Answer:
B
Step-by-step explanation:
Find f o g and g o f to determine if f and g are inverse functions. If they are not inverses, pick the function that would be the inverse with f(x). f(x) = (-2/x) – 1; g(x) = -2/(x+1)
Choices:
a. g(x) has to be: (1+x)/2
b. g(x) has to be: x/2
c. g(x) has to be: 2 – (1/x)
d. Inverses
Answer:
Step-by-step explanation:
Hello,
[tex]x = (fof^{-1})(x)=f(f^{-1}(x))=\dfrac{-2}{f^{-1}(x)}-1\\\\<=>f^{-1}(x)(x+1)=-2\\\\<=> f^{-1}(x)=\dfrac{-2}{x+1}[/tex]
and this is g(x)
so they are inverses
Hope this helps
Sum of two numbers is 20 their difference is 118
Answer:
a = first number
b = second number
"The sum of two numbers is 20."
a + b = 20
"[The difference of two numbers] is 118."
a - b = 118
Add the two equations together:
(a + b) + (a - b) = 20 + 118
Simply and solve:
2a = 138
a = 69
Use one of the above equations to solve for the second number.
a + b = 20
a = 69
69 + b = 20
b = -49
HOPE THIS HELPS AND PLSSS PLSSS MARK AS BRAINLIEST
THNXX :)
I need help on a question real quick
Answer:
4x-3y
Step-by-step explanation:
what it 17.15 in 12hour clock
Answer:
Step-by-step explanation:
Hello friend
The answer is 5:15 in 12 hour clock
Answer:
5:15 PM
Step-by-step explanation:
12:00 + 5:00
17:00 in 12 hour clock is 5:00 PM.
15 minutes + 5:00 PM
⇒ 5:15 PM
Find the volume. Round to the nearest hundredth if necessary.
9 yd
4 yd
2 yd
3 yd
7 yd
O 32 yd
O 22 yd
48 yd
29 yd
36 yd
Answer:
36 yd³
Step-by-step explanation:
The above solid shape given is a triangular prism.
The volume of triangular prism is given as ½ × base length of the triangle (b) × height of the triangle (h) × the length of the prism (l)
Base length of triangle (b) = 9 yd
Height of the triangle (h) = 2 yd
Length of the prism (l) = 4 yd
Volume = ½bhl
Volume = ½*9*2*4
Volume = 9*4
Volume of prism = 36 yd³
Which of the binomials below is a factor of this trinomial?
x² + 3x - 4
Answer:
(x+4) or (x-1)
Step-by-step explanation:
Do this by factoring out your equation. To do this, think about which two numbers multiply to be -4 but also add up to be 3 (the -4 came from multiplying the first value (the 1 that is attached to the [tex]x^{2}[/tex]) and the last value, which is -4. The 3 came from the middle term).
The two numbers you should have gotten are 4 and -1. Therefore, (x+4) and (x-1) are both of the binomials that could be your answer
Triangle A B C is shown. Angle B C A is a right angle. The length of hypotenuse A B is 5, the length of B C is 3, and the length of A C is 4. What is the length of the side opposite Angle B? 3 units 4 units 5 units 6 units
The side opposite to angle B is the side that does not contact with angle B.
In this attached image, you can see better that sides AB and BC is in contact with angle B. So, the opposite side to angle B is AC.
Therefore, the lenght of the side opposite to angle B is 4 units.
Answer:
B 4Units
Step-by-step explanation:
Edg 2020 or maybe 2022
Eight times the difference between a number and six is equal to four times the number. What’s the number?
Answer:
12
Step-by-step explanation:
Given:
Let the number be x.
According to the question,
8(x-6)= 4 x
8 x-48=4 x
8 x-4 x= 48
4 x=48
x=48/4
x=12
Thank you!
Please I am in need of help if you go solve all my questions o will mark brainliest
Answer:
top left
Step-by-step explanation:
Consider finding points on the graph using the equation.
x = 0 : f(0) = [tex]0.5^{0}[/tex] + 4 = 1 + 4 = 5 ← y- intercept
Since y- intercept is 5, this excludes the lower 2 graphs, which have y- intercepts of 1
x = 1 : f(1) = [tex]0.5^{1}[/tex] + 4 = 0.5 + 4 = 4.5 ⇒ (1, 4.5 )
x = - 1 : f(- 1) = [tex]0.5^{-1}[/tex] + 4 = [tex]\frac{1}{0.5}[/tex] + 4 = 2 + 4 = 6 ⇒ (1, 6 )
These points lie on the top left graph
Describe the possible echelon forms of a nonzero 2 x 2 matrix.
Answer:
we approach the issue by taking note of that a 2 x 2 matrix can either have 1 0r 2 pivot columns. If the matrix has no pivot columns then every entry in the matrix must be zero.
-> if our matrix has two pivot columns then : [tex]\left(\begin{array}{rr}-&*&0&-\end{array}\right)[/tex]
-> if our matrix has one pivot column then we have a choice to make. If the first column is pivot column then: [tex]\left(\begin{array}{rr}-&*&0&0\end{array}\right)[/tex]
->otherwise, if the pivot column is the second column then: [tex]\left(\begin{array}{rr}0&-&0&0\end{array}\right)[/tex]
Laura tiene las tres séptimas partes de la edad de su mamá dentro de 5 años la edad de su mamá será el doble que la edad de ella ¿Cuántos años tiene cada una?
Answer:
Laura tiene 15 años mientras que su madre tiene 35 años.
Step-by-step explanation:
Deje que la edad de Laura sea L.
Deje que la edad de su madre sea m.
Tiene 3/7 de la edad de su madre:
L = 3 m / 7
En 5 años, la edad de su madre será el doble de su edad:
(m + 5) = 2 (L + 5)
m + 5 = 2L + 10
m - 2L = 5
Pon el valor de L:
m - 2 (3 m / 7) = 5
m - 6 m / 7 = 5
Multiplica por 7:
7m - 6m = 35
m = 35 años
=> L = 3 * 35/7 = 15 años
Laura tiene 15 años mientras que su madre tiene 35 años.
A card is drawn randomly from a standard 52-card deck. Find the probability of the given event.
(a) The card drawn is a king.
(b) The card drawn is a face card.
(c) The card drawn is not a face card.
Answer:
(a) [tex]\frac{1}{13}[/tex]
(b) [tex]\frac{3}{13}[/tex]
(c) [tex]\frac{10}{13}[/tex]
Step-by-step explanation:
The probability of an event B occurring is given by;
P(B) = [tex]\frac{n(E)}{n(S)}[/tex]
Where;
P(B) = probability of the event B
n(E) = number of favourable outcomes
n(S) = total number of events in the sampled space.
From the question, the card is drawn randomly from a standard 52-card deck. The probability of
(a) drawing a "king" card is analyzed as follows.
Let the event of drawing the "king" card be B.
In a standard 52-card deck, the number of cards that are of type king is 4. i.e 1 from the diamond pack, 1 from the spade pack, 1 from the heart pack and 1 from the club pack.
Therefore, the number of favourable outcomes is 4, while the total number of events in the sampled space is 52.
The probability of drawing a "king" card, P(B) is;
P(B) = [tex]\frac{4}{52}[/tex]
P(B) = [tex]\frac{1}{13}[/tex]
(b) drawing a "face" card is analyzed as follows.
Let the event of drawing the "face" card be B.
In a standard 52-card deck, a face card can either be a Jack, Queen or a King. There are 4 Jack cards, 4 Queen cards and 4 King cards in the deck. The number of cards that are of type face is 12.
Therefore, the number of favourable outcomes is 12, while the total number of events in the sampled space is 52.
The probability of drawing a "face" card, P(B) is;
P(B) = [tex]\frac{12}{52}[/tex]
P(B) = [tex]\frac{3}{13}[/tex]
(c) drawing a card that is not a "face" is analyzed as follows;
The sum of the probability of drawing a face card and the probability of not drawing a face card is always 1.
Let the event of drawing a "face" card be B and the event of not drawing a "face" card be C.
P(B) + P(C) = 1
P(C) = 1 - P(B)
From (b) above, the P(B) = [tex]\frac{3}{13}[/tex]
Therefore,
P(C) = 1 - [tex]\frac{3}{13}[/tex]
P(C) = [tex]\frac{10}{13}[/tex]
The weights of college football players are normally distributed with a mean of 200 pounds and a standard deviation of 50 pounds. If a college football player is randomly selected, find the probability that he weighs between 170 and 220 pounds. Round to four decimal places.
Answer:
0.3811 = 38.11% probability that he weighs between 170 and 220 pounds.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 200, \sigma = 50[/tex]
Find the probability that he weighs between 170 and 220 pounds.
This is the pvalue of Z when X = 220 subtracted by the pvalue of Z when X = 170.
X = 220
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{220 - 200}{50}[/tex]
[tex]Z = 0.4[/tex]
[tex]Z = 0.4[/tex] has a pvalue of 0.6554
X = 170
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{170 - 200}{50}[/tex]
[tex]Z = -0.6[/tex]
[tex]Z = -0.6[/tex] has a pvalue of 0.2743
0.6554 - 0.2743 = 0.3811
0.3811 = 38.11% probability that he weighs between 170 and 220 pounds.
A girl walks 800 m on a bearing of 129°.
Calculate how far: a east b south she is from
her starting point.
Answer: a) 503.2m
b) 621.6m
Step-by-step explanation:
The diagram representing the scenario is shown in the attached photo.
A represents her starting point.
CD = x = how far east she is from her starting point
BC = y = how far south she is from her starting point
Angle BAC = 180 - 129 = 51°
Angle ACD = angle BAC = 51° because they are alternate angles
To determine x, we would apply the cosine trigonometric ratio
Cos 51 = x /800
x = 800Cos51 = 800 × 0.629 = 503.2m
To determine y, we would apply the sine trigonometric ratio
Sin 51 = y /800
y = 800Sin51 = 800 × 0.777 = 621.6m
Two spheres of the same outer diameter, one solid and the other hollow, are completely immersed in the water. We can affirm:
a) The hollow receives less push
b) The hollow receives more push
c) Both receive the same push
d) The solid receives less push
Answer:
c) Both receive the same push
Step-by-step explanation:
The buoyancy force is equal to the weight of the displaced fluid:
B = ρVg
where ρ is the density of the water, V is the volume of displaced water, and g is the acceleration due to gravity.
Since both spheres displace the same amount of water, they have equal buoyancy forces.
15. Over what range of angles does the value of sin(O) consistently increase?
A. 45° to 135°
B. 90° to 180°
C. 0° to 180°
D. 0° to 90°
Answer:
D. 0° to 90°
Step-by-step explanation:
If we see curve of sin(o) on coordinate, we will notice that value of sin curve increases from 0 to 90 degrees and then decreases from 90 to 180 degrees.
Hence option D is correct.
Alternatively
we see that
sin 0 = 0
sin 30 = 1/2
sin 45 = 1/[tex]\sqrt{2}[/tex]
sin 60 = [tex]\sqrt{3} /2[/tex]
sin 90 = 1
Thus, we see that value of sin is increasing from 0 to 90
now lets see value of sin from 90 to 180
sin 90 = 1
sin 120 = [tex]\sqrt{3} /2[/tex]
sin 135 = 1/[tex]\sqrt{2}[/tex]
sin 150 = 1/2
sin 180 = 0
Thus, we see that value of sin is decreasing from 90 to 180.
the distance around the edge of a circular pond is 88m. the radius in meters is ?
(a)88π
(b)176π
(c)88/π
(d)88/2π
Answer: (d) 88/ 2π
Step-by-step explanation:
Perimeter = 88m
Perimeter of a circle = 2πr
88 = 2π x r
r = 88 / 2π
Answer:
88/2π = r
Step-by-step explanation:
The circumference is 88 m
The circumference is given by
C = 2*pi*r
88 = 2 * pi *r
Divide each side by 2 pi
88 / 2pi = 2 * pi *r / 2 * pi
88 / 2 pi = r
What is the simplified form of the inequality below? S - 7 < 3
Answer:
s-7<3
in order to find the value adding 7 on both sides
s-7+7<3+7
s<10
Step-by-step explanation:
i hope this will help you :)
Answer:
s-7<3
in order to find the value adding 7 on both sides
s-7+7<3+7
s<10
Step-by-step explanation:
what is the median price of rent for the university of oregon
Answer:
$11,450
Step-by-step explanation:
thats the median price according to Google
g A 5 foot tall man walks at 10 ft/s toward a street light that is 20 ft above the ground. What is the rate of change of the length of his shadow when he is 25 ft from the street light
Answer:
[tex]-\frac{10}{3}ft/s[/tex]
Step-by-step explanation:
We are given that
Height of man=5 foot
[tex]\frac{dy}{dt}=-10ft/s[/tex]
Height of street light=20ft
We have to find the rate of change of the length of his shadow when he is 25 ft form the street light.
ABE and CDE are similar triangle because all right triangles are similar.
[tex]\frac{20}{5}=\frac{x+y}{x}[/tex]
[tex]4=\frac{x+y}{x}[/tex]
[tex]4x=x+y[/tex]
[tex]4x-x=y[/tex]
[tex]3x=y[/tex]
[tex]3\frac{dx}{dt}=\frac{dy}{dt}[/tex]
[tex]\frac{dx}{dt}=\frac{1}{3}(-10)=-\frac{10}{3}ft/s=-\frac{10}{3}ft/s[/tex]
Hence, the rate of change of the length of his shadow when he is 25 ft from the street light=[tex]-\frac{10}{3}ft/s[/tex]
researchers are interested in the average size of a certain species of mouse. They collect the length and gender of each mouse. What is the parameter likely estimated and the sample statistic
Answer:
E. The parameter is μmale - μfemale and the statistic is xmale - xfemale.
Step-by-step explanation:
The sample statistic is a piece of information about the individuals or objects that were selected from a given population. The sample is just a fraction of the total population. Since it is a herculean task studying an entire population, the sample forms a manageable size that allows us to have an insight into the entire population. The sample statistics are now the piece of information about the sample being studied such as the average, mean, median, or mode. The sample statistics have to be as specific as possible of the factors being measured. In the question, we would have to obtain the mean of both the male and female genders. This gives us an insight into the population under study.
The parameter, on the other hand, is a description of the entire population being studied. For example, we might want to determine the population mean. That is the factor we seek to measure. It is represented by the sign mu (μ).
I needed help with question #29. Thank you. Sorry the picture is a bit blurry.
Answer:
1.3 in
Step-by-step explanation:
If 0.75 is 0.55 less than the average amount, the answer must be 0.75 + 0.55 = 1.3 inches.
Answer:
1.3 in
Step-by-step explanation:
PLEASE QUICK!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Which number completes the system of linear inequalities represented by the graph? y > 2x – 2 and x + 4y > -12 -3 4 6
Answer:
-12
Step-by-step explanation:
Edge 2021
Solve for k. -21 -3 21
Answer:
k = -21
Step-by-step explanation:
9/ (2k-3) = 4/(k+1)
Using cross products
9 * (k+1) = 4(2k-3)
Distribute
9k+9 = 8k -12
Subtract 8k from each side
9k-8k +9 = 8k-8k-12
k+9 = -12
Subtract 9 from each side
k+9-9 = -12-9
k = -21
Answer:
[tex]\huge\boxed{k=21}[/tex]
Step-by-step explanation:
[tex]\dfrac{9}{2k-3}=\dfrac{4}{k+1}[/tex]
First step:
Find domain.
We know: the denominator must be different than 0.
Therefore we have:
[tex]2k-3\neq0\ \wedge\ k+1[/tex]
[tex]2k-3\neq0\qquad\text{add 3 to both sides}\\2k\neq3\qquad\text{divide both sides by 2}\\\boxed{k\neq1.5}\\\\k+1\neq0\qquad\text{subtract 1 from both sides}\\\boxed{k\neq-1}\\\\\text{Domain:}\ x\in\mathbb{R}\backslash\{-1;\ 1.5\}[/tex]
Second step:
Solve for k.
[tex]\dfrac{9}{2k-3}=\dfrac{4}{k+1}\qquad\text{cross multiply}\\\\9(k+1)=4(2k-3)\qquad\text{use the distributive property}:\ a(b+c)=ab+ac\\\\(9)(k)+(9)(1)=(4)(2k)-(4)(3)\\\\9k+9=8k-12\qquad\text{subtract 9 from both sides}\\\\9k=8k-21\qquad\text{subtract}\ 8k\ \text{from both sides}\\\\\boxed{k=21}\in\text{Domain}[/tex]
A train leaves Station A traveling west at 60 miles per hour for 7 hours, and then continues to travel west on the same track for 3 hours at 55 miles per hour, where it stops at Station B. How far is Station A from Station B?
Answer: 585 miles
Step-by-step explanation: 60 x 7 for the first 7 hours = 420 miles, then 3 x 55 for the last 3 hours = 165 add them together, 420+265 you get= 585
60 miles per hour x 7 hours = 420 miles
55 miles per hour x 3 hours = 165 miles
Total miles = 420 + 165 = 585 miles
What is the slope of this line?
Answer:
3/2
Step-by-step explanation:
We can find the slope of this line by using two points
(1,-3) and (3,0)
m = (y2-y1)/(x2-x1)
= (0- -3)/(3 -1)
= (0+3)/(3-1)
= 3/2
What is a square root
Brandon bought a book that originally sold for $18 on sale for 30% off. He paid a sales tax of 8%.
To the nearest cent, what was the total cost of the book?
Answer:
$13.61
Step-by-step explanation:
$18 * 70% = $12.60
$12.60 * 1.08 = $13.61
Find the coordinates of the point on a circle with radius 4 at an angle of 2pi/3
{Please help!!}
Answer:
The coordinates of the point on a circle with radius 4 at an angle of [tex]\frac{2\pi}{3}[/tex] radians are x = -2 and y = 3.464.
Step-by-step explanation:
This problem ask us to determine the rectangular coordinates from polar coordinates. The polar coordinates of the point in rectangular form is expressed by the following expression:
[tex](x,y) = (r\cdot \cos \theta, r\cdot \sin \theta)[/tex]
Where [tex]r[/tex] and [tex]\theta[/tex] are the radius of the circle and the angle of inclination of the point with respect to horizontal, measured in radians. If [tex]r = 4[/tex] and [tex]\theta = \frac{2\pi}{3}\,rad[/tex], the coordinates of the point are:
[tex](x,y) = \left(4\cdot \cos \frac{2\pi}{3},4\cdot \sin \frac{2\pi}{3} \right)[/tex]
[tex](x,y) = (-2, 3.464)[/tex]
The coordinates of the point on a circle with radius 4 at an angle of [tex]\frac{2\pi}{3}[/tex] radians are x = -2 and y = 3.464.
Find the inverse of the function Find the inverse of the function f(x)=2x-4
Step-by-step explanation:
firstly suppose f(X) as y and later interchange it with x and solve it to get inverse function of x.
The inverse of the given function is [tex]f^{-1}(x)=\dfrac{x+4}{2}[/tex].
Important information:
The given function is [tex]f(x)=2x-4[/tex].We need to find the inverse of the given function.
Inverse of a function:Substitute [tex]f(x)=y[/tex].
[tex]y=2x-4[/tex]
Interchange [tex]x[/tex] and [tex]y[/tex].
[tex]x=2y-4[/tex]
Isolate [tex]y[/tex].
[tex]x+4=2y[/tex]
[tex]\dfrac{x+4}{2}=y[/tex]
Substitute [tex]y=f^{-1}(x)[/tex].
[tex]\dfrac{x+4}{2}=f^{-1}(x)[/tex]
Thus, the inverse of the given function is [tex]f^{-1}(x)=\dfrac{x+4}{2}[/tex].
Find out more about 'Inverse of a function' here:
https://brainly.com/question/11926240