Answer:
acceleration is measured
how can you prove that acceleration is a derived unit
a = (dx / dt)²
Explanation: Unit of distance is m (metres) and unit of time is s (seconds) speed v is first derivative of distance x versus time:
v = dx / dt, unit is m/s. Acceleration is second derivative of
speed versus time a = (dx / dt)² = (dv/dt) , unit is m/s²
Answer:
Explanation:
Acceleration is derived unit because it has two fundamental units involved i.e. meter and second square.
In Case 1, a mass M hangs from a vertical spring having spring constant k and is at rest in its equilibrium position. In Case 2 the mass has been lifted a distance D vertically upward. If we define the potential energy in Case 1 to be zero, what is the potential energy of Case 2
Answer: hello your question is incomplete attached below is the complete question
answer : 1/2 KD^2 ( option A )
Explanation:
P.E ( potential energy ) = mgd
In case 1 P.E = 0 i.e. mgd = 0
Given that in case 2 the Mass M had moved through the Distance D by the compression of the spring
The potential energy of the M in case 2
= P.E of M at rest + P.E of the spring
= 0 + 1/2 KD^2
The accepted speed of sound at atmospheric pressure and 0 *C is 331.5 m/s. The speed of sound increases 0.607 m/s for every *C. Calculate the speed of sound at the temperature of your room and compare your measured value to the accepted value.
Complete Question
The accepted speed of sound at atmospheric pressure and 0 *C is 331.5 m/s. The speed of sound increases 0.607 m/s for every *C. Calculate the speed of sound at the temperature of your room(70F) and compare your measured value to the accepted value.
Answer:
[tex]V_{Tc}=344.314m/s[/tex]
Explanation:
From the question we are told that:
Speed of sound at Temperature [tex]0 \textdegree[/tex] [tex]V_0=331.5m/s[/tex]
Rate of Speed increase [tex]\triangle V_{infty}=0.607[/tex]
Generally the equation for Temperature in Celsius is mathematically given by
[tex]Tc=\frac{100}{180}(T_f-32)[/tex]
[tex]Tc=0.56*38[/tex]
[tex]Tc=21.11 textdegree C[/tex]
Therefore speed at Tc
[tex]V_{Tc}=V_0+(Tc)( V_{infty})[/tex]
[tex]V_{Tc}=331.5+(21.11)(0.607)[/tex]
[tex]V_{Tc}=344.314m/s[/tex]
If the child has a mass of 13.9 kg, calculate the magnitude of the force in newtons the mother exerts on the child under the following conditions. (b) The elevator accelerates upward at 0.898 m/s2. 148.702 N
The elevator accelerates upward at an acceleration, then the magnitude of the force is 148.84 N.
What is Force?The force is the action of push or pull which makes an object to move or stop.
Given the mass of child m =13.9 kg, acceleration a =0.898 m/s², then the force will be given by
F = m(g-a)
F = 13.9 x (9.81 - (-0.898))
F = 148.84 N
Thus, the magnitude of the force is 148.84 N.
Learn more about force.
https://brainly.com/question/13191643
#SPJ2
What is the path of an electron moving perpendicular to a uniform magnetic field?
Explanation:
this is your answer I hope it is helpful please mark me brainly
Which of these is a source of thermal energy inside earth
There's no multiple answers that you added if that's what you meant but it possibly could be Magma or radioactive decay of particles from the earths core if those two are any of the options
As a new electrical engineer for the local power company, you are assigned the project of designing a generator of sinusoidal ac voltage with a maximum voltage of 120 V. Besides plenty of wire, you have two strong magnets that can produce a constant uniform magnetic field of 1.5 T over a square area with a length of 10.2 cm on a side when the magnets are separated by a distance of 12.8 cm . The basic design should consist of a square coil turning in the uniform magnetic field. To have an acceptable coil resistance, the coil can have at most 400 loops.
What is the minimum rotation rate of the coil so it will produce the required voltage? Express your answer using two significant figures.
Answer:
The rotation rate is 15.3 rad/s.
Explanation:
maximum voltage, V = 120 V
Magnetic field, B = 1.5 T
length, L = 10.2 cm
width, W = 12.8 cm
Number of loops, N = 400
Let the rate of rotation is w.
The maximum voltage is given by
V = N B A w
120 = 400 x 1.5 x 0.102 x 0.128 x w
w = 15.3 rad/s
Find the period of the leg of a man who is 1.83 m in height with a mass of 67 kg. The moment of inertia of a cylinder rotating about a perpendicular axis at one end is ml2/3. Write your answer with one decimal place.
Answer:
2.2 s
Explanation:
Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point = mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)
So, T = 2π√(I/mgh)
T = 2π√(mL²/3 /mgL/2)
T = 2π√(2L/3g)
substituting the values of the variables into the equation, we have
T = 2π√(2L/3g)
T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))
T = 2π√(3.66 m/(29.4 m/s² ))
T = 2π√(0.1245 s² ))
T = 2π(0.353 s)
T = 2.22 s
T ≅ 2.2 s
So, the period of the man's leg is 2.2 s
One solenoid is centered inside another. The outer one has a length of 50.0 cm and contains 6750 coils, while the coaxial inner solenoid is 3.0 cm long and 0.120 cm in diameter and contains 15 coils. The current in the outer solenoid is changing at 49.2 A>s. (a) What is the mutual inductance of these solenoids
Answer: The mutual inductance of these solenoids is [tex]2.88 \times 10^{-7} H[/tex].
Explanation:
Given: Length = 50.0 cm (1 cm = 0.01 m) = 0.50 m
[tex]N_{1}[/tex] = 6750
[tex]N_{2}[/tex] = 15
Radius = [tex]\frac{0.120 cm}{2} = 0.6 cm = 6 \times 10^{-4} m[/tex]
As inner of a solenoid resembles the shape of a circle. So, its area is calculated as follows.
[tex]Area = \pi \times r^{2} = \pi \times (6 \times 10^{-4})^{2}[/tex]
Formula used to calculate mutual conductance of two solenoids is as follows.
[tex]M = \frac{\mu_{o} \times A \times N_{1} \times N_{2}}{l}[/tex]
where,
M = mutual conductance
A = area
[tex]\mu_{o}[/tex] = relative permeability = [tex]4 \pi \times 10^{-7} Tm/A[/tex]
[tex]N_{1}[/tex] = no. of coils in outer solenoid
[tex]N_{2}[/tex] = no. of coils in inner solenoid
l = length
Substitute the values into above formula as follows.
[tex]M = \frac{\mu_{o} \times A \times N_{1} \times N_{2}}{l}\\= \frac{4 \pi \times 10^{-7} Tm/A \times \pi (6 \times 10^{-4})^{2} \times 6750 \times 15}{0.5 m}\\= 2.88 \times 10^{-7} H[/tex]
Thus, we can conclude that the mutual inductance of these solenoids is [tex]2.88 \times 10^{-7} H[/tex].
With explanation pls
Answer:
[tex](x \times 1) = (400 \times 2.5) \\ x = 1000 \: newtons[/tex]
[tex]y = 0[/tex]
5N
5 N
19 N
19 N
Pls help look at the pic
Answer:
b. is the correct answer ....
You drive past a potential parking space in center city. Your new car is travelling at 85% the speed of light. If your car is 6.0 m long (which you measured the day you bought it) and you observe the space to be 3.0 m, should you try to park? Why is your friend on the sidewalk (who hasn't studied relativity) so sure that you can park? How does the situation appear to him?
Answer:
We should not try to park the car because its rest length is greater than the space available.
The car seems to be approximately equal to the friend (L = 3.16 m). Due to this reason he is sure to park.
Explanation:
We should not try to park the car because its rest length is greater than the space available.
The friend is sure about parking because the car appears short in length to him. For this, we will solve Einstein's length contraction formula from theory of relativity:
[tex]L = L_o\sqrt{1-\frac{v^2}{c^2}}[/tex]
where,
L = Relative length observed by friend = ?
L₀ = rest length = 6 m
v = relative speed = 85% of speed of light = 0.85c
Therefore,
[tex]L = (6\ m)\sqrt{1-\frac{(0.85c)^2}{c^2}}[/tex]
L = 3.16 m
Hence, the car seems to be approximately equal to the friend. Due to this reason he is sure to park.
You want to produce a magnetic field of magnitude 5.50 x 10¹ T at a distance of 0.0 6 m from a long, straight wire's center. (a) What current is required to produce this field? (b) With the current found in part (a), how strong is the magnetic field 8.00 cm from the wire's center?
Answer:
(a) I = 1650000 A
(b) 4.125 T
Explanation:
Magnetic field, B = 5.5 T
distance, r = 0.06 m
(a) Let the current is I.
The magnetic field due to a long wire is given by
[tex]B =\frac{\mu o}{4\pi }\frac{2 I}{r}\\5.5= 10^{-7}\times \frac{2\times I}{0.06}\\I =1650000 A[/tex]
(b) Let the magnetic field is B' at distance r = 0.08 m.
[tex]B =\frac{\mu o}{4\pi }\frac{2 I}{r}\\B = 10^{-7}\times \frac{2\times 1650000}{0.08}\\B'= 4.125 T[/tex]
A disk of Radius R with a uniform distibution of mass"m" rotater about an axis perpendicular to its place at the rim with angular speed "w" the moment of Inertia of the disc about an axis through the contre MR² What is the KE of the disk?
Answer:
[tex]\frac{1}{2}mR^2\omega^2[/tex]
Explanation:
The rotational kinetic energy of an object is given by [tex]KE_r=\frac{1}{2}I\omega^2[/tex], where [tex]I[/tex] is the object's moment of inertia/rotational inertia and [tex]\omega[/tex] is the object's angular speed.
What we're given:
The object's moment of inertia: [tex]I=MR^2[/tex] The object's radius, mass, and angular speed: [tex]R, m, \omega[/tex], respectivelySince no numerical value is given for any of these, it is implied the desired answer will be an equation in terms of the variables given.
Substituting [tex]I=MR^2[/tex]:
[tex]KE_r=\boxed{\frac{1}{2}mR^2\omega^2}[/tex]
Hey guys....
What is the advantage of a capacitor as it stores charge?
If we convert a circuit into a current source with parallel load it is called?
Answer:
If we convert a circuit into a current source with parallel load it is called source transformation
Which of these is NOT an effect of humor?
strengthened immune system
reduced stress levels
reduced feelings of anxiety
feelings of jealousy and envy
What is the first quantum number of a 252 electron in phosphorus,
1322s22p3s23p3?
A. n=0
B. n= 3
O
C. n = 1
O D. n = 2
Answer:
the correct answer is B
Explanation:
The quantum numbers are the constants obtained when solving the Schrodinger equation, the first quantum number or principal quantum number (n), can take values from zero to infinity.
This quantum number is placed as a coefficient in the quantum distribution.
In this case for phosphorus, the number is n = 3
the correct answer is B
Which property of matter determines the amount of inertia an object has? Matter’s ________
Answer:
Mater's Mass is the Answer
compare the time period of two pendulums of length 4m and 9m
area= length × length
area = 4m × 9m
ans 36
What do interplanetary space missions study?
the moon
stars in other galaxies
planets in the solar system
the sun
Answer:
C. Planets in the solar systemExplanation:
The one above is incorrect, and I know this is late. Even if it doesn't help you I hope it helps people in the future! YES I AM TALKING ABOUT YOU FUTURE PEOPLE!! I know this is the answer because I have taken 5.11 Quiz: Uncrewed Spacecraft in K12. There will only be the questions and correct answers below.
1. Which planetary body was Spirit designed to explore?
Mars.
2. What is the name of the most distant manmade object in space? (Credit: shathaadnan64/lak521)
Voyager 1.
3. Which group was designed to study Saturn? (Credit: Brainly User/snowballandtigoya1xa
Voyager 1, Huygens, and Cassini.
4. Why are scientists interested in exploring Mars?
Possible evidence of life.
5. What do interplanetary space missions study?
Planets in the solar system.
Have an amazing day!!
Give an example of a vertical motion with a positive velocity and a negative acceleration. Give an example of a vertical motion with a negative velocity and a negative acceleration.
Answer:
An example of positive velocity is throwing a ball upwards
An example of downward vertical velocity is when an object is dropped, for example a ball dropped from a height
Explanation:
In a vertical movement the acceleration is always downwards, therefore negative since it is created by the attraction of the Earth on the body.
An example of positive velocity is throwing a ball upwards
An example of downward vertical velocity is when an object is dropped, for example a ball dropped from a height
two 100 ohm resistors are connected inparallel and one identical resister in series. The maximum power that can be delivered to any one resistor is 25W. What is the maximum voltage that can be applied between the terminals A and B ?
A. 50V
B. 75V
C. 100V
D. 125V
SOLVED DOWN BELOW
Explanation:
In series the same current goes thru both resistors, equiv resistance is 200 ohms, then using ohms law
I = 25/200
I= .125 amps or 125 ma
__________
R= r1 * r2 / r1 +r2
R= 100 * 100 / 100 + 100
R= 10000 / 200
R= 50 ohms
One of the wavelengths of light emitted by hydrogen atoms under normal laboratory conditions is at ?0 = 656.3nm in the red portion of the electromagnetic spectrum. In the light emitted from a distant galaxy this same spectral line is observed to be Doppler-shifted to ? = 953.3nm , in the infrared portion of the spectrum.
How fast are the emitting atoms moving relative to the earth?
Answer:
1.07 × 10⁸ m/s
Explanation:
Using the relativistic Doppler shift formula which can be expressed as:
[tex]\lambda_o = \lambda_s \sqrt{\dfrac{c+v}{c-v}}[/tex]
here;
[tex]\lambda _o[/tex] = wavelength measured in relative motion with regard to the source at velocity v
[tex]\lambda_s =[/tex] observed wavelength from the source's frame.
Given that:
[tex]\lambda _o[/tex] = 656.3 nm
[tex]\lambda_s =[/tex] 953.3 nm
We will realize that [tex]\lambda _o[/tex] > [tex]\lambda_s[/tex]; thus, v < 0 for this to be true.
From the above equation, let's make (v/c) the subject of the formula: we have:
[tex]\dfrac{\lambda_o}{\lambda_s}=\sqrt{\dfrac{c+v}{c-v}}[/tex]
[tex]\Big(\dfrac{\lambda_o}{\lambda_s} \Big)^2=\dfrac{c+v}{c-v}[/tex]
[tex]\dfrac{v}{c} =\dfrac{\Big(\dfrac{\lambda_o}{\lambda_s} \Big)^2-1}{\Big(\dfrac{\lambda_o}{\lambda_s} \Big)^2+1}[/tex]
[tex]\dfrac{v}{c} =\dfrac{\Big(\dfrac{656.3}{953.3} \Big)^2-1}{\Big(\dfrac{656.3}{953.3} \Big)^2+1}[/tex]
[tex]\dfrac{v}{c} =0.357[/tex]
v = 0.357 c
To m/s:
1c = 299792458 m/s
∴
0.357c = (299 792 458 × 0.357) m/s
= 107025907.5 m/s
= 1.07 × 10⁸ m/s
How long would it take a 4,560 watt motor to raise a 166 kg piano to an apartment window
15 meters above the ground?
Answer:
Explanation:
We need the power equation here:
P = W/t where W is work and is defined as
W = F*displacement.
Force is a measure in Newtons, which is also weight. We have the mass of the piano, but we need to find the weight:
w = mg so
w = 166(9.8) so
w = 1600N, rounded to the correct number of sig dig. We use that now in the power equation:
[tex]4560=\frac{(1600)(15)}{t}[/tex] and isolating the unknown:
[tex]t=\frac{(1600)(15)}{4560}[/tex] so
t = 5.3 seconds
an object moves clockwise around a circle centered at the origin with radius m beginning at the point (0,). a. find a position function r that describes the motion of the object moves with a constant speed, completing 1 lap every s. b. find a position function r that describes the motion if it occurs with speed .
Answer:
Answer to An object moves clockwise around a circle centered at the origin with radius 6 m beginning at ... 6 M Beginning At The Point (0,6) B. Find A Position Function R That Describes The Motion If It Occurs With Speed E T A. R(t)= S The Motion Of The Object Moves With A Constant Speed, Completing 1 Lap Every 12 S.
Explanation:
PLEASE HELPPPPPPPPPP
Answer:
13.09 s
Explanation:
From the question given above, the following data were obtained:
Power (P) = 275 W
Work (W) = 3600 J
Time (t) =?
Power is defined as the rate at which work is done. Mathematically, it can be expressed:
Power (P) = Work (W) / time (t)
P = W/t
With the above formula, we can obtain the time taken for the swimmer to accomplish the work. This can be obtained as follow:
Power (P) = 275 W
Work (W) = 3600 J
Time (t) =?
P = W/t
275 = 3600/t
Cross multiply
275 × t = 3600
Divide both side by 275
t = 3600 / 275
t = 13.09 s
Thus, it will take the swimmer 13.09 s to accomplish the work.
How are the Northern Lights are formed.
Answer:
Bottom line: When charged particles from the sun strike atoms in Earth's atmosphere, they cause electrons in the atoms to move to a higher-energy state. When the electrons drop back to a lower energy state, they release a photon: light. This process creates the beautiful aurora, or northern lights.Explanation:
^-^I hope it's help uWhich statement is true?
a particle of violet light has less energy than a particle of red light
a particle of violet light has more energy than a particle of red light
a particle of violet light has exactly the same energy as a particle of red light
particles of light do not have any energy, regardless of what color the light is
a particle of violet light has exactly the same energy as a particle of red light
A string has a linear density of 8.5 x 10-3 kg/m and is under a tension of 280 N. The string is 1.8 m long, is fixed at both ends, and is vibrating in the standing wave pattern shown in the drawing. Determine the
a. speed.
b. wavelength
c. frequency of the traveling waves that make up the standing wave.
Answer:
a) [tex]v=181.497m/s[/tex]
b) [tex]\lambda=1.2[/tex]
c) [tex]F=151.248hz[/tex]
Explanation:
From the question we are told that:
Linear density [tex]\rho=8.5 x 10-3 kg/m[/tex]
Tension [tex]T= 280 N[/tex]
Length of string [tex]l= 1.8 m[/tex]
a)
Generally the equation for Speed of travelling wave is mathematically given by
[tex]v=\sqrt{\frac{T}{\rho}}[/tex]
[tex]v=\sqrt{\frac{280}{8.5*10^{-3}}[/tex]
[tex]v=181.497m/s[/tex]
b)
From the Drawing
Wavelength is given as
[tex]\lambda=\frac{2L}{3}[/tex]
[tex]\lambda=\frac{2*1.8}{3}[/tex]
[tex]\lambda=1.2[/tex]
c)
Generally the equation for Frequency of travelling wave is mathematically given by
[tex]F=\frac[v}{\lambda}[/tex]
[tex]F=\frac[181.497}{1.2}[/tex]
[tex]F=151.248hz[/tex]