Answer:
[tex] A.\angle 1\: \\\\D. \angle 3[/tex]
Step-by-step explanation:
[tex] \angle 1\: \&\: \angle 3[/tex] are remote interior angles of [tex] \angle 6[/tex]
How many bits does it take to identify uniquely every person in the United States (the current population is about 300 million)?
Answer:
what's a bit
Step-by-step explanation:
The function f(x) = 2x^3 + 3x^2 is:
(a) even
(b) odd
(c) neither
(d) even and odd
Answer:
neither
Step-by-step explanation:
First we must determine if both x and -x are in the domain of the function
since it is a polynomial function our first condition is satisfied
Then we should calculate the image of -x :
2x(-x)^3 + 3*(-x)² = -2x^3+3x²
it is not equal to f(x) nor -f(x)
divide 15 root 20 by 6 root 125
Answer:
15√20/6√125
=√20/√5
=2
Step-by-step explanation:
In a recent study of 42 eighth graders, the mean number of hours per week that they watched television was 19.6. Assume the population standard deviation is 5.8 hours. Find the 98% confidence interval for the population mean.
a. (17.5, 21.7)
b. (14.1, 23.2)
c. (18.3, 20.9)
d. (19.1, 20.4)
Answer:
[tex]19.6-2.42\frac{5.8}{\sqrt{42}}=17.43[/tex]
[tex]19.6+2.42\frac{5.8}{\sqrt{42}}=21.77[/tex]
And the best option for this case would be:
a. (17.5, 21.7)
Step-by-step explanation:
Information given
[tex]\bar X= 19.6[/tex] represent the sample mean
[tex]\mu[/tex] population mean
[tex]\sigma= 5.8[/tex] represent the population deviation
n=42 represent the sample size
Confidence interval
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom, given by:
[tex]df=n-1=42-1=41[/tex]
Since the Confidence is 0.98 or 98%, the significance would be [tex]\alpha=0.02[/tex] and [tex]\alpha/2 =0.1[/tex], and the critical value would be [tex]t_{\alpha/2}=2.42[/tex]
Replacing we got:
[tex]19.6-2.42\frac{5.8}{\sqrt{42}}=17.43[/tex]
[tex]19.6+2.42\frac{5.8}{\sqrt{42}}=21.77[/tex]
And the best option for this case would be:
a. (17.5, 21.7)
Answer:
The 98% confidence interval for the population mean is between 17.5 hours and 21.7 hours.
In ABC,if sin A=4/5 and tan A=4/3, then what I s cos A?
If x=3 then what is y the equation is 2x -y=5 if you have the answer lets d a t e I m f e m a l e. T a n g ie_man 18 snap without spaces.
Answer:
y = 1Step-by-step explanation:
Given the equation, 2x- y = 5, if x = 3, to get y we will simply substitute the value of x into the expression given as shown;
[tex]2x - y = 5\\\\Substituting \ x = 3\ into \ the \ equation\\\\2(3) - y = 5\\\\6 - y = 5\\\\subtracting\ 6\ from\ both\ sides\\\\6-6-y = 5- 6\\\\-y = -1\\\\multiplying\ both\ sides\ by \ -1\\-(-y) = -(-1)\\\\y = 1[/tex]
Hence, the value of y is 1
An appliance dealer sells three different models of upright freezers having 13.5, 15.9, and 19.1 cubic feet of storage. Let X = the amount of storage space purchased by the next customer to buy a freezer. Suppose that X has pmf:
Answer:
a) E(X) = 16.09 ft³
E(X²) = 262.22 ft⁶
Var(X) = 3.27 ft⁶
b) E(22X) = 354 dollars
c) Var(22X) = 1,581 dollars
d) E(X - 0.01X²) = 13.470 ft³
Step-by-step explanation:
The complete Correct Question is presented in the attached image to this solution.
a) Compute E(X), E(X2), and V(X).
The expected value of a probability distribution is given as
E(X) = Σxᵢpᵢ
xᵢ = Each variable in the distribution
pᵢ = Probability of each distribution
Σxᵢpᵢ = (13.5×0.20) + (15.9×0.59) + (19.1×0.21)
= 2.70 + 9.381 + 4.011
= 16.092 = 16.09 ft³
E(X²) = Σxᵢ²pᵢ
Σxᵢ²pᵢ = (13.5²×0.20) + (15.9²×0.59) + (19.1²×0.21)
= 36.45 + 149.1579 + 76.6101
= 262.218 = 262.22 ft⁶
Var(X) = Σxᵢ²pᵢ - μ²
where μ = E(X) = 16.092
Σxᵢ²pᵢ = E(X²) = 262.218
Var(X) = 262.218 - 16.092²
= 3.265536 = 3.27 ft⁶
b) E(22X) = 22E(X) = 22 × 16.092 = 354.024 = 354 dollars to the nearest whole number.
c) Var(22X) = 22² × Var(X) = 22² × 3.265536 = 1,580.519424 = 1,581 dollars
d) E(X - 0.01X²) = E(X) - 0.01E(X²)
= 16.092 - (0.01×262.218)
= 16.0926- 2.62218
= 13.46982 = 13.470 ft³
Hope this helps!!!
A concession-stand manager buys bottles of water and soda to sell at a football game. The manager needs to buy a total of 4,500 drinks and have 25% more water than soda. Let w be the number of bottles of water and let s be the number of bottles of soda. Create a system of equations for w in terms of s that the manager could use to find out how many bottles of water and soda to bu
Answer: The equations are
w + s = 4500
2.25s = 4500
Step-by-step explanation:
Let w represent the number of bottles of water that the football manager bought.
Let s represent the number of bottles of soda that the football manager bought.
The manager needs to buy a total of 4,500 drinks. This means that
w + s = 4500
He also needs to have 25% more water than soda.
25% of soda = 25/100 × s = 0.25s
25% more of water than soda = s + 0.25s = 1.25s
The equation would be
1.25s + s = 4500
2.25s = 4500
The graph of y =ex is transformed as shown in the graph below. Which equation represents the transformed function?
Answer:
B. e^x+3
Step-by-step explanation:
Y=e^x
the graph is moving 3 units up
y= y+3
y=e^x+3
answer = y=e^x+3
Answer: B
Step-by-step explanation:
The time to assemble the first unit on a production line is 8 hours. The learning rate is 0.81. Approximately how long will it take for the seventh unit to be assembled?
Answer:
4.428 hours
Step-by-step explanation:
If the learning rate is 0.81, the slope of the learning curve is:
[tex]b=\frac{ln(0.81)}{ln(2)} \\b=-0.304[/tex]
The time it takes to produce the n-th unit is:
[tex]T_n=T_1*n^b[/tex]
If T1 = 8 hours, the time required to produce the seventh unit will be:
[tex]T_n=8*7^{-0.304}\\T_n=4.428\ hours[/tex]
It will take roughly 4.428 hours.
The valve was tested on 250 engines and the mean pressure was 7.3 pounds/square inch (psi). Assume the population standard deviation is 0.8. The engineer designed the valve such that it would produce a mean pressure of 7.2 psi. It is believed that the valve does not perform to the specifications. A level of significance of 0.05 will be used. Find the value of the test statistic. Round your answe
Answer:
Step-by-step explanation:
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
H0: µ = 7.2
For the alternative hypothesis,
H1: µ ≠ 7.2
This is a two tailed test.
Since the population standard deviation is given, the test statistic would be the z score determined from the normal distribution table. The formula is
z = (x - µ)/(σ/√n)
Where
x = sample mean
µ = population mean
σ = population standard deviation
n = number of samples
From the information given,
µ = 7.2
x = 7.3
σ = 0.8
n = 250
z = (7.3 - 7.2)/(0.8/√250) = 1.976
Test statistic is 1.976
At work, Brett must check and record the internal temperature of the freezer on an hourly basis. When working properly, the temperature should remain constant over time. What word describes the slope of a line showing the temperature of the freezer as a function of time in hours when the freezer is working properly?
a.positive
b.zero
b.negative
c.undefined
Answer:
B. zero
Step-by-step explanation:
If the temperature is supposed to remain constant over time (the same) when working properly, then this means that there is no increase or decrease over time.
If there were a line to represent this, then it would be a straight line with a slope of 0 because the temperature would remain the same.
How do you write 0.0026 in scientific notation? ___× 10^____
Answer:
It's written as
[tex]2.6 \times {10}^{ - 3} [/tex]
Hope this helps you
Answer:
2.6 × 10⁻³
Step-by-step explanation:
To write a number in scientific notation, move the decimal to the right or left until you reach a number that is 1 or higher.
In the decimal 0.0026, the first number that is 1 or higher is 2.
0.0026 ⇒ 2.6
When trying to figure out the exponent, here are some things to keep in mind:
- when you move the decimal to the right, the exponent is negative
- when you move the decimal to the left, the exponent is positive
You moved the decimal to the right three places. So the exponent will be -3.
The result is 2.6 × 10⁻³.
Hope this helps. :)
The function defined by w(x)=-1.17x+1260 gives the wind speed w(x)(in mph) based on the barometric pressure x (in millibars,mb). a) Approximate the wind speed for a hurricane with the barometric pressure of 900mb. b) Write a function representing the inverse of w and interpret its meaning in context. c) Approximate the barometric pressure for a hurricane with speed 90 mph.
Answer:
a) 207 mph
b) x = (1260-w)/1.17
c) 1000 mb
Step-by-step explanation:
a) Put the pressure in the equation and solve.
w(900) = -1.17(900) +1260 = 207
The wind speed for a hurricane with a pressure of 900 mb is 207 mph.
__
b) Solving for x, we have ...
w = -1.17x +1260
w -1260 = -1.17x
x = (1260 -w)/1.17 . . . . inverse function
__
c) Evaluating the inverse function for w=90 gives ...
x = (1260 -90)/1.17 = 1170/1.17 = 1000 . . . millibars
The approximate barometric pressure for a hurricane with a wind speed of 90 mph is 1000 millibars.
In her backyard, Mary is planting rows of tomatoes. To plant a row of tomatoes, mary needs 20/13 square feet. There are 40 square feet in Mary's backyard, so how many rows of tomatoes can mary plant??
Answer:
26 rows
Step-by-step explanation:
[tex]number \: of \: rows \\ = \frac{40}{ \frac{20}{13} } \\ \\ = \frac{40 \times 13}{20} \\ \\ = 2 \times 13 \\ \\ = 26 \: [/tex]
A study of the amount of time it takes a mechanic to rebuild the transmission for a 2010 Chevrolet Colorado shows that the mean is 8.4 hours and the standard deviation is 1.8 hours. If 40 mechanics are randomly selected, find the probability that their mean rebuild time is less than 8.9 hours.
Answer:
96.08% probability that their mean rebuild time is less than 8.9 hours.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 8.4, \sigma = 1.8, n = 40, s = \frac{1.8}{\sqrt{40}} = 0.2846[/tex]
Find the probability that their mean rebuild time is less than 8.9 hours.
This is the pvalue of Z when X = 2.9.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{2.9 - 2.4}{0.2846}[/tex]
[tex]Z = 1.76[/tex]
[tex]Z = 1.76[/tex] has a pvalue of 0.9608
96.08% probability that their mean rebuild time is less than 8.9 hours.
Follow the properties of the equality given for the steps to solve the following equation:
-3(x-4)+5=-x-3
(answers and steps in photo)
Answer:
Step-by-step explanation:
-3x+12+5= -x-3 -3x+17 = -x-317 = 2x-320 =2xx=10Does the function satisfy the hypotheses of the Mean Value Theorem on the given interval? f(x) = ln(x), [1, 5]
Answer:
Yes, the function satisfies the hypothesis of the Mean Value Theorem on the interval [1,5]
Step-by-step explanation:
We are given that a function
[tex]f(x)=ln(x)[/tex]
Interval [1,5]
The given function is defined on this interval.
Hypothesis of Mean Value Theorem:
(1) Function is continuous on interval [a,b]
(2)Function is defined on interval (a,b)
From the graph we can see that
The function is continuous on [1,5] and differentiable at(1,5).
Hence, the function satisfies the hypothesis of the Mean Value Theorem.
Please help asap!!!!!!!
Answer:Yes indeed!
Step-by-step explanation:
Your right!
can someone help me with this please?!?
Answer:
The answer is 60cm^2.
hope it helps..
Translate the following argument in a standard form categorial syllogims then use venn diagram or rules for syllogim to determine whether each is valid or invalid.
All of the movies except the romantic comedies were exciting. Hence, the action films were exciting,because none of them is a romantic comedies.
Answer:
couldnt tell you
Step-by-step explanation:
jkj
5c + 16.5 = 13.5 + 10c
Answer:
Hello!
________________________
5c + 16.5 = 13.5 + 10c
Exact Form: c = 3/5
Decimal Form: c = 0.6
Step-by-step explanation: Isolate the variable by dividing each side by factors that don't contain the variable.
Hope this helped you!
Answer:
3000+3d=noods
Step-by-step explanation:
Identify the parts (include: terms, coefficients, variables and
constants) of the following expression and translate it into a
verbal expression:
2(3x - 2y) + 7
Answer:
x=9
Step-by-step explanation:
3x subtracted by 2y
is 1 then 1 multiplied by 2 is 2 then 7 + 2 is 9
PEMDAS
Can anyone please explain? Need some help :)
A regular hexagon is inscribed in a circle with a diameter of 12 units. Find the area of the hexagon. Round your answer to the nearest tenth. (there's no picture included)
Answer:
93.5 square units
Step-by-step explanation:
Diameter of the Circle = 12 Units
Therefore:
Radius of the Circle = 12/2 =6 Units
Since the hexagon is regular, it consists of 6 equilateral triangles of side length 6 units.
Area of the Hexagon = 6 X Area of one equilateral triangle
Area of an equilateral triangle of side length s = [tex]\dfrac{\sqrt{3} }{4}s^2[/tex]
Side Length, s=6 Units
[tex]\text{Therefore, the area of one equilateral triangle =}\dfrac{\sqrt{3} }{4}\times 6^2\\\\=9\sqrt{3} $ square units[/tex]
Area of the Hexagon
[tex]= 6 X 9\sqrt{3} \\=93.5$ square units (to the nearest tenth)[/tex]
Which of the following theorems verifies that HIJ MLN?
Answer:
HL (try HL, I believe that's the right answer)
Answer:
HL
Step-by-step explanation:
BRO TRUST ME
The formula to convert Fahrenheit to Celsius is C - 5 (F - 32). Convert 30°C to
Fahrenheit. Round to the nearest degree.
A. 30°F
B. -1°F
C. 112°F
D. 86°F
Answer:
D. *6F
Step-by-step explanation:
C=(F-32)*5/9
30=(F-32)*5/9
F = (30*9)/5+32
F = 86
What is the greatest common factor of 36 and 44?
Answer:
GCF - 4
Step-by-step explanation:
36 - 1, 2, 3, 4, 6, 9, 12, 18, 36
44 - 1, 2, 4, 11, 44
Hope this helps! :)
pls help help help hepl
Answer:
C
Step-by-step explanation:
undefined slope means tat the denominator=0 in the equation
m=y2-y1/x2-x1
A: m=-1-1/1+1=-2
B;2-2/2+2=0
C: 3+3/-3+3 = 6/0 undefined
D: 4+4/4+4=1
The average daily rainfall for the past week in the town of Hope Cove is normally distributed, with a mean rainfall of 2.1 inches and a standard deviation of 0.2 inches. If the distribution is normal, what percent of data lies between 1.9 inches and 2.3 inches of rainfall? a) 95% b) 99.7% c) 34% d) 68%
Answer:
D
Step-by-step explanation:
We calculate the z-score for each
Mathematically;
z-score = (x-mean)/SD
z1 = (1.9-2.1)/0.2 = -1
z2 = (2.3-2.1)/0.2 = 1
So the proportion we want to calculate is;
P(-1<x<1)
We use the standard score table for this ;
P(-1<x<1) = P(x<1) -P(x<-1) = 0.68269 which is approximately 68%
Answer:
68
Step-by-step explanation:
Joan's Nursery specializes in custom-designed landscaping for residential areas. The estimated labor cost associated with a particular landscaping proposal is based on the number of planting trees, shrubs, and so on to be used for the project. For cost-estimating purposes, managers use two hours of labor time for planting of a medium-sized tree. Actual times from a sample of 10 plantintings during the past month follow (times in hours):
1.7, 1.5, 2.6, 2.2, 2.4, 2.3, 2.6, 3.0, 1.4, 2.3
With a 0.05 level of significance, test to see whether the mean tree-planting time differs from two hours.
A. State the null and alternative hypotheses.
B. Compute the sample mean.
C. Compute the sample standard deviation.
D. What is the p-value?
E. What is your conclusion?
Answer:
A) Null and alternative hypothesis
[tex]H_0: \mu=2\\\\H_a:\mu\neq 2[/tex]
B) M = 2.2 hours
C) s = 0.52 hours
D) P-value = 0.255
E) At a significance level of 0.05, there is not enough evidence to support the claim that the mean tree-planting time significantly differs from two hours.
Step-by-step explanation:
This is a hypothesis test for the population mean.
The claim is that the mean tree-planting time significantly differs from two hours.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=2\\\\H_a:\mu\neq 2[/tex]
The significance level is 0.05.
The sample has a size n=10.
The sample mean is M=2.2.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=0.52.
The estimated standard error of the mean is computed using the formula:
[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{0.52}{\sqrt{10}}=0.1644[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{2.2-2}{0.1644}=\dfrac{0.2}{0.1644}=1.216[/tex]
The degrees of freedom for this sample size are:
[tex]df=n-1=10-1=9[/tex]
This test is a two-tailed test, with 9 degrees of freedom and t=1.216, so the P-value for this test is calculated as (using a t-table):
[tex]\text{P-value}=2\cdot P(t>1.216)=0.255[/tex]
As the P-value (0.255) is bigger than the significance level (0.05), the effect is not significant.
The null hypothesis failed to be rejected.
At a significance level of 0.05, there is not enough evidence to support the claim that the mean tree-planting time significantly differs from two hours.
Sample mean and standard deviation:
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{10}(1.7+1.5+2.6+. . .+2.3)\\\\\\M=\dfrac{22}{10}\\\\\\M=2.2\\\\\\s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{9}((1.7-2.2)^2+(1.5-2.2)^2+(2.6-2.2)^2+. . . +(2.3-2.2)^2)}\\\\\\s=\sqrt{\dfrac{2.4}{9}}\\\\\\s=\sqrt{0.27}=0.52\\\\\\[/tex]