what is a push or a pull on an object known as

Answers

Answer 1

Answer:

Force

Explanation:

Force is simply known as pull or push of an object


Related Questions

Three blocks are placed in contact on a horizontal frictionless surface. A constant force of magnitude F is applied to the box of mass M. There is friction between the surfaces of blocks 2M and 3M so the three blocks accelerate together to the right.
Which block has the smallest net force acting on it?
A) M
B) 2M
C) 3M
D) The net force is the same for all three blocks Submit

Answers

Answer:

A) M

Explanation:

The three blocks are set in series on a horizontal frictionless surface, whose mutual contact accelerates all system to the same value due to internal forces as response to external force exerted on the box of mass M (Newton's Third Law). Let be F the external force, and F' and F'' the internal forces between boxes of masses M and 2M, as well as between boxes of masses 2M and 3M. The equations of equilibrium of each box are described below:

Box with mass M

[tex]\Sigma F = F - F' = M\cdot a[/tex]

Box with mass 2M

[tex]\Sigma F = F' - F'' = 2\cdot M \cdot a[/tex]

Box with mass 3M

[tex]\Sigma F = F'' = 3\cdot M \cdot a[/tex]

On the third equation, acceleration can be modelled in terms of F'':

[tex]a = \frac{F''}{3\cdot M}[/tex]

An expression for F' can be deducted from the second equation by replacing F'' and clearing the respective variable.

[tex]F' = 2\cdot M \cdot a + F''[/tex]

[tex]F' = 2\cdot M \cdot \left(\frac{F''}{3\cdot M} \right) + F''[/tex]

[tex]F' = \frac{5}{3}\cdot F''[/tex]

Finally, F'' can be calculated in terms of the external force by replacing F' on the first equation:

[tex]F - \frac{5}{3}\cdot F'' = M \cdot \left(\frac{F''}{3\cdot M} \right)[/tex]

[tex]F = \frac{5}{3} \cdot F'' + \frac{1}{3}\cdot F''[/tex]

[tex]F = 2\cdot F''[/tex]

[tex]F'' = \frac{1}{2}\cdot F[/tex]

Afterwards, F' as function of the external force can be obtained by direct substitution:

[tex]F' = \frac{5}{6}\cdot F[/tex]

The net forces of each block are now calculated:

Box with mass M

[tex]M\cdot a = F - \frac{5}{6}\cdot F[/tex]

[tex]M\cdot a = \frac{1}{6}\cdot F[/tex]

Box with mass 2M

[tex]2\cdot M\cdot a = \frac{5}{6}\cdot F - \frac{1}{2}\cdot F[/tex]

[tex]2\cdot M \cdot a = \frac{1}{3}\cdot F[/tex]

Box with mass 3M

[tex]3\cdot M \cdot a = \frac{1}{2}\cdot F[/tex]

As a conclusion, the box with mass M experiments the smallest net force acting on it, which corresponds with answer A.

The index of refraction for a certain type of glass is 1.645 for blue light and 1.609 for red light. A beam of white light (one that contains all colors) enters a plate of glass from the air, nair≈1, at an incidence angle of 38.55∘. What is the absolute value of ????, the angle in the glass between blue and red parts of the refracted beams?

Answers

Answer:

blue  θ₂ = 22.26º

red    θ₂ = 22.79º

Explanation:

When a light beam passes from one material medium to another, it undergoes a deviation from the path, described by the law of refraction

         n₁ sin θ₁ = n₂ sin θ₂

where n₁ and n₂ are the incident and transmitted media refractive indices and θ are the angles in the media

let's apply this equation to each wavelength

λ = blue

     

in this case n₁ = 1, n₂ = 1,645

       sin θ₂ = n₁/ n₂ sin₂ θ₁

       

let's calculate

       sin θ₂ = 1 / 1,645 sint 38.55

       sin θ₂ = 0.37884

       θ₂ = sin⁻¹ 0.37884

       θ₂ = 22.26º

λ = red

n₂ = 1,609

         sin θ₂ = 1 / 1,609 sin 38.55

         sin θ₂ = 0.3873

         θ₂ = sim⁻¹ 0.3873

         θ₂ = 22.79º

the refracted rays are between these two angles

Identify the following as combination, decomposition, replacement, or ion exchange reactions NaBr(aq) + Cl2(g) → 2 NaCl(aq) + Br2(g)

Answers

Answer:

Replacement

Explanation:

in replacements, like ions replace like. in this equation, we can see that Bromine replaced Chlorine. so, the answer is replacement.

Answer:

Single-replacement or replacement

Explanation:

The single-replacement reaction is a + bc -> ac + b, compare them.

NaBr + Cl2 -> 2 NACl + Br.

AB + C -> AC + B

As you can see they are the same ( even though the b is with the a and not with the c. The formula can be switched around a little with the order of b and c ) ((also like ions replace like ions in replacements, which they are in this))

A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck always remains on the ice and slides 115 m before coming to rest, determine the coefficient of kinetic friction between the puck and ice.

Answers

Answer:

μ_k = 0.1773

Explanation:

We are given;

Initial velocity;u = 20 m/s

Final velocity;v = 0 m/s (since it comes to rest)

Distance before coming to rest;s = 115 m

Let's find the acceleration using Newton's second law of motion;

v² = u² + 2as

Making a the subject, we have;

a = (v² - u²)/2s

Plugging relevant values;

a = (0² - 20²)/(2 × 115)

a = -400/230

a = -1.739 m/s²

From the question, the only force acting on the puck in the x direction is the force of friction. Since friction always opposes motion, we see that:

F_k = −ma - - - (1)

We also know that F_k is defined by;

F_k = μ_k•N

Where;

μ_k is coefficient of kinetic friction

N is normal force which is (mg)

Since gravity acts in the negative direction, the normal force will be positive.

Thus;

F_k = μ_k•mg - - - (2)

where g is acceleration due to gravity.

Thus,equating equation 1 and 2,we have;

−ma = μ_k•mg

m will cancel out to give;

-a = μ_k•g

μ_k = -a/g

g has a constant value of 9.81 m/s², so;

μ_k = - (-1.739/9.81)

μ_k = 0.1773

The coefficient of kinetic friction between the hockey puck and ice is equal to 0.178

Given the following data:

Initial speed = 20 m/sFinal velocity = 0 m/s (since it came to rest)Distance = 115 m

Scientific data:

Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]

To determine the coefficient of kinetic friction between the hockey puck and ice:

First of all, we would calculate the acceleration of the hockey puck by using the third equation of motion.

[tex]V^2 = U^2 + 2aS\\\\0^2 =20^2 + 2a(115)\\\\-400=230a\\\\a=\frac{-400}{230}[/tex]

Acceleration, a = -1.74 [tex]m/s^2[/tex]

Note: The negative signs indicates that the hockey puck is slowing down or decelerating.

From Newton's Second Law of Motion, we have:

[tex]\sum F_x = F_k + F_n =0\\\\F_k =- F_n\\\\\mu mg =-ma\\\\\mu = \frac{-a}{g}\\\\\mu = \frac{-(-1.74)}{9.8}\\\\\mu = \frac{1.74}{9.8}[/tex]

Coefficient of kinetic friction = 0.178

Read more: https://brainly.com/question/13821217

If you slide down a rope, it's possible to create enough thermal energy to burn your hands or your legs where they grip the rope. Suppose a 30 kg child slides down a rope at a playground, descending 2.5 m at a constant speed.
How much thermal energy is created as she slides down the rope?

Answers

Answer:

    Q = 735 J

Explanation:

In this exercise we must assume that all the mechanical energy of the system transforms into cemite energy.

Initial energy

        Em₀ = U = m g h

final energy

        [tex]Em_{f}[/tex] = Q

        Em₀ = Em_{f}

        m g h = Q

let's calculate

        Q = 30  9.8  2.5

        Q = 735 J

g A mass of 2 kg is attached to a spring whose constant is 7 N/m. The mass is initially released from a point 4 m above the equilibrium position with a downward velocity of 10 m/s, and the subsequent motion takes place in a medium that imparts a damping force numerically equal to 10 times the instantaneous velocity. What is the differential equation for the mass-spring system.

Answers

Answer:

mass 20 times of an amazing and all its motion

An airplane flies between two points on the ground that are 500 km apart. The destination is directly north of the origination of the flight. The plane flies with an air speed of 120 m/s. If a constant wind blows at 10.0 m/s due west during the flight, what direction must the plane fly relative to north to arrive at the destination? Consider: east to the right, west to the left, north upwards and south downwards

Answers

Answer:

   θ = 4.78º

with respect to the vertical or 4.78 to the east - north

Explanation:

This is a velocity compound exercise since it is a vector quantity.

The plane takes a direction, the air blows to the west and the result must be to the north, let's use the Pythagorean theorem to find the speed

                  v_fly² = v_nort² + v_air²

                  v_nort² = v_fly² + - v_air²

Let's use trigonometry to find the direction of the plane

        sin θ = v_air / v_fly

        θ = sin⁻¹ (v_air / v_fly)

         

let's calculate

        θ = sin⁻¹ (10/120)

         θ = 4.78º

with respect to the vertical or 4.78 to the north-east

A pilot in a small plane encounters shifting winds. He flies 26.0 km northeast, then 45.0 km due north. From this point, he flies an additional distance in an unknown direction, only to find himself at a small airstrip that his map shows to be 70.0 km directly north of his starting point.

a. What was the length of the third leg of his trip?b. What was the direction of the third leg of his trip?

Answers

Answer:

a) v₃ = 19.54 km, b)  70.2º north-west

Explanation:

This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition

vector 1 moves 26 km northeast

let's use trigonometry to find its components

         cos 45 = x₁ / V₁

         sin 45 = y₁ / V₁

         x₁ = v₁ cos 45

         y₁ = v₁ sin 45

         x₁ = 26 cos 45

         y₁ = 26 sin 45

         x₁ = 18.38 km

         y₁ = 18.38 km

Vector 2 moves 45 km north

        y₂ = 45 km

Unknown 3 vector

          x3 =?

          y3 =?

Vector Resulting 70 km north of the starting point

           R_y = 70 km

we make the sum on each axis

X axis

      Rₓ = x₁ + x₃

       x₃ = Rₓ -x₁

       x₃ = 0 - 18.38

       x₃ = -18.38 km

Y Axis

      R_y = y₁ + y₂ + y₃

       y₃ = R_y - y₁ -y₂

       y₃ = 70 -18.38 - 45

       y₃ = 6.62 km

the vector of the third leg of the journey is

         v₃ = (-18.38 i ^ +6.62 j^ ) km

let's use the Pythagorean theorem to find the length

         v₃ = √ (18.38² + 6.62²)

         v₃ = 19.54 km

to find the angle let's use trigonometry

           tan θ = y₃ / x₃

           θ = tan⁻¹ (y₃ / x₃)

           θ = tan⁻¹ (6.62 / (- 18.38))

           θ = -19.8º

with respect to the x axis, if we measure this angle from the positive side of the x axis it is

          θ’= 180 -19.8

          θ’= 160.19º

I mean the address is

          θ’’ = 90-19.8

          θ = 70.2º

70.2º north-west

In cricket how bowler and batsman use acceleration?

Answers

Yes actually the faster your arm moves the more momentum you’ll have

Is it possible to do work on an object without changing the kinetic energy of the object? Now Why?
a) Yes, it is possible by raising the object to a greater height without acceleration.
b) Yes, it is possible by raising the object to a greater height with acceleration
c) Yes, it is possible by moving the object without acceleration at the same height.
d) Yes, it is possible by moving the object with acceleration at the same height.

Answers

Answer:

(a) Yes, it is possible by raising the object to a greater height without acceleration.

Explanation:

The work-energy theorem states that work done on an object is equal to the change in kinetic energy, and change in  kinetic energy requires a change in velocity.

If kinetic energy will not change, then velocity will not change, this means that there will be constant velocity and an object with a constant velocity is not accelerating.

If the object is not accelerating (without acceleration) and it remains at the same height (change in height = 0, and mgh = 0).

Thus, for work to be done on the object, without changing the kinetic energy of the object, the object must be raised  to a greater height without acceleration.

Correct option is " (a) Yes, it is possible by raising the object to a greater height without acceleration".

Assume you have a rocket in Earth orbit and want to go to Mars. The required change in velocity is ΔV≈9.6km/s . There are two options for the propulsion system --- chemical and electric --- each with a different specific impulse. Recall that the relationship between specific impulse and exhaust velocity is: Vex=g0Isp Using the Ideal Rocket Equation and setting g0=9.81m/s2 , calculate the propellant fraction required to achieve the necessary ΔV for each of propulsion system. Part 1: Cryogenic Chemical Propulsion First, consider a cryogenic chemical propulsion system with Isp≈450s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%): incorrect Part 2: Electric Propulsion Next, consider an electric propulsion system with Isp≈2000s . Enter the required propellant fraction as a proportion with at least 2 decimal places (i.e., enter 0.25 to represent 25%):

Answers

Answer: Part 1: Propellant Fraction (MR) = 8.76

Part 2: Propellant Fraction (MR) = 1.63

Explanation: The Ideal Rocket Equation is given by:

Δv = [tex]v_{ex}.ln(\frac{m_{f}}{m_{e}} )[/tex]

Where:

[tex]v_{ex}[/tex] is relationship between exhaust velocity and specific impulse

[tex]\frac{m_{f}}{m_{e}}[/tex] is the porpellant fraction, also written as MR.

The relationship [tex]v_{ex}[/tex] is: [tex]v_{ex} = g_{0}.Isp[/tex]

To determine the fraction:

Δv = [tex]v_{ex}.ln(\frac{m_{f}}{m_{e}} )[/tex]

[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]

Knowing that change in velocity is Δv = 9.6km/s and [tex]g_{0}[/tex] = 9.81m/s²

Note: Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.

Part 1: Isp = 450s

[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]

ln(MR) = [tex]\frac{9.6.10^{3}}{9.81.450}[/tex]

ln (MR) = 2.17

MR = [tex]e^{2.17}[/tex]

MR = 8.76

Part 2: Isp = 2000s

[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]

ln (MR) = [tex]\frac{9.6.10^{3}}{9.81.2.10^{3}}[/tex]

ln (MR) = 0.49

MR = [tex]e^{0.49}[/tex]

MR = 1.63

A high-jumper clears the bar and has a downward velocity of - 5.00 m/s just before landing on an air mattress and bouncing up at 1.0 m/s. The mass of the high-jumper is 60.0 kg. What is the magnitude and direction of the impulse that the air mattress exerts on her

Answers

-- As she lands on the air mattress, her momentum is (m v)

Momentum = (60 kg) (5 m/s down) = 300 kg-m/s down

-- As she leaves it after the bounce,

Momentum = (60 kg) (1 m/s up) = 60 kg-m/s up

-- The impulse (change in momentum) is

Change = (60 kg-m/s up) - (300 kg-m/s down)

Magnitude of the change = 360 km-m/s

The direction of the change is up /\ .

The direction of a body or object's movement is defined by its velocity.In its basic form, speed is a scalar quantity.In essence, velocity is a vector quantity.It is the speed at which distance changes.It is the displacement change rate.

Solve the problem ?

Velocity is the pace and direction of an object's movement, whereas speed is the time rate at which an object is travelling along a path.In other words, velocity is a vector, whereas speed is a scalar value. We discuss the conceptive impulse in this puzzle.A high jumper weighing 60.0 kg sprints on the matrix at minus 6 meters per second in the downhill direction before falling to the mattress.her admirer.Speed drops to 0 meters/second.We must determine the impulse's size and presumed direction, which is upward and positive.The change in momentum is then equal to the impulse.The impulse therefore equals m times.the end velocity less the starting velocity.60.0kg times 0 minus minus 6 meters per second is the impulse, therefore.The impulse is 360 kilogram meters per second, or 360 newtons, to put it another way.The second is upward, and the direction.

      To learn more about magnitude refer

       https://brainly.com/question/24468862

      #SPJ2

Which one of the following is closely related to the law of conservation of
energy, which states that energy can be transformed in different ways but can
never be created or destroyed?
O A. Charles's Law
B. Boyle's Law
C. Second law of thermodynamics
O D. First law of thermodynamics

Answers

Answer:

D

Explanation:

Answer:

It is D

Explanation: No cap

Suppose I have an infinite plane of charge surrounded by air. What is the maximum charge density that can be placed on the surface of the plane before dielectric breakdown of the surrounding air occurs

Answers

Answer:

[tex]53.1\mu C/m^2[/tex]

Explanation:

We are given that

Electric field,E=[tex]3\times 10^6V/m[/tex]

We have to find the value of maximum charge density that can be placed on the surface of the plane before dielectric breakdown of the surrounding air occurs.

We know that

[tex]E=\frac{\sigma}{2\epsilon_0}[/tex]

Where [tex]\epsilon_0=8.85\times 10^{-12}[/tex]

Using the formula

[tex]3\times 10^6=\frac{\sigma}{2\times 8.85\times 10^{-12}}[/tex]

[tex]\sigma=3\times 10^6\times 2\times 8.85\times 10^{-12}[/tex]

[tex]\sigma=5.31\times 10^{-5}C/m^2[/tex]

[tex]\sigma=53.1\times 10^{-6}C/m^2=53.1\mu C/m^2[/tex]

[tex]1\mu C=10^{-6} C[/tex]

when their center-to-center separation is 50 cm. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.2525 N. What were the initial charges on the spheres

Answers

Answer:

q1 = 7.6uC , -2.3 uC

q2 = 7.6uC , -2.3 uC

( q1 , q2 ) = ( 7.6 uC , -2.3 uC ) OR ( -2.3 uC , 7.6 uC )

Explanation:

Solution:-

- We have two stationary identical conducting spheres with initial charges ( q1 and q2 ). Such that the force of attraction between them was F = 0.6286 N.

- To model the electrostatic force ( F ) between two stationary charged objects we can apply the Coulomb's Law, which states:

                              [tex]F = k\frac{|q_1|.|q_2|}{r^2}[/tex]

Where,

                     k: The coulomb's constant = 8.99*10^9

- Coulomb's law assume the objects as point charges with separation or ( r ) from center to center.  

- We can apply the assumption and approximate the spheres as point charges under the basis that charge is uniformly distributed over and inside the sphere.

- Therefore, the force of attraction between the spheres would be:

                             [tex]\frac{F}{k}*r^2 =| q_1|.|q_2| \\\\\frac{0.6286}{8.99*10^9}*(0.5)^2 = | q_1|.|q_2| \\\\ | q_1|.|q_2| = 1.74805 * 10^-^1^1[/tex] ... Eq 1

- Once, we connect the two spheres with a conducting wire the charges redistribute themselves until the charges on both sphere are equal ( q' ). This is the point when the re-distribution is complete ( current stops in the wire).

- We will apply the principle of conservation of charges. As charge is neither destroyed nor created. Therefore,

                             [tex]q' + q' = q_1 + q_2\\\\q' = \frac{q_1 + q_2}{2}[/tex]

- Once the conducting wire is connected. The spheres at the same distance of ( r = 0.5m) repel one another. We will again apply the Coulombs Law as follows for the force of repulsion (F = 0.2525 N ) as follows:

                          [tex]\frac{F}{k}*r^2 = (\frac{q_1 + q_2}{2})^2\\\\\sqrt{\frac{0.2525}{8.99*10^9}*0.5^2} = \frac{q_1 + q_2}{2}\\\\2.64985*10^-^6 = \frac{q_1 + q_2}{2}\\\\q_1 + q_2 = 5.29969*10^-^6[/tex]  .. Eq2

- We have two equations with two unknowns. We can solve them simultaneously to solve for initial charges ( q1 and q2 ) as follows:

                         [tex]-\frac{1.74805*10^-^1^1}{q_2} + q_2 = 5.29969*10^-^6 \\\\q^2_2 - (5.29969*10^-^6)q_2 - 1.74805*10^-^1^1 = 0\\\\q_2 = 0.0000075998, -0.000002300123[/tex]

                         

                          [tex]q_1 = -\frac{1.74805*10^-^1^1}{-0.0000075998} = -2.3001uC\\\\q_1 = \frac{1.74805*10^-^1^1}{0.000002300123} = 7.59982uC\\[/tex]

 

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the

Answers

Complete question:

The exit nozzle in a jet engine receives air at 1200 K, 150 kPa with negligible kinetic energy. The exit pressure is 80 kPa, and the process is reversible and adiabatic. Use constant specific heat at 300 K to find the exit velocity.

Answer:

The exit velocity is 629.41 m/s

Explanation:

Given;

initial temperature, T₁ = 1200K

initial pressure, P₁ = 150 kPa

final pressure, P₂ = 80 kPa

specific heat at 300 K, Cp = 1004 J/kgK

k = 1.4

Calculate final temperature;

[tex]T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}[/tex]

k = 1.4

[tex]T_2 = T_1(\frac{P_2}{P_1})^{\frac{k-1 }{k}}\\\\T_2 = 1200(\frac{80}{150})^{\frac{1.4-1 }{1.4}}\\\\T_2 = 1002.714K[/tex]

Work done is given as;

[tex]W = \frac{1}{2} *m*(v_i^2 - v_e^2)[/tex]

inlet velocity is negligible;

[tex]v_e = \sqrt{\frac{2W}{m} } = \sqrt{2*C_p(T_1-T_2)} \\\\v_e = \sqrt{2*1004(1200-1002.714)}\\\\v_e = \sqrt{396150.288} \\\\v_e = 629.41 \ m/s[/tex]

Therefore, the exit velocity is 629.41 m/s

"A particle of dust lands 41.0 mm from the center of a compact disc (CD) that is 120 mm in diameter. The CD speeds up from rest, and the dust particle is ejected when the CD is rotating at 84.0 revolutions per minute. What is the coefficient of static friction between the particle and the surface of the CD?"

Answers

Answer:

The coefficient of static friction is  [tex]\mu = 0.474[/tex]

Explanation:

From the question we are told that

   The position of the particle is  [tex]x = 41.00 \ mm = 0.041 \ m[/tex]

     The diameter of the CD is   [tex]d =120 \ mm = 0.12 \ m[/tex]

      The radius of the CD is evaluated as  [tex]r = \frac{d}{2} = \frac{0.12}{2} = 0.06[/tex]

     The angular velocity of the CD  when particle was ejected [tex]w = 84.0 rpm = 84 .0 * \frac{2 * \pi}{60} = 8.7976 \ rad/s[/tex]

At the instant just before the particle is ejected from the CD

    The frictional force of the particle  =  centrifugal force on the particle

So  

         [tex]\mu * m * g = mw^2 r[/tex]

=>       [tex]\mu * g = w^2 r[/tex]

=>       [tex]\mu = \frac{8.7976^2 * 0.06}{ 9.8}[/tex]

=>      [tex]\mu = 0.474[/tex]

Consider two identical small glass balls dropped into two identical containers, one filled with water and the other with oil. Which ball will reach the bottom of the container first? Why?

Answers

Answer:

The ball dropped in water will reach the bottom of the container first because of the much lower viscosity of water relative to oil.

Explanation:

Oil is more less dense than water. Thus, the molecules that make up the oil are larger than those that that make up water, so they cannot pack as tightly together as the water molecules will do. Hence, they will take up more space per unit area and are we can say they are less dense.

So, we can conclude that the ball filled with water will reach the bottom of the container first this is because oil is less dense than water and so the glass ball filled with oil will be a lot less denser than the one which is filled with water.

A ball is thrown straight upward and falls back to Earth. Suppose a y-coordinate axis points upward, and the release point is the origin. Instantaneously at the top its flight, which of these quantities are zero

a. Displacment
b. Speed
c. Velocity
d. Accerlation

Answers

Explanation:

A ball is thrown straight upward and falls back to Earth. It means that it is coming to the initial position. Displacement is given by the difference of final position and initial position. The displacement of the ball will be 0. As a result velocity will be 0.

Acceleration is equal to the rate of change of velocity. So, its acceleration is also equal to 0.

Hence, displacement, velocity and acceleration are zero.

A 2.4-kg ball falling vertically hits the floor with a speed of 2.5 m/s and rebounds with a speed of 1.5 m/s. What is the magnitude of the impulse exerted on the ball by the floor

Answers

Answer:

9.6 Ns

Explanation:

Note: From newton's second law of motion,

Impulse = change in momentum

I = m(v-u).................. Equation 1

Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.

Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)

Substitute into equation 1

I = 2.4[2.5-(-1.5)]

I = 2.4(2.5+1.5)

I = 2.4(4)

I = 9.6 Ns

The magnitude of impulse will be "9.6 Ns".

According to the question,

Mass,

m = 2.4 kg

Final velocity,

v = 2.5 m/s

Initial velocity,

u = -1.5 m/s

By using Newton's 2nd law of motion, we get

Impulse, [tex]I = m(v-u)[/tex]

By substituting the values, we get

                     [tex]= 2.4[2.5-(1.5)][/tex]

                     [tex]= 2.4(2.5+1.5)[/tex]

                     [tex]= 2.4\times 4[/tex]

                     [tex]= 9.6 \ Ns[/tex]

Thus the above answer is right.    

Learn more about Impulse here:

https://brainly.com/question/15495020

How have physicists played a role in history?
A. Physics has changed the course of the world.
B. History books are written by physicists.
C. Physicists have controlled most governments.
D. Most decisions about wars are made by physicists.

Answers

A. Physics has changed the course of the world.

Answer:

A. Physics has changed the course of the world.

Explanation:

A rock falls from a vertical cliff that is 4.0 m tall and experiences no significant air resistance as it falls. At what speed will its gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy

Answers

Answer:

About 6.26m/s

Explanation:

[tex]mgh=\dfrac{1}{2}mv^2[/tex]

Divide both sides by mass:

[tex]gh=\dfrac{1}{2}v^2[/tex]

Since the point of equality of kinetic and potential energy will be halfway down the cliff, height will be 4/2=2 meters.

[tex](9.8)(2)=\dfrac{1}{2}v^2 \\\\v^2=39.4 \\\\v\approx 6.26m/s[/tex]

Hope this helps!

The gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy for speed of rock of 8.85 m/s.

Given data:

The height of vertical cliff is, h = 4.0 m.

Since, we are asked for speed by giving the condition for gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy. Then we can apply the conservation of energy as,

Kinetic energy = Gravitational potential energy

[tex]\dfrac{1}{2}mv^{2}=mgh[/tex]

Here,

m is the mass of rock.

v is the speed of rock.

g is the gravitational acceleration.

Solving as,

[tex]v=\sqrt{2gh}\\\\v=\sqrt{2 \times 9.8 \times 4.0}\\\\v =8.85 \;\rm m/s[/tex]

Thus, we can conclude that the gravitational potential energy (relative to the base of the cliff) be equal to its kinetic energy for speed of rock of 8.85 m/s.

Learn more about the conservation of energy here:

https://brainly.com/question/15707891

A depiction of a famous scientific experiment is given. Consider how the beam changes when the magnet is off compared to when the magnet is on. A bell-shaped evacuated glass tube with a narrow end and a wide end is connected to a battery at the narrow end. In the center of the tube there is a negatively charged plate above the tube, a positively charged plate below the tube, and a magnet with the field turned off. A beam originating at the narrow end of the tube travels toward the wide end of the tube. With the magnetic field turned off, the beam path bends toward the positively charged plate and ends at the lower half of the wide end of the tube. A bell-shaped evacuated glass tube with a narrow end and a wide end is connected to a battery at the narrow end. In the center of the tube there is a negatively charged plate above the tube, a positively charged plate below the tube, and a magnet with the field turned n. A beam originating at the narrow end of the tube travels toward the wide end of the tube. With the magnetic field turned on, the beam path travels in a straight path to the center of the wide end of the tube. What type of beam was used in this experiment?

Answers

Answer:

The beam used is a negatively charged electron beam with a velocity of

v = E / B

Explanation:

After reading this long statement we can extract the data to work on the problem.

* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.

* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

           [tex]F_{e} = F_{m}[/tex]

           q E = qv B

           v = E / B

this configuration is called speed selector

They ask us what type of beam was used.

The beam used is a negatively charged electron beam with a velocity of v = E / B

A 300 g bird flying along at 6.2 m/s sees a 10 g insect heading straight toward it with a speed of 35 m/s (as measured by an observer on the ground, not by the bird). The bird opens its mouth wide and enjoys a nice lunch.

Required:
What is the bird's speed immediately after swallowing?

Answers

Answer:

The velocity of the bird is [tex]v_f = 4.87 \ m/s[/tex]

Explanation:

From the question we are told that  

    The mass of the bird  is [tex]m_1 = 300 \ g = 0.3 \ kg[/tex]

    The initial speed of the bird is  [tex]u_1 = 6.2 \ m/s[/tex]

     The mass of the insect is [tex]m_2 = 10 \ g = 0.01 \ kg[/tex]

       The speed of the insect is [tex]u_ 2 =-35 \ m/s[/tex]

The negative sign is because it is moving in opposite direction  to the bird

According to the principle of linear momentum conservation

       [tex]m_1 u_1 + m_2 u_2 = (m_1 + m_2 )v_f[/tex]

substituting values

        [tex](0.3 * 6.2 ) + (0.01 * (-35)) = (0.3 + 0.01 )v_f[/tex]

    [tex]1.51 = 0.31 v_f[/tex]

     [tex]v_f = 4.87 \ m/s[/tex]

The Final velocity of Bird =  4.87 m/s

Mass of the bird = 300 g = 0.3 kg

Velocity of bird = 6.2 m/s

Momentum of Bird = Mass of bird [tex]\times[/tex] Velocity of Bird = 0.3 [tex]\times[/tex] 6.2 =  1.86 kgm/s

Mass of the insect = 10 g = 0.01 kg

Velocity of insect =   - 35 m/s

Momentum of the Insect = Mass of Insect [tex]\times[/tex] Velocity of Insect = - 0.35  kgm/s

According to the law of conservation of momentum We can write that

In the absence of external forces on the system , the momentum of system remains conserved in that particular direction.

The bird opens the mouth and enjoys the free lunch  hence

Let the final velocity of bird is [tex]v_f[/tex]

Initial momentum of the system = Final momentum of the system

1.86 -0.35 = [tex]v_f[/tex] ( 0.01 + 0.3 )

1.51 =  [tex]v_f[/tex] 0.31

[tex]v_f[/tex] = 4.87 m/s

The Final velocity of Bird =  4.87 m/s

For more information please refer to the link below

https://brainly.com/question/18066930

Which circuits are parallel circuits?

Answers

Answer:

The bottom two lines.

Explanation:

They need their own line of voltage quantity. A parallel circuit has the definition of 'two or more paths for current to flow through.' The voltage does stay the same in each line.

A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 8.1 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled x= 0 m. The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring by 0.050 m, and is then thrown to the left. In order for the block to knock over the bottle,it must be thrown with a speed exceeding v0. Ignoring the width of the block, find v0.

Answers

Answer:

v₀ = 0.5058 m/s

Explanation:

From the question, for the block to hit the bottle, the elastic potential energy of the spring at the bottle (x = 0.08 m) should be equal to the sum of the elastic potential energy of the spring at x = 0.05 m and the kinetic energy of block at x = 0.05 m

Now, the potential energy of the block at x = 0.08 m is ½kx²

where;

k is the spring constant given by; k = ω²m

ω is the angular velocity of the oscillation

m is the mass of the block.

Thus, potential energy of the spring at the bottle(x = 0.08 m) is;

U = ½ω²m(0.08m)²

Also, potential energy of the spring at the bottle(x = 0.05 m) is;

U = ½ω²m(0.05m)²

and the kinetic energy of the block at x = 0.05 m is;

K = ½mv₀²

Thus;

½ω²m(0.08)² = ½ω²m(0.05)² + ½mv₀²

Inspecting this, ½m will cancel out to give;

ω²(0.08)² = ω²(0.05)² + v₀²

Making v₀ the subject, we have;

v₀ = ω√((0.08)² - (0.05)²)

So,

v₀ = 8.1√((0.08)² - (0.05)²)

v₀ = 0.5058 m/s

50 μC of negative charge is placed on an insulating pith ball and lowered into a insulating plastic container, suspended from an insulating thread attached to the lid of the box. After the box is entirely sealed, the electric flux through the sides of the box is:_______

a. 5. 65 Times 10^6 N m^2/C.
b. 5. 65 Times 10^5 N m^5/C.
c. -5. 65 Times 10^6 N m^2/C.
d. 50 x 10^-6 N m^2/C.
e. -5.65 Times 10^5 N m^2/C.
f. Can't tell unless the dimensions of the box are given.

Answers

Answer:

c. [tex]-5. 65 \times 10^6 N m^2/C.[/tex]

Explanation:

The calculation of the electric flux through the sides of the box is shown below:-

Negative charge in insulating pitch ball, [tex]q = 50\times 10^{-6}[/tex]

[tex]Permittivity = 8.854 \times 10^{-12} F/m[/tex]

Now, we are placing the values into the formula which is here below:-

[tex]Flux = \frac{Negative\ charge}{Permittivity}[/tex]

[tex]= \frac{50\times 10^{-6}}{8.854 \times 10^{-12}}[/tex]

= [tex]-5. 65 \times 10^6 N m^2/C.[/tex]

Therefore we divided the negative charge by permittivity to reach out the electric flux through the sides of the box.

A particle leaves the origin with a speed of 3 106 m/s at 38 degrees to the positive x axis. It moves in a uniform electric field directed along positive y axis. Find Ey such that the particle will cross the x axis at x

Answers

Answer:

If the particle is an electron [tex]E_y = 3.311 * 10^3 N/C[/tex]

If the particle is a proton, [tex]E_y = 6.08 * 10^6 N/C[/tex]

Explanation:

Initial speed at the origin, [tex]u = 3 * 10^6 m/s[/tex]

[tex]\theta = 38^0[/tex] to +ve x-axis

The particle crosses the x-axis at , x = 1.5 cm = 0.015 m

The particle can either be an electron or a proton:

Mass of an electron, [tex]m_e = 9.1 * 10^{-31} kg[/tex]

Mass of a proton, [tex]m_p = 1.67 * 10^{-27} kg[/tex]

The electric field intensity along the positive y axis [tex]E_y[/tex], can be given by the formula:

[tex]E_y = \frac{2 m u^2 sin \theta cos \theta}{qx} \\[/tex]

If the particle is an electron:

[tex]E_y = \frac{2 m_e u^2 sin \theta cos \theta}{qx} \\[/tex]

[tex]E_y = \frac{2 * 9.1 * 10^{-31} * (3*10^6)^2 *(sin38)( cos38)}{1.6*10^{-19} * 0.015} \\[/tex]

[tex]E_y = 3311.13 N/C\\E_y = 3.311 * 10^3 N/C[/tex]

If the particle is a proton:

[tex]E_y = \frac{2 m_p u^2 sin \theta cos \theta}{qx} \\[/tex]

[tex]E_y = \frac{2 * 1.67 * 10^{-27} * (3*10^6)^2 *(sin38)( cos38)}{1.6*10^{-19} * 0.015} \\[/tex]

[tex]E_y = 6.08 * 10^6 N/C[/tex]

The force a spring exerts on a body is a conservative force because:

a. a spring always exerts a force parallel to the displacement of the body.
b. the work a spring does on a body is equal for compressions and extensions of equal magnitude.
c. the net work a spring does on a body is zero when the body returns to its initial position.
d. the work a spring does on a body is equal and opposite for compressions and extensions of equal magnitude.
e. a spring always exerts a force opposite to the displacement of the body.

Answers

Answer:

  c.  the net work a spring does on a body is zero when the body returns to its initial position

Explanation:

A force is conservative when the net work done over any path that returns to the initial position is zero. Choice C matches that definition.

An ideal spring of the kind used in physics problems has the characteristic that it applies the same force at the same distance always. So any work required to extend or compress the spring is reversed when the reverse motion takes place.

A 50-kg block is pushed a distance of 5.0 m across a floor by a horizontal force Fp whose magnitude is 150 N. Fp is parallel to the displacement of the block. The coefficient of kinetic friction is 0.25.
a) What is the total work done on the block?
b) If the box started from rest, what is the final speed of the block?

Answers

Answer:

a) WT = 137.5 J

b) v2 = 2.34 m/s

Explanation:

a) The total work done on the block is given by the following formula:

[tex]W_T=F_pd-F_fd=(F_p-F_f)d[/tex]          (1)

Fp: force parallel to the displacement of the block = 150N

Ff: friction force

d: distance = 5.0 m

Then, you first calculate the friction force by using the following relation:

[tex]F_f=\mu_k N=\mu_k Mg[/tex]        (2)

μk: coefficient of kinetic friction = 0.25

M: mass of the block = 50kg

g: gravitational constant = 9.8 m/s^2

Next, you replace the equation (2) into the equation (1) and solve for WT:

[tex]W_T=(F_p-\mu_kMg)d=(150N-(0.25)(50kg)(9.8m/s^2))(5.0m)\\\\W_T=137.5J[/tex]

The work done over the block is 137.5 J

b) If the block started from rest, you can use the following equation to calculate the final speed of the block:

[tex]W_T=\Delta K=\frac{1}{2}M(v_2^2-v_1^2)[/tex]     (3)

WT: total work = 137.5 J

v2: final speed = ?

v1: initial speed of the block = 0m/s

You solve the equation (3) for v2:

[tex]v_2=\sqrt{\frac{2W_T}{M}}=\sqrt{\frac{2(137.5J)}{50kg}}=2.34\frac{m}{s}[/tex]

The final speed of the block is 2.34 m/s

Other Questions
Ram made his father......(buy)a new bag.(correct form of causive verb) Jacob is asked to simplify the expression-3a+4b+5a+(-7b) -3a+4b+5a+(-7b) = -3a+5a+4b+(-7b) which property is this ? Which strategy did African American students use when they refused to leave a "whites only" lunch counter in Greensboro, North Carolina, in 1960? 25.00 mL of a H2SO4 solution with an unknown concentration was titrated to a phenolphthalein endpoint with 28.11 mL of a 0.1311 M NaOH solution. What is the concentration of the H2SO4 solution Christine must buy at least $45$ fluid ounces of milk at the store. The store only sells milk in $200$ milliliter bottles. If there are $33.8$ fluid ounces in $1$ liter, then what is the smallest number of bottles that Christine could buy? (You may use a calculator on this problem.) a number between 891 and 909 that is divisible by 10 Susan wants to make 2 square flags tosell at a crafts fair. The fabric she wantsto buy is 5 meters wide. She doesn'twant any fabric left over. What's theleast amount of fabric she should buy? How much pure water must be mixed with 10 liters of a 25% acid solution to reduce it to a 10% acid solution? 11 L 15 L 25 L ProBuilder reports merchandise sales of $80,000 and cost of merchandise sales of $20,000 in its first year of operations ending June 30, 2016. It makes fiscal-year-end adjusting entries for estimated future returns and allowances equal to 3% of sales, or $2,400, and 3% of cost of sales, or $600.Required:a. Prepare the June 30, 2016, fiscal-year-end adjusting journal entry for future returns and allowances related to sales. b. Prepare the June 30, 2016, fiscal-year-end adjusting journal entry for future returns and allowances related to cost of sales. given that 1=$1..62 what is 650 pounds in dollars How would you tell someone your doing well in spanish Which of the following statements are equivalent to the statement "Every integer has an additive inverse" NOTE: (The additive inverse of a number x is the number that, when added to x, yields zero. Example: the additive inverse of 5 is -5, since 5+-5 = 0) Integers are{ ... -3, -2,-1,0, 1, 2, 3, ...} All integers have additive inverses. A. There exists a number x such that x is the additive inverse of all integers.B. All integers have additive inverses.C. If x is an integer, then x has an additive inverse.D. Given an integer x, there exists a y such that y is the additive inverse of x.E. If x has an additive inverse, then x is an integer. There are 11 students in our Science class left to give their presentations. Today we will have time for 6 presentations. How many different ways can the teacher choose the presenters? What was the Allied strategy for World War II? A: Allies focus on defeating the Axis in Europe before focusing on the Pacific. B: Allies focus on defeating the Axis in the Pacific before focusing on Europe. C: Soviet Union would focus on Germany while the the U.S. focused on Japan. D: The U.S. would focus on the Pacific while the other Allies focused on Europe. The receiving department has three activities: unloading, counting goods, and inspecting. Unloading uses a forklift that is leased for $15,000 per year. The forklift is used only for unloading. The fuel for the forklift is $3,600 per year. Other operating costs (maintenance) for the forklift total $1,500 per year. Inspection uses some special testing equipment that has depreciation of $1,200 per year and an operating cost of $750. Receiving has three employees who have an average salary of $50,000 per year. The work distribution matrix for the receiving personnel is as follows: Activity Percentage of Time on Each Activity Unloading 40% Counting 25 Inspecting 35 No other resources are used for these activities.Required:Calculate the cost of each activity.Unloading $Counting $Inspecting $ List the 2 advantages and 2 disadvantages of wind as a source of electricity. How many terms are in the expression 5m2 - mn + 4n + 7?Simplify 11(2x + 3). Estimate the area of the circle equal three decimal 14 round to the nearest hundredth if necessary9 Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below. Sun exposure Stem mass (g) Stem volume (mL) 30 275 110045 415 121560 563 142575 815 1610 90 954 1742a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (m). b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m) c. Convert the density values to scientific notation. After getting their results in, a group of scientists went back and looked at their study. As planned, their experiment consisted of three groups. The first group received a new medicine at a normal dose, the second group received the medicine at half the dose, and the third group received the medicine at twice the dose. Which of the following best describes what went wrong with the scientists study?