Answer:
The answer is electromagnetic
Answer:
electromagnetic
Explanation:
edge 2021
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline
Answer:
x = 46.54m
Explanation:
In order to find the length of the incline you use the following formula:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the soccer ball = 0 m/s
t: time
a: acceleration
You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):
[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex] (2)
Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:
[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex] (3)
The length of the incline is 46.54 m
Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be
Answer:
1.1ohms
Explanation:
According to ohms law E = IR
If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5
I = 0.36A (This will be the load current).
Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.
Voltage drop = 2.2V - 1.8V = 0.4V
Then we calculate the internal resistance using ohms law.
According to the law, V = Ir
V= voltage drop
I is the load current
r = internal resistance
0.4 = 0.36r
r = 0.4/0.36
r = 1.1 ohms
A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?
Answer:
[tex]v_B=3.78\times 10^5\ m/s[/tex]
Explanation:
It is given that,
Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]
Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]
Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]
Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]
We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :
increase in kinetic energy = increase in potential×charge
[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]
So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].
As you know, a common example of a harmonic oscillator is a mass attached to a spring. In this problem, we will consider a horizontally moving block attached to a spring. Note that, since the gravitational potential energy is not changing in this case, it can be excluded from the calculations. For such a system, the potential energy is stored in the spring and is given by
U = 12k x 2
where k is the force constant of the spring and x is the distance from the equilibrium position. The kinetic energy of the system is, as always,
K = 12mv2
where m is the mass of the block and v is the speed of the block.
A) Find the total energy of the object at any point in its motion.
B) Find the amplitude of the motion.
C) Find the maximum speed attained by the object during its motion.
Answer:
a) [tex]E = \frac{1}{2} \cdot k \cdot x^{2} + \frac{1}{2} \cdot m \cdot v^{2}[/tex], b) Amplitude of the motion is [tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex], c) The maximum speed attained by the object during its motion is [tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex].
Explanation:
a) The total energy of the object is equal to the sum of potential and kinetic energies. That is:
[tex]E = K + U[/tex]
Where:
[tex]K[/tex] - Kinetic energy, dimensionless.
[tex]U[/tex] - Potential energy, dimensionless.
After replacing each term, the total energy of the object at any point in its motion is:
[tex]E = \frac{1}{2} \cdot k \cdot x^{2} + \frac{1}{2} \cdot m \cdot v^{2}[/tex]
b) The amplitude of the motion occurs when total energy is equal to potential energy, that is, when objects reaches maximum or minimum position with respect to position of equilibrium. That is:
[tex]E = U[/tex]
[tex]E = \frac{1}{2} \cdot k \cdot A^{2}[/tex]
Amplitude is finally cleared:
[tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex]
Amplitude of the motion is [tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex].
c) The maximum speed of the motion when total energy is equal to kinetic energy. That is to say:
[tex]E = K[/tex]
[tex]E = \frac{1}{2}\cdot m \cdot v_{max}^{2}[/tex]
Maximum speed is now cleared:
[tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex]
The maximum speed attained by the object during its motion is [tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex].
A fox locates rodents under the snow by the slight sounds they make. The fox then leaps straight into the air and burrows its nose into the snow to catch its meal. If a fox jumps up to a height of 85 cm , calculate the speed at which the fox leaves the snow and the amount of time the fox is in the air. Ignore air resistance.
Answer:
v = 4.08m/s₂
Explanation:
An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.
Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.
Answer:
a. F = 2.32*10^-18 N
b. The force F is 2.59*10^11 times the weight of the electron
Explanation:
a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:
[tex]v^2=v_o^2+2ax[/tex] (1)
v: final speed of the electron = 6.60*10^5 m/s
vo: initial speed of the electron = 4.00*10^5 m/s
a: acceleration of the electron = ?
x: distance traveled by the electron = 5.40cm = 0.054m
you solve the equation (2) for a and replace the values of the parameters:
[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]
Next, you use the second Newton law to calculate the force:
[tex]F=ma[/tex]
m: mass of the electron = 9.11*10^-31kg
[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]
The magnitude of the force exerted on the electron is 2.32*10^-18 N
b. The weight of the electron is given by:
[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]
The quotient between the weight of the electron and the force F is:
[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]
The force F is 2.59*10^11 times the weight of the electron
Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C
Answer:
Φ = 361872 N.m^2 / C
Explanation:
Given:-
- The area of the two plates, [tex]A_p = 180 cm^2[/tex]
- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]
- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]
- The radius for the flux region, [tex]r = 3.3 cm[/tex]
- The angle between normal to region and perpendicular to plates, θ = 4°
Find:-
Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.
Solution:-
- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:
[tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]
- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):
σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]
σ = 0.00094 C / m^2
- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.
[tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]
- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:
[tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]
- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:
Φ = E_net * Ar * cos ( θ )
Φ = (106214689.26553) * (0.00342) * cos ( 5 )
Φ = 361872 N.m^2 / C
Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.
Answer:
The two value of the wavelength for the out of tune guitar is
[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]
Explanation:
From the question we are told that
The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]
The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]
Generally the frequency of the note played by the guitar that is in tune is
[tex]f_1 = \frac{v_s}{\lambda}[/tex]
Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]
[tex]f_1 = \frac{343}{0.0065}[/tex]
[tex]f_1 = 5276.9 \ Hz[/tex]
The difference in beat is mathematically represented as
[tex]\Delta f = |f_1 - f_2|[/tex]
Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar
[tex]f_2 =f_1 \pm \Delta f[/tex]
substituting values
[tex]f_2 =f_1 + \Delta f[/tex]
[tex]f_2 = 5276.9 + 17.0[/tex]
[tex]f_2 = 5293.9 \ Hz[/tex]
The wavelength for this frequency is
[tex]\lambda_2 = \frac{343 }{5293.9}[/tex]
[tex]\lambda_2 = 0.0648 \ m[/tex]
[tex]\lambda_2 = 6.48 \ cm[/tex]
For the second value of the second frequency
[tex]f_2 = f_1 - \Delta f[/tex]
[tex]f_2 = 5276.9 -17[/tex]
[tex]f_2 = 5259.9 Hz[/tex]
The wavelength for this frequency is
[tex]\lambda _2 = \frac{343}{5259.9}[/tex]
[tex]\lambda _2 = 0.0652 \ m[/tex]
[tex]\lambda _2 = 6.52 \ cm[/tex]
This question involves the concepts of beat frequency and wavelength.
The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".
The beat frequency is given by the following formula:
[tex]f_b=|f_1-f_2|\\\\[/tex]
f₂ = [tex]f_b[/tex] ± f₁
where,
f₂ = frequency of the out-of-tune guitar = ?
[tex]f_b[/tex] = beat frequency = 17 Hz
f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]
Therefore,
f₂ = 5276.9 Hz ± 17 HZ
f₂ = 5293.9 Hz (OR) 5259.9 Hz
Now, calculating the possible wavelengths:
[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]
λ₂ = 6.48 cm (OR) 6.52 cm
Learn more about beat frequency here:
https://brainly.com/question/10703578?referrer=searchResults
A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle
Answer:
88.29 N
Explanation:
mass of the ball = 4.5 kg
weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)
weight W = 4.5 x 9.81 = 44.145 N
centrifugal forces Tc act on the ball as it swings.
At the top point of the vertical swing,
Tension on the rope = Tc - W.
At the bottom point of the vertical swing,
Tension on the rope = Tc + W
therefore,
difference in tension between these two points will be;
Net tension = tension at bottom minus tension at the top
= Tc + W - (Tc - W) = Tc + W -Tc + W
= 2W
imputing the value of the weight W, we have
2W = 2 x 44.145 = 88.29 N
A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.
Answer:
P = 5.97 × 10^(5) Pa
Explanation:
We are given;
Mass of balloon;m_b = 4.3 kg
Radius;r = 1.54 m
Temperature;T = 289 K
Density;ρ = 1.19 kg/m³
We know that, density = mass/volume
So, mass = Volume x Density
We also know that Force = mg
Thus;
F = mg = Vρg
Where m = mass of balloon(m_b) + mass of helium (m_he)
So,
(m_b + m_he)g = Vρg
g will cancel out to give;
(m_b + m_he) = Vρ - - - eq1
Since a sphere shaped balloon, Volume(V) = (4/3)πr³
V = (4/3)π(1.54)³
V = 15.3 m³
Plugging relevant values into equation 1,we have;
(3 + m_he) = 15.3 × 1.19
m_he = 18.207 - 3
m_he = 15.207 kg = 15207 g
Molecular weight of helium gas is 4 g/mol
Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles
From ideal gas equation, we know that;
P = nRT/V
Where,
P is absolute pressure
n is number of moles
R is the gas constant and has a value lf 8.314 J/mol.k
T is temperature
V is volume
Plugging in the relevant values, we have;
P = (3802 × 8.314 × 289)/15.3
P = 597074.53 Pa
P = 5.97 × 10^(5) Pa
A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.
Answer:
The found acceleration in terms of h and t is:
[tex]a=\frac{h}{5(t_1)^2}[/tex]
Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
Stage 1Constant acceleration, starts from rest.
Distance = [tex]y = \frac{1}{2}a(t_1)^2[/tex]
Velocity = [tex]v_1=at_1[/tex]
Stage 2Constant velocity where
Velocity = [tex]v_o=v_1=at_1[/tex]
Distance =
[tex]y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\[/tex]Stage 3Constant deceleration where
Velocity = [tex]v_0=v_1=at_1[/tex]
Distance =
[tex]y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2[/tex]
Total HeightTotal height = y₁ + y₂ + y₃
Total height = [tex]\frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2[/tex]
AccelerationFind acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²
[tex]a=\frac{h}{5(t_1)^2}[/tex]
A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force
Answer:
The magnitude of the electric force on the particle in terms of the variables given is, F = qE
The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)
Explanation:
Given;
a charged particle, q
magnitude of electric field, E
magnitude of magnetic field, B
The magnitude of the electric force on the particle in terms of the variables given;
F = qE
The magnitude of the magnetic force on the particle in terms of the variables given;
F = q (v x B)
where;
v is the constant velocity of the charged particle
Answer:
The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|
The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|
Explanation:
The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).
Electric force = qE
The magnitude of the electric force = |qE|
That is, magnitude of the product of the charge and the electric field vector.
The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).
It is given mathematically as (qv × B)
The magnitude of the magnetic force is the magnitude of the vector product obtained.
Magnitude of the magnetic force = |qv × B|
Hope this Helps!!!
A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?
a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None
Answer:
Option B:
The normal force
Explanation:
The normal force does no work as the box slides down the ramp.
Work can only be done when the force succeeds in moving the object in the direction of the force.
All the other forces involved have a component that is moving the box in their direction.
However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)
A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)
Answer:
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
Explanation:
An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:
[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]
[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]
The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:
[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]
Where:
[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.
[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.
[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.
If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:
[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]
[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]
As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:
[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]
[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]
The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:
[tex]x = \frac{n_{R}}{n_{E}}[/tex]
[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]
[tex]x = 8.5222 \times 10^{-11}[/tex]
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices
Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.
Explanation:
Ok, let's write the definitions:
Displacement: The displacement is equal to the difference between the final position and the initial position.
Distance traveled: Total distance that you moved.
So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:
The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.
But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.
So no, we can have a displacement equal to zero, but a distance traveled different than zero.
A long horizontal hose of diameter 3.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.8 cm. Water squirts from the nozzle at velocity 14 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
A) What is the velocity of the water in the hose ?
B) What is the pressure differential between the water in the hose and water in the nozzle ?
C) How long will it take to fill a tub of volume 120 liters with the hose ?
Answer:
a) v₁ = 3.92 m / s , b) ΔP = = 9.0 10⁴ Pa, c) t = 0.0297 s
Explanation:
This is a fluid mechanics exercise
a) let's use the continuity equation
let's use index 1 for the hose and index 2 for the nozzle
A₁ v₁ = A₂v₂
in area of a circle is
A = π r² = π d² / 4
we substitute in the continuity equation
π d₁² / 4 v₁ = π d₂² / 4 v₂
d₁² v₁ = d₂² v₂
the speed of the water in the hose is v1
v₁ = v₂ d₂² / d₁²
v₁ = 14 (1.8 / 3.4)²
v₁ = 3.92 m / s
b) they ask us for the pressure difference, for this we use Bernoulli's equation
P₁ + ½ ρ v₁² + m g y₁ = P₂ + ½ ρ v₂² + mg y2
as the hose is horizontal y₁ = y₂
P₁ - P₂ = ½ ρ (v₂² - v₁²)
ΔP = ½ 1000 (14² - 3.92²)
ΔP = 90316.8 Pa = 9.0 10⁴ Pa
c) how long does a tub take to flat
the continuity equation is equal to the system flow
Q = A₁v₁
Q = V t
where V is the volume, let's equalize the equations
V t = A₁ v₁
t = A₁ v₁ / V
A₁ = π d₁² / 4
let's reduce it to SI units
V = 120 l (1 m³ / 1000 l) = 0.120 m³
d1 = 3.4 cm (1 m / 100cm) = 3.4 10⁻² m
let's substitute and calculate
t = π d₁²/4 v1 / V
t = π (3.4 10⁻²)²/4 3.92 / 0.120
t = 0.0297 s
according to newtons second law of motion, what is equal to the acceleration of an object
Answer: According to Newtons second Law of motion ;
F = ma (Force equals mass multiplied by acceleration.)
The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force
Explanation:
A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere
Answer:
The radius of the sphere is 4.05 m
Explanation:
Given;
potential at surface, [tex]V_s[/tex] = 450 V
potential at radial distance, [tex]V_r[/tex] = 150
radial distance, l = 8.1 m
Apply Coulomb's law of electrostatic force;
[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]
[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]
Therefore, the radius of the sphere is 4.05 m
A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil and capped at both ends with tight-fitting pistons. The wider arm of the U-tube has a radius of 18.0 cm and the narrower arm has a radius of 5.00 cm. The car rests on the piston on the wider arm of the U-tube. The pistons are initially at the same level. What is the initial force that must be applied to the
Answer:
F₂ = 925.92 N
Explanation:
In a hydraulic lift the normal stress applied to one arm must be equally transmitted to the other arm. Therefore,
σ₁ = σ₂
F₁/A₁ = F₂/A₂
F₂ = F₁ A₂/A₁
where,
F₂ = Initial force that must be applied to narrow arm = ?
F₁ = Load on Wider Arm to be raised = 12000 N
A₁ = Area of wider arm = πr₁² = π(18 cm)² = 324π cm²
A₂ = Area of narrow arm = πr₂² = π(5 cm)² = 25π cm²
Therefore,
F₂ = (12000 N)(25π cm²)/(324π cm²)
F₂ = 925.92 N
Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below.
Sun exposure Stem mass (g) Stem volume (mL)
30 275 1100
45 415 1215
60 563 1425
75 815 1610
90 954 1742
a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (mº).
b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m)
c. Convert the density values to scientific notation.
Given that,
Sun exposure = 30%, 45%, 60%, 75%, 90%
Stem mass (g) = 275, 415, 563, 815, 954
Stem volume (ml) = 1100, 1215, 1425, 1610, 1742
(a). We need to convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters
Using conversion of mass
[tex]1\ g=0.001\ kg[/tex]
Conservation of volume
[tex]1\ Lt=0.001\ m^3[/tex]
[tex]1\ mL=1\times10^{-6}\ m^3[/tex]
So, mass in kg
Stem mass (kg) = 0.275, 0.415, 0.563, 0.815, 0.954
Volume in m³,
Stem volume (m³) = 0.0011, 0.001215, 0.001425, 0.001610, 0.001742
(b). We need to calculate the density of the samples
Using formula of density
[tex]\rho=\dfrac{m}{V}[/tex]
Where, m = mass
V = volume
If the m = 0.275 kg and V = 0.0011 m³
Put the value into the formula
[tex]\rho=\dfrac{0.275}{0.0011}[/tex]
[tex]\rho=250\ kg/m^3[/tex]
If the m = 0.415 kg and V = 0.001215 m³
Put the value into the formula
[tex]\rho=\dfrac{0.415}{0.001215}[/tex]
[tex]\rho=341.56\ kg/m^3[/tex]
[tex]\rho=342\ kg/m^3[/tex]
If the m = 0.563 kg and V = 0.001425 m³
Put the value into the formula
[tex]\rho=\dfrac{0.563}{0.001425}[/tex]
[tex]\rho=395.08\ kg/m^3[/tex]
If the m = 0.815 kg and V = 0.001610 m³
Put the value into the formula
[tex]\rho=\dfrac{0.815}{0.001610}[/tex]
[tex]\rho=506.21\ kg/m^3[/tex]
If the m = 0.954 kg and V = 0.001742 m³
Put the value into the formula
[tex]\rho=\dfrac{0.954}{0.001742}[/tex]
[tex]\rho=547.6\ kg/m^3[/tex]
[tex]\rho=548\ kg/m^3[/tex]
(c). We need to convert the density values to scientific notation
In scientific notation
The densities are
[tex]\rho\ (kg/m^3)= 2.50\times10^{2}, 3.42\times10^{2}, 3.95\times10^{2}, 5.06\times10^{2}, 5.48\times10^{2}[/tex]
Hence, This is required solution.
A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.
Answer:
the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]
Increase in volume of the glass = 10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]
[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]
[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.
Answer:
20 J
Explanation:
From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.
m'u'+mu = V(m+m')........... Equation 1
Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.
make V the subject of the equation above
V = (m'u'+mu)/(m+m')............. Equation 2
Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).
Substitute into equation 2
V = [(2×5)+(8×0)]/(2+8)
V = 10/10
V = 1 m/s.
Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision
Total kinetic energy before collision = 1/2(2)(5²) = 25 J
Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J
Lost in kinetic energy = 25-5 = 20 J
The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.
Since there is a lost in kinetic energy, the collision is inelastic collision.
m'u'+mu = V(m+m')
[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]
Where
m' = mass of the moving object = 2 kg
m = mass of the stick = 8 kg,
u' = initial velocity of the moving object = 5 m/s
V = common velocity after collision= ?
u = 0 m/s (at rest).
put the values in the formula,
[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]
kinetic energy before collision
[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]
kinetic energy after collision
[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]
Lost in kinetic energy = 25-5 = 20 J
Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.
To know more about Kinetic energy,
https://brainly.com/question/12669551
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]
Oh football player kicks a football from the height of 4 feet with an initial vertical velocity of 64 ft./s use the vertical motion model H equals -16 tea to the power of 2+ VT plus S where V is initial velocity and feet per second and S is the height and feet to calculate the amount of time the football is in the air before it hits the ground round your answer to the nearest 10th if necessary.
Answer:
4.1 seconds
Explanation:
The height of the football is given by the equation:
[tex]H = -16t^2 + V*t + S[/tex]
Using the inicial position S = 4 and the inicial velocity V = 64, we can find the time when the football hits the ground (H = 0):
[tex]0 = -16t^2 + 64*t + 4[/tex]
[tex]4t^2 - 16t - 1 = 0[/tex]
Using Bhaskara's formula, we have:
[tex]\Delta = b^2 - 4ac = (-16)^2 - 4*4*(-1) = 272[/tex]
[tex]t_1 = (-b + \sqrt{\Delta})/2a[/tex]
[tex]t_1 = (16 + 16.49)/8 = 4.06\ seconds[/tex]
[tex]t_2 = (-b - \sqrt{\Delta})/2a[/tex]
[tex]t_2 = (16 - 16.49)/8 = -0.06\ seconds[/tex]
A negative time is not a valid result for this problem, so the amount of time the football is in the air before hitting the ground is 4.1 seconds.
The amount of time the football spent in air before it hits the ground is 4.1 s.
The given parameters;
initial velocity of the ball, V = 64 ft/sthe height, S = 4 ftTo find:
the amount of time the football spent in air before it hits the groundUsing the vertical model equation given as;
[tex]H = -16t^2 + Vt + S\\\\[/tex]
the final height when the ball hits the ground, H = 0
[tex]0 = -16t^2 + 64t + 4\\\\16t^2 - 64t - 4 = 0\\\\divide \ through \ by\ 4\\\\4t^2 - 16t - 1= 0\\\\solve \ the \ quadratic \ equation \ using \ the \ formula \ method;\\\\\\a = 4, \ b = -16, \ c = - 1\\\\t = \frac{-b \ \ + /- \ \ \ \sqrt{b^2 - 4ac} }{2a} \\\\[/tex]
[tex]t = \frac{-(-16) \ \ + /- \ \ \ \sqrt{(-16^2 )- 4(4\times -1)} }{2\times 4}\\\\t = \frac{16 \ \ + /- \ \ \sqrt{272} }{8} \\\\t = \frac{16 \ \ +/- \ \ 16.49}{8} \\\\t = \frac{16 - 16.49}{8} \ \ \ \ or \ \ \ \frac{16 + 16.49}{8} \\\\t = -0.61 \ s \ \ or \ \ \ 4.06 \ s\\\\t\approx 4.1 \ s[/tex]
Thus, the amount of time the football spent in air before it hits the ground is 4.1 s.
Learn more here: https://brainly.com/question/2018532
A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.
Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?
1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.
Answer:
a) The distance from the cornea vertex to the retina is 2.37 cm
b) This distance is shorter than for the normal eye.
Explanation:
a) Let refractive index of air,
n(air) = x = 1
Let refractive index of lens,
n(lens) = y = 1.4
Object distance, s = 36 cm
Radius of curvature, R = 0.65 cm
The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.
Image distance, s' = ?
(x/s) + (y/s') = (y-x)/R
(1/36) + (1.4/s') = (1.4 - 1)/0.65
1.4/s' = 0.62 - 0.028
1.4/s' = 0.592
s' = 1.4/0.592
s' = 2.37 cm
Distance from the cornea vertex to the retina is 2.37 cm
(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.
Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound
Answer:
t = 0.414s
Explanation:
In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:
[tex]t=\frac{d}{v}[/tex] (1)
d: distance to the plate = 18.4m
v: speed of the ball = 160.0km/h
You first convert the units of the sped of the ball to appropriate units (m/s)
[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]
Then, you replace the values of the speed v and distance s in the equation (1):
[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]
THe ball takes 0.414s to reach the home plate
a wall, a 55.6 kg painter is standing on a 3.15 m long homogeneous board that is resting on two saw horses. The board’s mass is 14.5 kg. The saw horse on the right is 1.00 m from the right. How far away can the painter walk from the saw horse on the right until the board begins to tip?
Answer:
0.15 m
Explanation:
First calculating the center of mass from the saw horse
[tex]\frac{3.15}{2} -1=0.575 m[/tex]
from the free body diagram we can write
Taking moment about the saw horse
55.9×9.81×y=14.5×0.575×9.81
y= 0.15 m
So, the painter walk from the saw horse on the right until the board begins to tip is 0.15 m far.
If electrons are ejected from a given metal when irradiated with a 10-W red laser pointer, what will happen when the same metal is irradiated with a 5-W green laser pointer? (a) Electrons will be ejected, (b) electrons will not be ejected, (c) more information is needed to answer this question. Group of answer choices
Answer:
(b) electrons will not be ejected
Explanation:
Determine the number of photons ejected by 10 W red laser pointer.
The wavelength (λ) of red light is 700 nm = 700 x 10⁻⁹ m
Energy of a photon is given as;
[tex]E = \frac{hc}{\lambda}[/tex]
where;
h is Planck's constant, = 6.626 x 10⁻³⁴ J/s
c is speed of light, = 3 x 10⁸ m/s
[tex]E = \frac{6.626*10^{-34} *3*10^8}{700 X 10^{-9}} \\\\E = 2.8397 *10^{-19} \ J/photon[/tex]
The number of photons emitted by 10 W red laser pointer
10 W = 10 J/s
[tex]Number \ of \ photons = 10(\frac{ J}{s}) * \frac{1}{2.8397*10^{-19}} (\frac{photon}{J} ) = 3.522 *10^{19} \ photons/s[/tex]
Determine the number of photons ejected by 5 W red green pointer
The wavelength (λ) of green light is 500 nm = 500 x 10⁻⁹ m
[tex]E = \frac{hc}{\lambda} = \frac{6.626*10^{-34} *3*10^8}{500*10^{-9}} = 3.9756 *10^{-19} \ J/photon[/tex]
The number of photons emitted by 5 W green laser pointer
5 W = 5 J/s
[tex]Number \ of \ photons = \frac{5J}{s} *\frac{photon}{3.9756*10^{-19}J} = 1.258 *10^{19} \ Photons/s[/tex]
The number of photons emitted by 10 W red laser pointer is greater than the number of photons emitted by 5 W green laser pointer.
Thus, 5 W green laser pointer will not be able to eject electron from the same metal.
The correct option is "(b) electrons will not be ejected"
A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m
Answer:
about 1 meter
Explanation:
The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m
We are given;
Mass of plank; m = 30 kg
Length of plank; L = 6m
Mass of man; M = 70 kg
Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.
Thus;
Moment of weight of plank about the right support;
τ_p = mg((L/2) - 2)
τ_p = 30 × 9.8((6/2) - 2)
τ_p = 294 N.m
Moment of weight of man about the right support;
τ_m = Mgx
where x is the distance past the edge the man will get before the plank starts to tip.
τ_m = 70 × 9.8x
τ_m = 686x
Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;
τ_m = τ_p
686x = 294
x = 294/686
x = 0.4285 m
Read more at; https://brainly.com/question/22150651
In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in a time interval of Δt. In order to boost sales, a year later they introduced a more powerful engine (the "Model B") which could accelerate the car from 0 to speed 2.92v in the same time interval. Introducing the new engine did not change the mass of the car. Compare the power of the two cars, if we assume all the energy coming from the engine appears as kinetic energy of the car.
Answer: [tex]\frac{P_B}{P_A}[/tex] = 8.5264
Explanation: Power is the rate of energy transferred per unit of time: P = [tex]\frac{E}{t}[/tex]
The energy from the engine is converted into kinetic energy, which is calculated as: [tex]KE = \frac{1}{2}.m.v^{2}[/tex]
To compare the power of the two cars, first find the Kinetic Energy each one has:
K.E. for Model A
[tex]KE_A = \frac{1}{2}.m.v^{2}[/tex]
K.E. for model B
[tex]KE_B = \frac{1}{2}.m.(2.92v)^{2}[/tex]
[tex]KE_B = \frac{1}{2}.m.8.5264v^{2}[/tex]
Now, determine Power for each model:
Power for model A
[tex]P_{A}[/tex] = [tex]\frac{m.v^{2} }{2.t}[/tex]
Power for model B
[tex]P_B = \frac{m.8.5264.v^{2} }{2.t}[/tex]
Comparing power of model B to power of model A:
[tex]\frac{P_B}{P_A} = \frac{m.8.5264.v^{2} }{2.t}.\frac{2.t}{m.v^{2} }[/tex]
[tex]\frac{P_B}{P_A} =[/tex] 8.5264
Comparing power for each model, power for model B is 8.5264 better than model A.