vesicle formation is driven by the binding of clathrin or cop proteins. select an answer and submit. for keyboard navigation, use the up/down arrow keys to select an answer. a true b false

Answers

Answer 1

It is true that vesicle formation is driven by the binding of clathrin or COP proteins.

Vesicle formation is used to recycle membrane components and allow extracellular substances to enter the cell. Thus, endocytosis and a variety of cellular functions are linked to vesicle formation.

The majority of transport vesicles originate in specialized, membrane-coated regions. They emerge as coated vesicles with a distinct cytosolic surface cage of proteins.

Coated vesicles can be broken down into three distinct categories based on the coat proteins they contain:clathrin-covered, COPI-covered, and COPII-covered vesicles. In the cell, different transport steps rely on each type.

know more about vesicle formation here: https://brainly.com/question/15706289

#SPJ4


Related Questions

consider the following dna sequence, which codes for the first portion of a long protein beginning at the atg (aug in mrna) start codon. 5' atg ccc cgc agt agg ggg tgg aga3' a mutation occurs changing this sequence to: 5' atg ccc cgc agt agg ggg tga aga3' what type of mutation is this? (check all that apply.)

Answers

The appropriate responses are: 1. Point mutation 2. Transition 3. missense mutation.t The seventh codon is where the mutation is happening in this case. The first scenario it is TGG that codes for Tryptophan. Then, it is mutated to TGA that codes for Stop codon ( in bacteria) which terminates the process of protein translation.

What is mutation?

The nucleotide sequence of an organism's genome, that of a virus, extrachromosomal DNA, or other genetic components can change permanently, a process known as mutation.

Gene structural changes can be divided into two categories: small-scale changes and large-scale changes.

Gene mutations that impact only one or a few nucleotides in a tiny gene are known as small-scale mutations. Examples include:

Point mutations

When a mutation affects one or more nucleotides in the same gene, it is considered to be punctual.

Substitution mutations:

Missense mutations: A nucleotide is changed by another as a result of this point mutation. In some circumstances, this alteration results in a change in the amino acid encoded, which may or may not affect the function of the protein generated by the gene in the case of a gene encoding change or the affinity for a transcription factor in the case of a promoter region of the DNA.

Nonsense mutation: In this case, the changed DNA sequence prematurely instructs the cell to stop producing proteins rather than replacing one amino acid for another. A truncated protein produced by this kind of mutation may operate incorrectly or not at all.

Due to genetic code redundancy (the new triplet codes for the same amino acid as the original triplet), or because it affects a region of the DNA that does not code for a protein, such as an intron, silent mutations do not change the sequence of a protein.

To learn more about mutation

https://brainly.com/question/17031191

#SPJ4

explain what is meant by epigenetic inheritance and give an example of epigenetic changes discussed in the text or in class

Answers

Epigenetics is the study of how particular genes or proteins associated with particular genes are altered chemically in an organism.

What does biology mean by epigenetic inheritance?

When a cell divides and information is passed from one generation to the next, this process is referred to as epigenetic inheritance. For sustaining diverse gene expression patterns in differentiation, development, and disease, epigenetic inheritance is essential.

What is a case of epigenetic inheritance?

It is crucial to demonstrate that the inherited phenotype requires passing through the gametes when considering transgenerational epigenetic inheritance (i.e., sperm and eggs). The fact that stressed-out moms generate stressed-out offspring is an instructive illustration.

To know more about  epigenetic inheritance visit:-

https://brainly.com/question/5929227

#SPJ4

Lichens look like moss. But they’re actually two organisms—usually fungi and algae—that live together in a mutualistic relationship. The fungi provide a sheltered place for the algae to grow and reproduce. What do you think the algae offer that the fungi can’t do?

Answers

Typically, fungi and algae coexist in a mutualistic relationship called lichen. The fungi provide a sheltered place for the algae, and the algae provide food for the fungi through the photosynthesis process.

What is a mutualistic relationship?

There are many different types of relationships in nature, one of which is mutualism, in which two individuals help each other and are helped. Both fungi and algae coexist in lichen; the alga is photosynthetic and can prepare food for the fungi, while the fungi provide shelter for the alga. In this way, they both coexist and get benefits from one another.

Hence, fungi and algae coexist in a mutualistic relationship called lichen. The fungi provides a sheltered place for the algae, and the algae provide food for the fungi through the photosynthesis process.

Learn more about the mutualistic relationship here.

https://brainly.com/question/20721691

#SPJ1

a sample of bacteria was added to a culture dish containing a limited food supply. (culture dishes are designed to help bacteria grow.) the dish was kept in an incubator for two weeks, where temperature that bacteria prefer to live in was kept constant. the graph below shows changes that occurred in the bacterial population over the two weeks. which statement provides the best explanation for the population increase then decrease?
o The bacteria were unable to reproduce until day 8.
o The bacteria ate all of the available food.
o The bacteria could not grow at all in the provided temperatures.
o The bacteria could not grow at all with the provided food type.

Answers

Answer:

The bacteria ate all of the available food.

Explanation:

(B) is the most reasonable answer. At the start, it mentions that it's at the preferred temperature for the bacteria which rules out (C). It mentioned that the bacteria was growing which rules out (D) for saying it couldn't grow at all and I don't think (A) makes much sense. For even more backup for (B), it mentioned that the food was limited.

why have we not found examples in the fossil record of every animal that ever lived on earth? select all that apply.

Answers

We don’t find examples in the fossil record of every animal that ever lived on earth due to the following reasons

a fossilized animal must have been buried for tens of thousands or millions of years before it (and the layer around it) solidified into rock.

What are fossils?

Any preserved traces of a once-living thing from a previous geological epoch are referred to as fossils.

Many fossils are still hidden. They are only accessible when they are exposed due to excavation. Before it has a chance to decay, an animal must be promptly and thoroughly buried in ash or sediment in order to become a fossil.

Therefore examples in the fossil record of every animal that ever lived on earth cannot be found.

To know more fossils from the given link

https://brainly.com/question/11829803

#SPJ4

cancer results from cells that divide when they should not. a hallmark of cancer is high levels of dna methylation in cell genomes. methylation of which genes is most likely to lead to cancerous cell formation?

Answers

Genes that prevent cell division, Cancer results from cells that divide when they should not. A hallmark of cancer is high levels of DNA methylation in cell genomes.

A gene is the primary structural and functional element of heredity. Genes are made out of DNA. Some genes serve as the building blocks for making proteins. However, many genes do not encode proteins. A human gene can be made up of a few hundred DNA nucleotides or more than 2 million bases. According to the Human Genome Project, a global research effort to decipher the human genome's sequence and catalog its genes, humans are believed to have between 20,000 and 25,000 genes.

DNA methylation entails the insertion of methyl groups (-CH3) to sections of DNA where the Cytosine and Guanine bases occur often (often called CpG island). Genes that control the cell cycle, maintain chromosome stability, and control transcription is typically not methylated. Methylation in these areas can result in gene knowledge related to apoptosis and cell cycle regulation, and as a result, it can result in the development and growth of tumors.

The complete question is:

Cancer results from cells that divide when they should not. a hallmark of cancer is high levels of DNA methylation in cell genomes. methylation of which genes is most likely to lead to cancerous cell formation?

(A). Genes that produce transaction factors

(B). Genes that promote the formation of blood vessels

(C). Genes that promote ATP production

(D). Genes that promote cell division

(E). Genes that prevent cell division

To learn more about genes please click on the given link: https://brainly.com/question/1480756

#SPJ4

which stateent correctly explains why these species are still restricted to growing in moist environments

Answers

Their gametes must swim in order to interact and for fertilization to occur is the correct statement that explains why these species are still restricted to growing in moist environments.

A gamete is a plant or animal's reproductive cell. Male gametes in animals are known as sperm, and female gametes are known as ova or egg cells. Sperm and ova are haploid cells, meaning that each cell only has one copy of each chromosome. A new diploid organism is created during fertilisation when a sperm and an ovum combine. The reproductive cells of an organism are called gametes.

A new individual organism or offspring is created via the fusion of gametes, commonly referred to as fertilisation, generative fertilisation, syngamy, and impregnation, and its subsequent development. In this area of the tube, the sperm and egg mate to produce pregnancy. After fertilisation, the fertilised egg starts a quick ascent to the uterus.

learn more about gametes here

https://brainly.com/question/2569962

#SPJ4

What is the ultimate product of the electron transport chain?
O NADH
O pyruvate
O ATP
O FADH₂

Answers

C. ATP out the answer and out of the entire process of cellular respiration because you can’t do anything without ATP and you produce it the most

what effect would the deamination of 5-mthycytosine in a promoter have on the expression of that gene

Answers

Thymine is created during the deamination of 5meC, but uracil glycosylase is unable to identify it, which can lead to C→T mutations.

Gene silence occurs as a result of the methylation of the Cytosines 5′ to Guanosines (CpG) islands in the tumor suppressor gene promoter region. On the other hand, hypomethylation in a tumor's oncogene promoter region reactivates transcription.

Deamination of cytosine residues

In error-free repair, spontaneous deamination changes cytosine to uracil, which is removed from DNA by the enzyme uracil-DNA glycosylase. 5-Methylcytosine residues deaminate to thymine, which this mechanism is unable to remove and repair. As evidenced by the lacI gene of Escherichia coli, 5-methylcytosine residues are hotspots for spontaneous changes. Here, we demonstrate that the rate of spontaneous transition at cytosine residues is increased to the hotspot rate at 5-methylcytosine residues in bacteria that lack uracil-DNA glycosylase (Ung-) and cannot remove uracil residues from DNA. These investigations offer concrete proof that cytosine deamination is a key contributor to spontaneous mutations.

To learn more about deamination of cytosine

https://brainly.com/question/14145272

#SPJ4

the juxtaglomerular complex is: question 9 options: 1) pertaining to the kidney. 2) canal through which urine passes from the bladder to outside the body. 3) a smooth, collapsible, muscular sac that stores urine temporarily 4) cells of the distal part of the ascending limb of the loop of henle and afferent arteriole located close to the glomerulus; involved in blood pressure regulation (via release of the hormone renin) and autoregulation of gfr.

Answers

Juxtaglomerular apparatus is another name for the juxtaglomerular complex.

Because it is adjacent to (juxta) the glomerulus, the juxtaglomerular apparatus is so named.

It is composed of cells from the ascending limb of the loop of Henle's distal limb and an afferent arteriole that is placed close to the glomerulus.

It affects both the autoregulation of blood pressure (via the release of the hormone renin).

Renin is secreted by the juxtaglomerular apparatus. Renin responds to changes in blood flow. When blood pressure drops, renin-secreting cells are activated, which aids in maintaining a steady flow of blood through the nephron.

Click the link to learn more about glomerulus

https://brainly.com/question/28272678

#SPJ4

you have discovered a new unusual species with very large amounts of yolk compared to related species. what do you expect might be different about its cleavage pattern?

Answers

The amount and distribution of yolk protein in the cytoplasm, as well as elements in the egg cytoplasm that affect the angle of the mitotic spindle and the timing of its development, are two main factors that affect the pattern of embryonic cleavage pattern to a species.

By impeding the cytoplasmic motions necessary for mitosis, the yolk's ability to impact cleavage pattern as the egg's yolk content does. When there is minimal yolk (oligolecithal eggs), the yolk granules disseminate throughout the resultant blastomeres by moving with the cytoplasm.When there is a moderate to scarce amount of yolk in an egg, the holoblastic form of cleavage is frequently observed. Animals including frogs, mammals, echinoderms, annelids, flatworms, nematodes, and others have eggs that divide holoblastically.

Learn more about cleavage pattern  by using this link:

https://brainly.com/question/11933501

#SPJ4

Students are comparing the functions of carbohydrates and lipids. Which cellular function would be shared between carbohydrates and lipids?.

Answers

The cellular function that would be shared among carbohydrates and lipids is a) energy storage.

Carbohydrates and lipids both are made from long chains of monomers and hence have a huge amount of energy stored in between the bonds of the monomers that make them.

Both carbohydrates and lipids are used for energy storage inside the body. When the monomer chains that make carbohydrates and lipids are broken, energy in the form of ATP is released that is used by the cell for performing the basic functions of the cell.

Hence, although carbohydrates and lipids are different macromolecules, they both have one similar cellular function that is energy storage.

Although a part of your question is missing, you might be referring to this question:

Students are comparing the functions of carbohydrates and lipids. Which cellular function would be shared between carbohydrates and lipids?

a) energy storage

b) protein formation

c) energy consumption

To learn more about lipids, click here:

https://brainly.com/question/17352723

#SPJ4

1. why does a multicellular organism need to control and coordinate cell division? what might be the consequences of uncontrolled cell division in a multicellular organism?

Answers

Cell division occurs for three reasons: reproduction, growth, repair, and renewal. Reproduction —asexual reproduction—one-celled organisms reproduce through mitosis Cell division promotes growth by transforming a fertilised egg into a multicellular organism.

Repair and regeneration — replaces cells that die as a result of normal wear and tear or injury. As we all know, reproduction is necessary for the continuation of life. Cell division is required to generate genetic diversity. Cell division is an important process by which a unicellular organism develops into a new organism in unicellular organisms. Growth factors include cell coordination and protein signals released by body cells that stimulate other cells to divide. Positional Inhibition—In order to divide, animal cells must be anchored (attached to a substrate) and cannot be overcrowded ("Density Dependant Inhibition") - Cells that are overcrowded stop dividing. Each cell binds a small amount of growth factor, resulting in insufficient activator to cause division in any single cell.

Learn more about cell division here:

https://brainly.com/question/13312481

#SPJ4

Xavier and Jill are practicing the 100-meter sprint. Which statement BEST describes the metabolic pathways their muscles will utilize to produce the quick energy needed for the intense exercise?
glycolysis begins glucose metabolism, and in the absence of oxygen, lactic acid fermentation takes over.

Answers

D. Glycolysis begins glucose metabolism, and in the absence of oxygen, lactic acid fermentation takes over. best describes the metabolic pathways their muscles will utilize to produce the quick energy needed for intense exercise.

The process by which glucose is broken down into energy is called glycolysis. NADH, water, two pyruvate molecules, and ATP are all produced. Oxygen is not required for this process, which takes place in the cytoplasm of a cell. Both aerobic and anaerobic organisms can perform glycolysis.

In all organisms, glycolysis is the first step in cellular respiration. Glycolysis is followed by the Krebs cycle during aerobic respiration.  In the absence of oxygen, Cellular respiration shifts to lactic acid fermentation after glycolysis, producing small amounts of ATP.

Lactic acid accumulates in your muscle cells as fermentation continues during seasons of arduous exercises like a 100m sprint. Your cardiovascular and respiratory systems are unable to transport oxygen to your muscle cells, particularly those in your legs, quickly enough to maintain aerobic respiration during these times.

Know more about glycolysis here: https://brainly.com/question/14076989

#SPJ4

(Complete question)

Xavier and Jill are practicing the 100-meter sprint. Which statement BEST describes the metabolic pathways their muscles will utilize to produce the quick energy needed for this intense exercise?

A. Glucose is converted to pyruvic acid, followed by the aerobic pathways of the Krebs cycle and the electron transport chain.

B. Glycolysis produces pyruvic acid and 2 molecules of ATP, then in the absence of oxygen, alcoholic fermentation regenerates NAD to keep

glycolysis running

C. The pyruvic acid from glycolysis enters the mitochondria and is broken down in the Krebs cycle.

D. Glycolysis begins glucose metabolism, and in the absence of oxygen, lactic acid fermentation takes over.

What would be a benefit of genetically modified fish?
OA. It grows slower than regular fish.
OB. It eats more than regular fish.
OC. It grows faster than regular fish.
OD. It excretes more waste than a regular fish

Answers

Answer:OC. It grows faster than regular fish.

Explanation: These fish are being engineered for traits that allegedly will make them better suited for industrial aquaculture, such as faster growth, disease resistance, larger muscles, and temperature tolerance.

how many chromosomes are there in a maize (corn) embryo cell nucleus as compared to a maize (corn) endosperm cell nucleus?

Answers

Two third chromosomes are there in a maize (corn) embryo cell nucleus as compared to a maize (corn) endosperm cell nucleus.

Maize and sorghum (Sorghum bicolor) both have 20 chromosomes (2n = 20). Maize endosperm is a large storage organ that accounts for 80-90% of the mature kernel dry weight. The mature maize kernel is the result of a coordinated developmental process that includes both the embryo and the endosperm. Endosperm development is prioritized in relation to overall kernel maturation. The endosperm is a triploid tissue made up of two sets of maternal chromosomes and one set of paternal chromosomes.

Over the course of 50-60 days, the maize grain grows from a fertilized ovule to a mature kernel. The developing kernel contains maternal tissues, such as the pericarp and nucellus, as well as tissues produced by double fertilization, such as the diploid embryo and triploid endosperm.

To learn more about chromosomes of endosperm and embryo cell of maize, here

https://brainly.com/question/28301178

#SPJ4

for the following traits, the concordances of mz and dz twins are given as percentages. which trait is unlikely to have a strong genetic influence?

Answers

Traits that may not have a strong genetic influence on the concordance of MZ and DZ twins given as proportions are 59% in MZ and 62% in DZ.

Generally, from a genetic point of view, MZ, which means monozygotic twins, has a genetic concordance that is stronger than DZ or dizygotic twins. Monozygotic twins are produced by a single zygote and thus share more genes than dizygotic twins which share relatively few genes.

So, the genetic concordance is generally very strong between two monozygotic, so the proportion must be more in them.

In this question first of all the four traits have more proportion of genetic concordance in monozygotic, but in the last trait genetic concordance shows more in dizygotic twins, this is a phenomenon that is impossible to ask in this question, so the answer is 59 % in monozygotic and 62% in dizygotic.

For complete questions, see the picture.

Learn more about the concordance of MZ and DZ at https://brainly.com/question/28901686

#SPJ4

which intervention would be the best treatment option to prevent perinatal transmission of hiv antibodies to a fetus from the hiv-positive mother?

Answers

Combination therapy with HIV drugs (called antiretroviral therapy or ART) can prevent HIV transmission to babies and protect their health. Perinatal transmission of HIV is almost always preventable with good medical care.

Every pregnant woman should have her HIV tested and report test results to a pregnancy counselor. If a woman has not received prenatal care, she should request a prompt HIV test at the time of delivery. All newborns perinatally exposed to HIV should be given neonatal antiretroviral (ARV) medications to reduce her risk of perinatal infection and appropriate doses based on level of risk of infection. A suitable ARV regimen should be chosen. Prophylaxis with zidovudine (retrovir) is recommended for most infants exposed to HIV in utero to reduce the risk of vertical transmission. Beginning 8 hours after birth, these newborns should receive zidovudine at a dose of 2 mg/kg every 6 hours for at least 6 weeks.

To know more about perinatal infection visit:

https://brainly.com/question/8293169?referrer=searchResults

#SPJ4

explain how glomerular hydrostatic pressure and glomerular colloid osmotic pressure act as opposing forces during glomerular filtration.

Answers

The blood within the glomerulus produces glomerular hydrostatic pressure, which forces fluid out of the glomerulus and into the glomerular capsule. The fluid in the glomerular capsule generates pressure, which pushes fluid out of the glomerular capsule and back into the glomerulus, thus opposing the glomerular hydrostatic pressure

The glomerular filtration rate is the volume of filtrate produced by both kidneys per minute. The hydrostatic pressure and colloid osmotic pressure on either side of the glomerular capillary membrane influence GFR. Remember that filtration occurs when pressure forces fluid and solutes through a semipermeable barrier, with particle size limiting solute movement.

The pressure produced by a fluid against a surface is known as hydrostatic pressure. When a fluid is present on both sides of a barrier, it exerts pressure in opposite directions.The direction of net fluid movement will be in the direction of the lower pressure.

The movement of a solvent (water) across a membrane that is impermeable to a solute in the solution is referred to as osmosis. This produces osmotic pressure, which exists until the solute concentration on both sides of a semipermeable membrane is the same.

To know more about the Glomerular hydrostatic pressure,here

https://brainly.com/question/4631715

#SPJ4

A progressively degenerative disease characterized by the destruction of elasticity of the alveolar walls, resulting in decreased ability of the lungs to expel air, and commonly seen in smokers, is known as ____.

Answers

Emphysema is a lung condition that develops when the alveolar walls in your lungs are harmed. It is possible for an obstruction (blockage) to form, trapping air in your lungs.

Which disease causes the alveolar walls to deteriorate?

Emphysema is a gradual degenerative disease that affects the suppleness of the alveolar walls, which affects the lungs' capacity to exhale air.

What is the serous membrane covering and guarding the lungs?

A serous membrane called a pleura folds back on itself to create a two-layered membranous pleural sac. The parietal pleura, the outer layer's name, connects to the chest wall. The visceral pleura, or inner layer, is what protects the lungs, blood vessels, nerves.

To know more about degenerative disease visit:-

https://brainly.com/question/12888294

#SPJ4

which of the following is not one of the main hypotheses to explain primate origins? group of answer choices arboreal hypothesis aquatic ape hypothesis angiosperm hypothesis visual predation hypothesis

Answers

Three main theories have been put up to explain the genesis of primates and the characteristics that set our own order apart from other mammalian groups.

What are the two origin theories for the traits of primates?

The Arboreal and Visual Predation Theories are two hypotheses for how various ape traits, like grasping or prehensile hands, forward-facing eyes, and depth perception, evolved.

Which theory about the origin of primates is the most plausible?

The visual predation idea offers a potential justification for how primates first evolved. According to this view, primates originated from small mammals that lived in bushes on the forest floor. These tiny mammals consumed insects found on the forest floor.

To know more about hypothesis angiosperm visit:-

https://brainly.com/question/9416370

#SPJ4

which of the following claims is best supported by the information above? choose 1 answer: choose 1 answer: (choice a) a e1b-55k causes infected cells to transition out of the cell cycle and into g 0 0 ​ start subscript, 0, end subscript phase. (choice b) b e1b-55k causes infected cells to undergo programmed cell death. (choice c) c e1b-55k increases the likelihood of cell cycle arrest in infected cells. (choice d) d e1b-55k decreases the likelihood of apoptosis in infected cells.

Answers

Answer:

what is botany .and scope of botany

A student is investigating thermal energy transfer. The student touches a piece of metal to a hot object, causing the metal to heat up. Which process of thermal energy transfer is the student demonstrating?.

Answers

When The student touches a piece of metal to a hot object, causing the metal to heat up. The thermal energy transfer process the student demonstrated is conduction.

There are basically three methods of heat transfer:

heat transfer by conductionheat transfer by convectionheat transfer by radiation

Heat transfer by conduction requires real movement of the medium's molecules.

When a student touches a hot object with a piece of metal, molecules of the hot object move to the piece of metal. This type of heat transfer is called conduction.

Therefore, we can conclude that the thermal energy transfer process demonstrated by the student is conduction.

learn more about conduction in details at:

Brainly.com/question/6035051

#SPJ4

true or false: in the process of cellular respiration, the high potential energy stored in c-h and c-c bonds in molecules like glucose is ultimately used to help transform energy into the form of atp.

Answers

The answer is True. In the process of cellular respiration, glucose is ultimately used in transforming the energy into the form of ATP.

All organisms use the process called cellular respiration to convert glucose into energy. During photosynthesis, autotrophs (like plants) create glucose and store in it. On the other hand heterotrophs eat other living things to obtain glucose as a source of food. The critical process in breaking down the glucose component to release energy for cellular catabolism and anabolism is known glycolysis. Glycolysis is a process that almost all living things engage in as part of their metabolism. Anaerobic means that there is no oxygen present during the procedure (processes that use oxygen are called aerobic). Eukaryotic and prokaryotic cells both undergo glycolysis in the cytoplasm. Two pathways allow glucose to enter heterotrophic cells.

To learn more about cellular respiration click on this link: https://brainly.com/question/13721588

#SPJ4

a fisherman catches and removes one trout from each of two ponds. pond a contains 100 trout and pond b contains 1,000 trout. which population is more affected by the fisherman

Answers

Because the fisherman has a higher chance of entirely removing alleles from the gene pool by catching a fish from the smaller population, pond A with 100 trout is more impacted by the fisherman.

An area of DNA or RNA known as a gene encodes for a particular molecular cell product. Genes, which are normally passed down from generation to generation, control physical features and the genetic makeup of creatures belonging to the same species. A pair of genes known as an alleles can be found on a given chromosome in a place known as the gene locus. The same features in kids are under their control. Alleles are a pair of genes that govern a trait by occupying a certain position on a chromosome.

Learn more about Genes here

https://brainly.com/question/8832859

#SPJ4

the population of town a is less than the population of town b. however, the population of town a is growing faster than the population of town b. write a program that prompts the user to enter: the population of town a the population of town b the growth rate of town a the growth rate of town b

Answers

If the population of town A is less than the population of town B. However, if the population of town A is growing faster than the population of town B then we can write a C++ program to explain it.

#include<iostream>

using namespace std;

void main()

{int townA_pop,townB_pop,count_years=1;

double rateA,rateB;

cout<<"please enter the population of town A"<<endl;

cin>>townA_pop;

cout<<"please enter the population of town B"<<endl;

cin>>townB_pop;

cout<<"please enter the grothw rate of town A"<<endl;

cin>>rateA;

cout<<"please enter the grothw rate of town B"<<endl;

cin>>rateB;

while(townA_pop < townB_pop)//IF town A pop is equal or greater than town B it will break

{townA_pop = townA_pop +( townA_pop * (rateA /100) );

townB_pop = townB_pop +( townB_pop * (rateB /100) );

count_years++;

}

cout<<"after "<<count_years<<" of years the pop of town A will be graeter than or equal To the pop of town B"<<endl;

}

The complete question is:

The population of town A is less than the population of town B. However, the population of town A is growing faster than the population of town B. Write a program that prompts the user to enter: The population of town A The population of town B The growth rate of town A The growth rate of town B The program outputs: After how many years the population of town A will be greater than or equal to the population of town B The populations of both the towns at that time. (A sample input is: Population of town A = 5,000, the growth rate of town A = 4%, the population of town B = 8,000, and growth rate of town B = 2%.)

To learn more about C++ programming please click on the given link: https://brainly.com/question/13000217

#SPJ4

a molecule binds and blocks a potassium channel in a plant cell membrane. what would be its effects?

Answers

Large membrane-spanning proteins called ion channels allow for the selective movement of ions. Ions like potassium, calcium, and sodium may experience this.

These channels are in charge of the electrical conduction in neurological systems that enables the appropriate operation of nerve and muscle cells.

Drinking too much water might cause your body to lose potassium when your kidneys release sodium in your urine. Therefore, consuming too much salt may cause your healthy potassium levels to drop.

The ions move along the pore when they are being transported from one location to another. After passing through this filter, the potassium ions are once more encased in water molecules. In contrast, because sodium ions are a little bit smaller than oxygen, they do not interact with it.

Learn more about to potassium visit here;

https://brainly.com/question/8507057

#SPJ4

A synthesis of the antibiotic natural product y-indomycinone involved the halogenation reaction shown below. The major product of the reaction is a monobrominated compound, and a significant amount of a minor, dibrominated compound is also formed.

Answers

When the double bond between carbon atoms in a molecule is broken, the alkene halogenation reaction, specifically bromination or chlorination, takes place. The halides from the opposing sides of the molecule add to nearby carbons.

A halogen atom is replaced with another substance in a process known as halogenation, where the halogen atom eventually becomes a component of the new substance or compound. In general, one or more halogens are typically added to the chemical during the halogenation reaction. The process of replacing any number of hydrogen atoms with the aforementioned group of elements is known as halogenation. The result of halogenation will have different and new properties from the original substance. Halogens are a class of elements that includes substances like iodine, chlorine, fluorine, and bromine. These components typically behave similarly, which is why they belong to the same group.

The complete question is;

A synthesis of the antibiotic natural product y-indomycinone involved the halogenation reaction shown below. The major product of the reaction is a mono brominated compound, and a significant amount of a minor, dibrominated compound is also formed. Modify the given structure to draw the major product a mono brominated compound. Lone pairs not required.

Learn more about bromination here:

brainly.com/question/24202507

#SPJ4

what is the primary method of energy acquisition for phytoplankton? group of answer choices oxygen metabolism chemosynthesis respiration photosynthesis methane metabolism

Answers

The correct answer is c) Photosynthesis. This is the primary method of energy acquisition for phytoplankton.

The autotrophic (self-feeding) members of the plankton community and a crucial component of freshwater and ocean ecosystems are phytoplankton.

Photosynthesis is how land plants like trees and phytoplankton get their energy. As a result, phytoplankton lives on the well-lit surface layers (euphotic zone) of seas and lakes because they need sunlight to survive. Phytoplankton are dispersed over a larger surface area than terrestrial plants, are subject to less seasonal change, and have noticeably higher turnover rates than trees (days versus decades). As a result, phytoplankton reacts to changes in the climate quickly on a global scale.

The full question is:

What is the primary method of energy acquisition for phytoplankton?

a. oxygen metabolism

b. chemosynthesis

c. photosynthesis

d. methane metabolism

e. respiration

To learn more about phytoplankton click on this link: https://brainly.com/question/1807428

#SPJ4

in a reaction that involves more than one step, the step that has the energy transition state is the slowest step. this step has the greatest effect on the overall reaction rate and is called the rate- step of the reaction.

Answers

The step with the highest energy transition state is the slowest step in a reaction that has more than one step. This process is known as the rate-determining step of the reaction because it has the greatest impact on the overall reaction.

What is the slowest step in a reaction mechanism?

The reaction mechanism's slowest step is the rate-determining one. By limiting the overall rate, the rate-determining step establishes the rate law for the overall reaction.

Why is the slowest step used to determine the rate?

This is because it takes longer for the slowest phase to finish since there may be several other processes involved. For instance, before another reaction can take place and a product is immediately produced, a reactant may need to diffuse or migrate to a particular reaction site.

Learn more about  slowest step to visit  this link

brainly.com/question/14030859

#SPJ4

Other Questions
the nurse is managing the care of numerous clients on an acute medicine unit. which task should the nurse delegate to unlicensed assistive personnel (uap)? Neon Lighting is comparing actual and applied overhead amounts at the end of the year and finds the factory overhead account has a credit balance. What does this meana.Actual costs are higher than applied costs.b.The entire balance is charged back to work in process inventory.c. Applied costs are higher than actual costs.d. The balance should be carried over from year to year. lawrence wants to purchase a gift for a friend he will be visiting. he decides to bring luxury chocolates and heads directly to a store selling godiva chocolates, because he knows this is a high-end brand. when it comes to chocolates, lawrence has clinton, a manager at a textile company, is bothered by a lack in quality of products manufactured by his company. clinton hopes to infuse quality into the company through continuous improvement by involving everyone who works there. this describes which control philosophy? of all of the greentalks you've seen so far, are there any that raise an ethics issue? write one page in memo style, single spaced. upload here. in a reaction that involves more than one step, the step that has the energy transition state is the slowest step. this step has the greatest effect on the overall reaction rate and is called the rate- step of the reaction. Victor valencia is paid $10 per hour. During the week ended 6/30, victor worked 40 hours. Assuming a 6. 2% social security tax, the company would withhold $ from victor's gross pay for social security taxes. Multiple choice question. 24. 80 2,480 2. 48 248. 0 Select the letter of the correct answer.Which of these is most important to include in a summary ofthis Article?A. Colleges consider more than just grades andstandardized test scores when admitting students.B. High school students are sometimes encouraged tokeep track of their activities in a portfolio.C. High school counselors are often available to helpstudents plan and complete required courses.D. The majority of four-year colleges in the U.S. accept atleast two-thirds of students who apply. A customer states that when she removes the printed pages from her laser printer output tray, the black ink smears all over her fingers.Which of the following is the most likely problem?Fuser unit a 30.8-kg child swings on a rope with a length of 6.29 m that is hanging from a tree. at the bottom of the swing, the child is moving at a speed of 4.2 m/s. what is the tension in the rope? If Alex earns $380/week. How much would he make per year, and per month? Explain Mrs. Smith had 5/6 of a sack of garden soil forplants. She used 2/3 of it for planting 6 potsHow much garden soil did she use? In cell C6, enter a formula that multiplies the value in C5 for the month of January by the value in cell B6. Use a mixed reference for the cell B6 so that only column B does not change when copied. Use relative reference for all other cell referencesPrecision Building Average Kitchen Remodel Atlanta Boston Denver Honolulu Houston Avg Cost $43,000 $60,000 $38,000 $51.500 $53,00 5 Cost Increase 1.1 the dream theory that suggests our dreams reflect the same thoughts, fears, and concerns present when we are awake is called: what type of error occurs when a programmer uses an incorrect calculation or leaves out a programming procedure? Nth for the leaner sequence 22,18,14,10,6 Help me out please thank you answers:-3/4-4/34\33/4 ECONOMICS: Economic Systems: Who makes decisions about production, distribution and consumption in each of the systems below? Traditional: Capitalism (Free-Enterprise): Socialism: Communism: are they would fall on the spectrum below. which molecule has the greatest effect in controlling lung ventilation? a. oxygen in the blood b. hydrogen ions in the blood c. carbon dioxide in the blood d. oxygen in the cerebrospinal fluid when a glacier is stagnant in its lateral movement, it deposits a moraine at its toe; a moraine marks the farthest location the glacial reached.