Answer:
In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction
Explanation:
Answer:
Newton's Law of Motion
1- Every object persists in its state of rest or uniform motion - in a straight line unless it is compelled to change that state by forces impressed on it.
2- Force is equal to the change in momentum per change in time. For a constant mass, force equals mass times acceleration.
3- For every action, there is an equal and opposite reaction.
A student throws a 120 g snowball at 7.5 m/s at the side of the schoolhouse, where it hits and sticks. What is the magnitude of the average force on the wall if the duration of the collision is 0.15 s
Answer:
The magnitude of the average force on the wall during the collision is 6 N.
Explanation:
Given;
mass of snowball, m = 120 g = 0.12 kg
velocity of the snowball, v = 7.5 m/s
duration of the collision between the snowball and the wall, t = 0.15 s
Magnitude of the average force can be calculated by applying Newton's second law of motion;
F = ma
where;
a is acceleration = v / t
a = 7.5 / 0.15
a = 50 m/s²
F = ma
F = 0.12 x 50
F = 6 N
Therefore, the magnitude of the average force on the wall during the collision is 6 N.
1. Find the energy required to melt 255g of ice at 0°C into water at 0°C
Answer:
E = 85170 J (/ 85.2 kJ)
Explanation:
Take the latent heat of fusion of water be 334J / g.
From the equation E = ml,
E = energy required (unknown),
mass m = 255g,
latent heat of fusion l = 334J / g,
E = 255 x 334
E = 85170 J (/ 85.2 kJ)