{2} =7[/tex]

A = πr^2

= 49(3.14)

= 153.86

Use the given information to find the P-value. Also, use a 0.05 significance level and state the conclusion about the null hypothesis (reject the null hypothesis or fail to reject the null hypothesis).

The test statistic in a two-tailed test is z = -1.63.

a. 0.1031; fail to reject the null hypothesis
b. 0.0516; reject the null hypothesis
c. 0.9484; fail to reject the null hypothesis
d. 0.0516; fail to reject the null hypothesis

Answers

Answer: a. 0.1031; fail to reject the null hypothesis

Step-by-step explanation:

Given: Significance level : [tex]\alpha=0.05[/tex]

The test statistic in a two-tailed test is z = -1.63.

The P-value for two-tailed test : [tex]2P(Z>|z|)=2P(Z>|-1.63|)=0.1031[/tex] [By p-value table]

Since, 0.1031 > 0.05

i.e. p-value > [tex]\alpha[/tex]

So, we fail to reject the null hypothesis. [When p<[tex]\alpha[/tex] then we reject null hypothesis  ]

So, the correct option is a. 0.1031; fail to reject the null hypothesis.

The average weight of a package of rolled oats is supposed to be at least 18 ounces. A sample of 18 packages shows a mean of 17.78 ounces with a standard deviation of 0.41 ounces. At the 5% level of significance, is the true mean smaller than the specification?

Answers

Answer:

Step-by-step explanation:

The average weight of a package of rolled oats is supposed to be at least 18 ounces

Null hypothesis: u >= 18

Alternative: u < 18

Using the t-test formula, we have

t = x-u/ (sd/√n)

Where x is 17.78, u = 18, sd = 0.41 and n = 18

t = 17.78-18 / (0.41/√18)

t = -0.22 / (0.41/4.2426)

t = -0.22/ 0.0966

t = -2.277

Since, this is a left tailed test, at a significance level of 0.05, the p value is 0.01139. Since the p value is less than 0.05, we will reject the null hypothesis and conclusion that the true mean smaller than the actual specification.


[tex] {x}^{3} + 3 {}^{x} = 17[/tex]

Answers

Answer:

X = 2

Step-by-step explanation:

[tex]if \: {x}^{3} + {3}^{x} = 17 \: we \: can \: conclude \: that \: x \: is \: equal \: to \: two \\ {2}^{3} + {3}^{2} = 8 + 9 = 17[/tex]

I NEED HELP PLEASE, THANKS! :)

Answers

Consider the standard form of each of the following options given, and note the hyperbola properties through that derivation -

[tex]Standard Form - \frac{\left(x-5\right)^2}{\left(\sqrt{7}\right)^2}-\frac{\left(y-\left(-5\right)\right)^2}{3^2}=1,\\Properties - \left(h,\:k\right)=\left(5,\:-5\right),\:a=\sqrt{7},\:b=3\\[/tex]

Similarly we can note the properties of each of the other hyperbolas. They are all similar to one another, but only option C is correct. Almost all options are present with a conjugate axis of length 6, but only option c is broad enough to include the point ( 1, - 5 ) and ( 9, - 5 ) in a given radius.

Solution = Option C!

The graph shows the relationship between inches, x, and miles, y, on a map. Which equation represents the proportional relationship.
A y = x + 5
B y = 1/5x
C y = 5x
D y = 10x
I'll show you the graph ​

Answers

The answer here is C, it is the answer because 10/2 = 5 20/4 = 5 so if you multiply it is always multiplied by 5


In the figure, AB =
Inchesand AC=
inches.

Answers

Answer:

[tex]\displaystyle AB \approx 8.39 \text{ inches} \text{ and } AC \approx 13.05 \text{ inches}[/tex]

Step-by-step explanation:

Note that we are given the measure of ∠C and the length of side BC.

To find AB, we can use the tangent ratio. Recall that:

[tex]\displaystyle \tan\theta = \frac{\text{opposite}}{\text{adjacent}}[/tex]

Substitute in appropriate values:

[tex]\displaystyle \tan 40^\circ = \frac{AB}{BC} = \frac{AB}{10}[/tex]

Solve for AB:

[tex]\displaystyle AB = 10\tan 40^\circ \approx 8.39\text{ inches}[/tex]

For AC, we can use cosine ratio since we have an adjacent and need to find the hypotenuse. Recall that:

[tex]\displaystyle \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}[/tex]

Substitute in appropriate values:

[tex]\displaystyle \cos 40^\circ = \frac{BC}{AC} = \frac{10}{AC}[/tex]

Solve for AC:

[tex]\displaystyle \begin{aligned} \frac{1}{\cos 40^\circ} & = \frac{AC}{10} \\ \\ AC & = 10\cos 40^\circ \approx 13.05\text{ inches} \end{aligned}[/tex]

In conclusion, AB is about 8.39 inches and AC is about 13.03 inches.

which of the following has a value less than 0?
A.4
B. |4|
C. |-4|
D. -4


Answers

Answer:

D

Step-by-step explanation:

The numbers that are less than 0 are negative. Negative numbers have the "-" sign in front of them so the answer is D.

Answer:

d

Step-by-step explanation:

The other ones will always be positive four

PLEASE HELP!!! Bob earns $1,825 per month as a clerk at Elm City Sporting Goods. How much does he earn in a year? Explain how you got your answer. (50 points)

Answers

Answer:

21900

Step-by-step explanation:

There are 12 months in a year, so multiply the yearly amount by 12

1825 * 12

21900

Answer:

Bob makes $21,000 in a year.

Step-by-step explanation:

There are 12 months in a year, so if he earns $1,825 every month to get his yearly pay you need to add 1,825 twelve times. Thus, 1,825×12=21,000. Hope this helps!

WWW
3.
The expression "5 FACTORIAL" equals
3-A
125
3-B
120
3-C
25
3-D
10
* Select Answer Below​

Answers

Answer:

5! = 120

Step-by-step explanation:

5! is basically 5(4)(3)(2)(1).

Other Questions
There are only green pens and red pens in the box.There are three more red pens than green pens in the box.Sheila is going to take at random two pens from the box.The probability that sheila will take two pens of the same colour is 17/35.Work out the two different numbers of green pens that could be in the box. A school district performed a study to find the main causes leading to its students dropping out of school. Thirty cases were analyzed, and a primary cause was assigned to each case. The causes included unexcused absences (U), illness (I), family problems (F), and other causes (O). The results for the thirty cases are listed below:U U U I F O O U I F F O U I I F I I O U I F F U U I I O F URequired:Construct a table summarizing the frequency distribution of the primary causes leading to student dropout. Perform the followingmathematical operation, andreport the answer to the correctnumber of significant figures.5.446 x 0.14156 During the year, the Senbet Discount Tire Company had gross sales of $1.24 million. The companys cost of goods sold and selling expenses were $593,000 and $246,000, respectively. The company also had notes payable of $850,000. These notes carried an interest rate of 5 percent. Depreciation was $123,000. The tax rate was 23 percent. a. What was the companys net income? (Do not round intermediate calculations. Enter your answer in dollars, not millions of dollars, rounded to the nearest whole dollar amount, e.g., 1,234,567.) b. What was the companys operating cash flow? (Do not round intermediate calculations. Enter your answer in dollars, not millions of dollars, rounded to the nearest whole dollar amount, e.g., 1,234,567.) Western Company is preparing a cash budget for June. The company has $12,000 cash at the beginning of June and anticipates $30,000 in cash receipts and $34,500 in cash disbursements during June. Western Company has an agreement with its bank to maintain a minimum cash balance of $10,000. As of May 31, the company owes $15,000 to the bank. To maintain the $10,000 required balance, during June the company must: The previous value of a portfolio that must be regained before a hedge fund can charge their investors performance fees is known as a What percent of discount should be given in a doll costing Rs 180such that a customer can buy at Rs 160? Desembarcar means to take off. Which of the following words also means to take off? a. despegar c. revisar el boleto b. aterrizar d. hacer un viaje A survey asked people whether their pets are picky eaters. For these results,are being a picky eater and being a dog independent or dependent events?Justify your answer Using the segment addition postulate, which is true? A number line going from negative 9 to positive 9. A closed circle appears at negative 6 and is labeled A. A closed circle appears at negative 1 and is labeled B. A closed circle appears at positive 2 and is labeled C. A closed circle appears at positive 8 and is labeled D. At December 31, 2020 Sunland Company had 200000 shares of common stock and 10600 shares of 7%, $100 par value cumulative preferred stock outstanding. No dividends were declared on either the preferred or common stock in 2020 or 2021. On February 10, 2022, prior to the issuance of its financial statements for the year ended December 31, 2021, Sunland declared a 100% stock dividend on its common stock. Net income for 2021 was $960000. In its 2021 financial statements, Sunlands 2021 earnings per common share should be:___________$4.47.$4.20.$2.21.$1.29. A factory can work its employees no more than 6 days a week, and no less than 2 days perweek. Create an inequality to represent the range of days an employee can work. Solvethe inequality to determine the range in hours if the work day is 6.5 hours. Show all of yourwork and explain each of your steps. Explain your answer. How many moles of gaseous boron trifluoride, BF3, are contained in a 4.3410 L bulb at 788.0 K if the pressure is 1.220 atm What is the complete ground state electron configuration for the neon atom The following data points represent how many houses Gregg the Garbage Man visited each day last week.12,28,33,37,23,14,9 use the data,and create a histogram Which kind of image can never be projected and forms where light rays appear to originate?virtualrealinvertedenlarned There are several bridges along highway 280 which are free to ride on. This bridge was built and is being maintained by the government... not the "free" market. Let's think about why that is the case... The economic logic of government ownership and having a marginal price of 0 (that is, it is free to cross the bridge) is: The sky turned a bright shade of meatballs as rain began to pour out from the heavens fact or fiction? Problemas de algoritmo a, um buso se encuentra a 12m bajo el nivel del mar ,si sube 3 m ,cual sera su nueva posicion ,rrepresenta numeros enteros,positivo y negativo Someone help me plz What kind of poem is another way that expresses Hinduism?A. Another poem that expresses Hinduism is an epicpoem.B. Another poem that expresses Hinduism is a haikupoem.C. Another poem that expresses Hinduism is arhythmic poem.D. Another poem that expresses Hinduism is alimerick poem.