7/20
Step-by-step explanation:
21 ÷ 3 = 7
21 - 1 = 20
7/20
What is the average number of 20 14 28 18
Step-by-step explanation:
Avg = 20 + 14 + 28 + 18 /4
Avg = 80/4 = 20
help me plz i need help
Answer:
x=16/15
Step-by-step explanation:
What's next in this sequence? 4,8,16,32,64 _?
Write the equation of the line in fully simplified slope-intercept form.
Answer:
Where is the problem?
Step-by-step explanation:
Evaluate the expression 9+9+2
Answer:
20
Step-by-step explanation:
9+9+2=20
Hope this helps :)
Answer: 20
Step-by-step explanation:9x2=18 +2=20 or 9+9=18+2=20
Math
........................................................................
Answer:
i believe the and\swe is g because it is located within the boundaries of plane p but is on a line (not the green segments) that goes outside of plane p
Step-by-step explanation:
Expand and simplify.
(x + 1)(2-6)
4-3/7. Can u pls help me out
Answer:
1/7
Step-by-step explanation:
4-3/7
1/7
Hope This Helps You.
Answer:
3 4/7
Step-by-step explanation:
Regroup 4 as 3 7/7.
Subtract 3 7/7 - 3/7 = 3 4/7
There's your answer!
please mark brainliest!
Shawn has $20.00 to spend. He wants to save $5.00. He buys two ice creams for $1.65 each, what is the maximum number of packets of chocolate can he buy at a cost of $3.45 for each packet and still have at least $5.00 left over
(solve as an inequality)
Answer:
3
Step-by-step explanation:
3.45x+2*1.65+5>=20
3.45x+8.3>=20
3.45x>=11.7
after rounding
x>=3
Will give brainliest!
We know that a + b + c = 7 and [tex]\frac{1}{a+b} + \frac{1}{b+c} +\frac{1}{a+c} =\frac{7}{10}[/tex]. What is the value of [tex]\frac{10a}{b+c} +\frac{10b}{a+c} +\frac{10c}{a+b}[/tex]?
Answer:
19
Step-by-step explanation:
Note that
[tex]\dfrac{10a}{b+c} + \dfrac{10b}{a+c} + \dfrac{10c}{a+b} = 10\left(\dfrac{a}{b+c} + \dfrac{b}{a+c} + \dfrac{c}{a+b} \right)[/tex]
and
[tex]\dfrac{7-b-c}{b+c}+\dfrac{7-a-c}{a+c}+\dfrac{7-a-b}{a+b}=\dfrac{a}{b+c} + \dfrac{b}{a+c} + \dfrac{c}{a+b}[/tex]
from [tex]a+b+c=7 \implies a=7-bc; b = 7-a-c; c = 7-a-b[/tex]
and
[tex]\dfrac{7-b-c}{b+c}+\dfrac{7-a-c}{a+c}+\dfrac{7-a-b}{a+b} = 7\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)-3[/tex]
because it is not difficult to note that
[tex]$\sum \dfrac a{b+c}=\dfrac a{b+c}+\dfrac b{c+a}+\dfrac c{a+b}$[/tex]
Therefore,
[tex]7\left(\dfrac{7}{10}\right)-3 = \dfrac{49}{10}-3 =\boxed{ \dfrac{19}{10}} = \dfrac{a}{b+c} + \dfrac{b}{a+c} + \dfrac{c}{a+b}[/tex]
Finally,
[tex]10\left(\dfrac{a}{b+c} + \dfrac{b}{a+c} + \dfrac{c}{a+b} \right) = 10 \cdot \dfrac{19}{10} = 19[/tex]
An oil barrel contains 20.3 gallons of oil. One gallon is equal to 3.8 L. How many liters of oil are in the barrel?
Answer:
77.14L
Step-by-step explanation:
20.3x3.8=77.14L
What is an equivalent expression for 1.5(37* 4) * 0.25(Qr+8)
Answer:
-4 I believe is the answer
Step-by-step explanation:
Hope this helps:)
Question 6 of 24
The function f(x) = x2 - 6x + 9 is shifted 5 units to the right to create g(x).
What is g(x)?
A. g(x) = (x - 5)2 - 6(x - 5) + 9
B. g(x) = (x + 5)2 - 6(x + 5) + 9
C. g(x) = (x2 - 6x + 9) + 5
D. g(x) = (x2 - 6x + 9) - 5
Micr
SUBMIT
Answer:
Step-by-step explanation: its b
A cable company charges $99 for installation plus $40 per month. If you paid $459 over a period of time, How many monthes did you use that cable company?
Answer:
9 months
Step-by-step explanation:
99 + 40 + 40 + 40 + 40 + 40 + 40 + 40 + 40 + 40 = $459
We can see that the number of 40's has been repeated 9 times. So therefore, 9 months is our answer.
what is the last number
lol
Answer:
Infinity probally. But there is a number called the god's number reported by Galileo in which he states a number in which the enitre universe fits.
help me answer this 100 POINTS!!!!!
Answer:
1 C
2 A
Step-by-step explanation:
1 C No it cannot be defined because A and B are not congruent
2 A Yes, the lines will remain parallel
PS. It's only 50 points because two answers are allowed. Each answerer gets half.
!PLEASE HELP!
3/2 (7/3x+1) = 3/2
Show work. (simple if possible)
Giving Brainliest.
Answer:
x = 0
Step-by-step explanation:
[tex]\frac{3}{2}(\frac{7}{3}x + 1) = \frac{3}{2}[/tex]
To start, let's multiply each side by the reciprocal of [tex]\frac{3}{2}[/tex]. Multiplying a fraction by its reciprocal gives us 1, which will make the left side of our equation simpler.
[tex]\frac{2}3} * \frac{3}{2}(\frac{7}{3}x + 1) = \frac{2}3} * \frac{3}{2}[/tex]
[tex]\frac{2}{3} * \frac{3}{2} = 1[/tex], so we have:
[tex]1(\frac{7}{3}x + 1) = 1[/tex] or [tex]\frac{7}{3}x + 1= 1[/tex]
Next, we can subtract 1 from both sides to further simplify the left side:
[tex]\frac{7}{3}x + 1 - 1= 1 - 1\\\frac{7}{3}x=0[/tex]
Finally, we can multiply by the reciprocal of [tex]\frac{7}{3}[/tex] on both sides in order to isolate x on the left. Anything multiplied by 0 = 0, so now we have:
x = 0
7/2x + 3/2 = 3/2 <=> 7/2x = 0 <=> x=0
Please help. 7th grade homework. All of these has to be turned in by tomorrow morning.
Write the equation's of the lines using the given information
m=-2, (3, -7)
Answer:
y = -2x-1
Step-by-step explanation:
The formula for a line is [tex]y-y_{1} = m(x-x_{1})[/tex].
Plug in the information given in the problem: y-(-7) = -2(x-3)
So you get y+7 = -2x+6.
The final form you want needs to be equal to y (that means you want y by itself on the left side of the equals), so subtract 7 from both sides.
You get y = -2x-1
[tex](\stackrel{x_1}{3}~,~\stackrel{y_1}{-7})~\hspace{10em} m = -2 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-7)}=\stackrel{m}{-2}(x-\stackrel{x_1}{3}) \\\\\\ y+7=-2x+6\implies \blacktriangleright y=-2x-1 \blacktriangleleft[/tex]
Write an equation in slope-intercept form of the line shown.
to convert 13 feet to yards you would use the ratio 1 yard / 3feet or true or false
Answer:
True
Explanation:
3 feet is 1 yard so 13/3 is 4.3 yards approximately
True
[tex] \frac{1 \: yard}{3 \: feet} = \frac{x \: yard}{13 \: feet} [/tex]
3x = 13
[tex]x = \frac{13}{3} yards[/tex]
Suppose that the price p (in dollars) and the demand x (in thousand of units) of a commodity satisfy the demand equation 6p+x+xp=94
How fast is demand changing when the price is set at $9 and the price is rising at the rate of $2 per week?
dx/dt
=
The demand is decreasing at the rate of _________units per week.
The demand is decreasing at the rate of 2units per week.
Given the price p (in dollars) and the demand x (in thousands of units) of a commodity satisfy the demand equation 6p+x+xp=94
Differentiating the function with respect to time will result in;
[tex]6\frac{dp}{dt}+\frac{dx}{dt} + x \frac{dp}{dt} + p\frac{dx}{dt} = 0[/tex]
Given the following paramters
p = $6
dp/dt = $2/wk
Substitute the given parameters into the formula to have:
[tex]6(2)+\frac{dx}{dt} + 2x + 9\frac{dx}{dt} = 0[/tex]
To get the demand x, we will simply substitute p = 9 into the expression to have:
6(9)+x+9x=94
10x+54 = 94
10x = 94 - 54
10x = 40
x = 4
Substitute x = 4 into the derivative to have:
[tex]6(2)+\frac{dx}{dt} + 2x + 9\frac{dx}{dt} = 0\\6(2)+\frac{dx}{dt} + 2(4) + 9\frac{dx}{dt} = 0\\6(2)+\frac{dx}{dt} + 8 + 9\frac{dx}{dt} = 0\\20 + 10\frac{dx}{dt} =0\\10\frac{dx}{dt} =-20\\\frac{dx}{dt} =\frac{-20}{10}\\\frac{dx}{dt} =-\$2/wk[/tex]
Hence the demand is decreasing at the rate of 2units per week.
Learn more here: https://brainly.com/question/11859175
patrick is thinking of a number. his number is twice as large as the smallest number that rounds to 30 when rounding to the nearest ten. what is patrick’s number?
what is multiple integrals
Rationalize the denominator and simplify the following expression:
fraction numerator 4 plus square root of 2 over denominator 2 space minus square root of 2 end fraction
let's recall that the conjugate of say a + b is simply the same thing with a different sign in between, namely a - b, so let's use the conjugate of the denominator and multiply top and bottom by it.
[tex]\textit{difference of squares} \\\\ (a-b)(a+b) = a^2-b^2 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{4+\sqrt{2}}{2-\sqrt{2}}\cdot \cfrac{2+\sqrt{2}}{2+\sqrt{2}}\implies \cfrac{(4+\sqrt{2})(2+\sqrt{2})}{\underset{\textit{difference of squares}}{(2-\sqrt{2})(2+\sqrt{2})}}\implies \cfrac{(4+\sqrt{2})(2+\sqrt{2})}{2^2-(\sqrt{2})^2}[/tex]
[tex]\cfrac{8+4\sqrt{2}+2\sqrt{2}+(\sqrt{2})^2}{4-2}\implies \cfrac{8+4\sqrt{2}+2\sqrt{2}+2}{2}\implies \cfrac{10+6\sqrt{2}}{2} \\\\\\ \cfrac{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~(5+3\sqrt{2})}{~~\begin{matrix} 2 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies \boxed{5+3\sqrt{2}}[/tex]
Mrs. Sparks is a 9th-grade Algebra 1 teacher. She teaches three
Algebra 1 courses and all the classes recently took a chapter exam.
Below are the scores. PLZ HELP 100 POINTS
Answer:
ninth grade teacher is going skipping 30 to each class
Step-by-step explanation:
Solve the problem below by finding a common denominator.
5/6+1/8
Answer:
5/6+1/8 = 23/24
Step-by-step explanation:
The lowest common denominator here is the smallest denominator that can be divided evenly by both 6 and 8. It is 24. Note that 6 = 2·3 and that 8 = 2·2². We use the factors 2³ and 3 to come up with the LCD 24.
Then 5/6 + 1/8 can be rewritten with this LCD as:
20/24 + 3/24 = 23/24
5/6+1/8 = 23/24
3. The value of x varies directly with y,
and when x = 21, y=3.
Find the value of x if y= 10.
Answer:
70
Step-by-step explanation:
First you want to find the amount of x per 1 y so you divide 21 by 3 to get when x = 7 y = 1. Now you can just multiply 10 by 7 to get 70.
I hope this helps!
Please solve these algebraic questions? THANKS
Step-by-step explanation:
Note: I'm only providing solutions for Problem 9.
9. Simplify the following by collecting like terms:
Combining like terms involve performing the required mathematical operations (using the PEMDAS rule). The terms must have the same degree (or exponents).
a) 3a + 7a
Add the coefficients of both terms.
3a + 7a = 10a
b) 4n + 3nAdd the coefficients of both terms.
4n + 3n = 7n
c) 12y - 4ySubtract the coefficient of both terms.
12y - 4y = 8y
d) 5x + 2x + 4xAdd the coefficients of all terms.
5x + 2x + 4x = 11x
e) 6ab - 2ab - baThe last term, "ba," can be rewritten as, "ab." Remember that with algebraic expressions such as "ab," it essentially involves multiplication of both variables within the same term. Thus, ab = a × b. The variables ab also have a numerical coefficient of 1: 1a × 1b.
Now, we can perform the subtraction on all terms:
6ab - 2ab - ab = 3ab.
f) 7mn + 2mn - 2mnSubtract 2mn from 2mn, which leaves you with 7mn:
7mn + 2mn - 2mn = 7mn
g) 4y - 3y + 8For this algebraic expression, you could only combine the terms with the same variable and degree. Therefore, you'll have to subtract 3y from 4y, leaving the constant, 8, unaffected.
4y - 3y + 8 = y + 8
h) 7x + 5 - 4x
Similar to question g, only combine the terms with the same degree and variable, leaving the constant unaffected.
7x + 5 - 4x = 3x + 5
i) 6xy + xy + 4y
You could only combine the terms with the same set of variables and degree, which are the first two terms on this given question. You cannot combine the last term, 4y, into the other terms.
6xy + xy + 4y = 7xy + 4y
j) 5ab + 3 + 7ba
Using the same reasoning as in question e: the last term, 7ba, can be rewritten as 7ab, for which you could combine with the first term, 5ab.
5ab + 3 + 7ba = 12ab + 3
k) 2 - 5m - mCombine the like terms, which are the second and the last term.
2 - 5m - m = 2 - 6m
l) 4 - 2x + x
Combine the like terms, which are the second and the last term.
4 - 2x + x = 4 - x
Use Pascal's Triangle to determine the sixth term of the expansion of (x + 5)^7
Pascal's triangle up to the 7th row (starting with 0)
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
Then the 6th term in the expansion of (x + 5)⁷ is
7 • x¹ • 5⁶ = 109375x