.Using average bond enthalpies (linked above), estimate the enthalpy change for the following reaction:
CH3Cl(g) + Cl2(g)CH2Cl2(g) + HCl(g)
_______ kJ

Answers

Answer 1

The estimated enthalpy change for the reaction CH₃Cl(g) + Cl₂(g) → CH₂Cl₂(g) + HCl(g) is -155 kJ.

The average bond enthalpies of the bonds broken and formed in the reaction are used to estimate the enthalpy change of the reaction. In this reaction, one C-Cl bond and one Cl-Cl bond are broken, while one C-H bond, one C-Cl bond, and one H-Cl bond are formed.

The bond enthalpies for these bonds are found from the given table, which are 328 kJ/mol, 242 kJ/mol, and 431 kJ/mol, respectively. Using these values, the total energy required to break the bonds is (328 kJ/mol + 242 kJ/mol) = 570 kJ/mol, while the total energy released in forming the new bonds is (328 kJ/mol + 431 kJ/mol + 431 kJ/mol) = 1190 kJ/mol.

Therefore, the estimated enthalpy change for the reaction is (-570 kJ/mol + 1190 kJ/mol) = -620 kJ/mol. However, this is the enthalpy change for the formation of two moles of CH₂Cl₂ and two moles of HCl.

To find the enthalpy change for the formation of one mole of CH₂Cl₂ and one mole of HCl, we divide the value by 2, giving an estimated enthalpy change of -310 kJ/mol or -155 kJ for the given reaction.

To know more about enthalpy, refer here:

https://brainly.com/question/16720480#

#SPJ11


Related Questions

The bohr radius of the hydrogen atom is 0.0529 nm. that's the radius in the n=1 state. what is the radius of the hydrogen atom in the n=3 state.? 0.0529 nm 0.00588 nm 0.48 nm 0.16 nm

Answers

You want to find the radius of the hydrogen atom in the n=3 state, given that the Bohr radius of the hydrogen atom in the n=1 state is 0.0529 nm. To determine this, we will use the following formula:

radius = (n^2 * a0), where n is the principal quantum number (in this case, n=3), and a0 is the Bohr radius (0.0529 nm).

Step 1: Calculate the square of the principal quantum number:
n^2 = 3^2 = 9

Step 2: Multiply the result with the Bohr radius:
radius = (n^2 * a0) = (9 * 0.0529 nm) = 0.4761 nm

Therefore, the radius of the hydrogen atom in the n=3 state is approximately 0.48 nm.

A nucleus that is small (<20 protons) will have close to this ratio of neutrons to protons (n/p= ?)

Answers

A small nucleus with less than 20 protons will generally have a neutron-to-proton ratio (n/p) close to 1:1, meaning approximately an equal number of neutrons and protons.

The neutron-to-proton ratio in a nucleus is influenced by various factors, including the stability of the nucleus and the balance between the strong nuclear force and electrostatic repulsion. In smaller nuclei with fewer than 20 protons, the n/p ratio tends to be close to 1:1.

The strong nuclear force, which binds protons and neutrons together, plays a crucial role in stabilizing the nucleus. As the number of protons increases, the electrostatic repulsion between the positively charged protons also increases. To counterbalance this repulsion and maintain stability, additional neutrons are needed. In smaller nuclei, the number of protons is relatively low, and a nearly equal number of neutrons can effectively stabilize the nucleus.

It's important to note that this is a general trend and not a strict rule. There can be variations in the neutron-to-proton ratio among different elements and isotopes, even within the category of small nuclei. The specific number of neutrons relative to protons may vary depending on the specific element or isotope under consideration.

Learn more about neutrons here: https://brainly.com/question/31977312

#SPJ11

For the reaction N 2

(g)+2O 2

(g)→2NO 2

(g)
ΔH ∘
=66.4 kJ and ΔS ∘
=−122 J/K

The equilibrium constant for this reaction at 342.0 K is Assume that ΔH ∘
and ΔS ∘
are independent of temperature.

Answers

The equilibrium constant (K) for this reaction at 342.0 K is approximately 2.3 × 10^(-17).

For the given reaction, N2(g) + 2O2(g) → 2NO2(g), we are provided with ΔH° = 66.4 kJ and ΔS° = -122 J/K. We can calculate the equilibrium constant at 342.0 K using the Van't Hoff equation, which relates the change in Gibbs free energy (ΔG°) to the equilibrium constant (K):
ΔG° = -RTlnK
First, we need to calculate ΔG° using the provided ΔH° and ΔS° values:
ΔG° = ΔH° - TΔS°
Since the given ΔH° is in kJ, we need to convert it to J:
ΔH° = 66.4 kJ * 1000 = 66400 J
Now, we can calculate ΔG° at 342.0 K:
ΔG° = 66400 J - (342.0 K * -122 J/K) = 66400 J + 41724 J = 108124 J
Next, we can find the equilibrium constant (K) using the Van't Hoff equation:
108124 J = -(8.314 J/(mol·K)) * 342.0 K * lnK
Solve for K:
lnK = -108124 J / (8.314 J/(mol·K) * 342.0 K) = -38.3
K = e^(-38.3) ≈ 2.3 × 10^(-17)
Thus, the equilibrium constant (K) for this reaction at 342.0 K is approximately 2.3 × 10^(-17).

To know more about Equilibrium constant visit:

https://brainly.com/question/10038290

#SPJ11

How many molecules of oxygen are required to burn 55.25 liters of ethane gas c2h6 at stp?

Answers

Approximately 5.05 x 10²⁴ molecules of oxygen are required to burn 55.25 liters of ethane gas at STP.

The balanced chemical equation for the combustion of ethane (C₂H₆) with oxygen (O₂) is:

C₂H₆ + 3.5O₂ → 2CO₂ + 3H₂O

From the equation, we can see that 3.5 moles of oxygen are required to burn 1 mole of ethane completely. Therefore, to calculate the number of molecules of oxygen required to burn 55.25 liters of ethane gas at STP, we need to convert the volume of ethane gas to the number of moles using the ideal gas law.

PV = nRT

where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

At STP, the pressure (P) is 1 atm, the temperature (T) is 273 K, and the gas constant (R) is 0.08206 L atm mol⁻¹ K⁻¹.

Therefore, the number of moles of ethane in 55.25 liters can be calculated as:

n = (PV)/(RT) = (1 atm x 55.25 L)/(0.08206 L atm mol⁻¹ K⁻¹ x 273 K) ≈ 2.40 moles

To burn 2.40 moles of ethane completely, we need 2.40 x 3.5 = 8.40 moles of oxygen.

Finally, the number of molecules of oxygen required can be calculated using Avogadro's number (6.022 x 10²³ molecules/mol):

8.40 moles x 6.022 x 10²³ molecules/mol ≈ 5.05 x 10²⁴ molecules of oxygen

learn more about Ideal gas law here:

https://brainly.com/question/28257995

#SPJ11

.46) draw the major product of the following reaction mechanism: Cl2+, H2O
47) draw the major product of the following reaction mechanism: Br2, CH2Cl2
48) draw the major product of the following reaction mechanism not needed: CH3CO3H
49) Draw the product of the following reaction not needed: O3, (CH3)2S

Answers

46) The major product of the reaction mechanism between Cl2+ and H2O is HOCl, which is formed through the reaction Cl2+H2O -> HOCl + H+ + Cl-
47) The major product of the reaction mechanism between Br2 and CH2Cl2 is the addition product of Br2 and CH2Cl2, which is formed through the reaction Br2+CH2Cl2 -> BrCH2Cl + HBr
48) The reaction mechanism not needed for the question, therefore no answer can be given.
49) The product of the following reaction between O3 and (CH3)2S is dimethyl sulfide oxide, which is formed through the reaction O3 + (CH3)2S -> (CH3)2SO + O2.
As a text-based AI, I am unable to physically draw the structures of the products for these reactions. However, I can provide you with a brief description of the major products and their formation.
46) In the presence of Cl2 and H2O, an alkene will undergo halohydrin formation. The major product will be a halohydrin, with the Cl atom attached to the less substituted carbon and an OH group attached to the more substituted carbon of the alkene.
47) When an alkene reacts with Br2 and CH2Cl2, it undergoes a halogenation reaction. The major product will be a vicinal dibromide, with Br atoms added across the double bond of the alkene.
48) When CH3CO3H (peracetic acid) is used as a reagent, it typically results in an epoxidation reaction for an alkene. The major product will be an epoxide, with an oxygen atom inserted into the double bond.
49) When an alkene reacts with O3 followed by (CH3)2S (dimethyl sulfide), it undergoes an ozonolysis reaction. The major product will be two carbonyl compounds formed from the cleavage of the double bond in the alkene.

To know more about alkene visit:

https://brainly.com/question/31033378

#SPJ11

Consider the titration of a 25.0?mL sample of 0.110M HC2H3O2 with 0.125M NaOH. Determine each quantity:
a) the initial pH
b) the volume of added base required to reach the equivalence point
c) the pH at 6.00mL of added base
d) the pH at one-half of the equivalence point
e) the pH at the equivalence point

Answers

To determine the quantities in the titration of HC2H3O2 (acetic acid) with NaOH, we need to consider the reaction between them. The balanced equation for the reaction is:

HC2H3O2 + NaOH → NaC2H3O2 + H2O

From the balanced equation, we can see that the stoichiometric ratio between HC2H3O2 and NaOH is 1:1. This means that when the reaction reaches the equivalence point, the moles of HC2H3O2 will be equal to the moles of NaOH added.

a) To find the initial pH, we need to determine the concentration of H+ ions in the acetic acid solution. Acetic acid is a weak acid, so we can use the expression for the ionization of acetic acid to calculate its initial concentration of H+ ions:

HC2H3O2 → H+ + C2H3O2-

The initial concentration of H+ ions can be calculated using the initial concentration of HC2H3O2, assuming it fully ionizes. Thus, [H+] = [HC2H3O2] = 0.110 M.

To calculate the initial pH, we can use the formula for pH: pH = -log[H+]. Plugging in the value for [H+], we have:

pH = -log(0.110) ≈ 0.96

Therefore, the initial pH is approximately 0.96.

b) At the equivalence point, the moles of HC2H3O2 will be equal to the moles of NaOH added. To find the volume of NaOH required to reach the equivalence point, we can use the equation:

n(HC2H3O2) = n(NaOH)

Since the initial concentration of HC2H3O2 is 0.110 M and the volume is 25.0 mL (0.0250 L), the initial moles of HC2H3O2 can be calculated as:

moles(HC2H3O2) = concentration(HC2H3O2) × volume(HC2H3O2)

= 0.110 M × 0.0250 L

= 0.00275 moles

Since the stoichiometric ratio between HC2H3O2 and NaOH is 1:1, the moles of NaOH required to reach the equivalence point are also 0.00275 moles.

To find the volume of NaOH required, we divide the moles of NaOH by its concentration:

volume(NaOH) = moles(NaOH) / concentration(NaOH)

= 0.00275 moles / 0.125 M

= 0.022 L or 22.0 mL

Therefore, the volume of added base required to reach the equivalence point is 22.0 mL.

c) To find the pH at 6.00 mL of the added base, we need to determine how much HC2H3O2 and NaOH are left in the solution. Since the stoichiometric ratio between HC2H3O2 and NaOH is 1:1, the moles of NaOH added at 6.00 mL will also be 0.00275 moles.

To calculate the moles of HC2H3O2 remaining, we subtract the moles of NaOH added from the initial moles of HC2H3O2:

moles(HC2H3O2 remaining) = moles(HC2H3O2 initial) - moles(NaOH added)

= 0

d) At one-half of the equivalence point:

One-half of the equivalence point corresponds to the point where half of the acetic acid has reacted with sodium hydroxide. This means that the moles of HC2H3O2 will be equal to half of its initial moles.

First, calculate the initial moles of HC2H3O2:

Moles = concentration x volume

Moles of HC2H3O2 = 0.110 M x 0.025 L = 0.00275 mol

At one-half of the equivalence point, half of the moles of HC2H3O2 will have reacted, leaving half of the moles remaining:

Moles of HC2H3O2 remaining = 0.00275 mol / 2 = 0.001375 mol

To determine the concentration of HC2H3O2 remaining, divide the moles by the volume of the solution at one-half of the equivalence point. Since the volume doubles at the equivalence point, the volume at one-half of the equivalence point is half of the total volume (25.0 mL / 2 = 12.5 mL = 0.0125 L):

Concentration of HC2H3O2 remaining = 0.001375 mol / 0.0125 L = 0.11 M

Since acetic acid is a weak acid, we can use the Henderson-Hasselbalch equation to calculate the pH at one-half of the equivalence point:

pH = pKa + log([A-]/[HA])

The pKa of acetic acid is approximately 4.76, and [A-]/[HA] is the ratio of the concentrations of the acetate ion (C2H3O2-) and acetic acid (HC2H3O2). At one-half of the equivalence point, the concentration of HC2H3O2 remaining is the same as the concentration of C2H3O2- formed. Therefore:

pH = 4.76 + log(0.11/0.11) = 4.76

e) At the equivalence point:

The equivalence point corresponds to the point where all the moles of HC2H3O2 have reacted with an equal number of moles of NaOH. This means that the moles of NaOH added will be equal to the initial moles of HC2H3O2.

Moles of NaOH = concentration x volume

Moles of NaOH = 0.125 M x 0.025 L = 0.003125 mol

Since the stoichiometry of the reaction is 1:1 between NaOH and HC2H3O2, the moles of HC2H3O2 reacted are also 0.003125 mol.

At the equivalence point, all the acetic acid has been converted to sodium acetate (NaC2H3O2). Therefore, the concentration of HC2H3O2 is zero, and the pH will be determined by the hydrolysis of sodium acetate.

Sodium acetate undergoes hydrolysis, resulting in the formation of hydroxide ions (OH-) and acetic acid. This reaction affects the pH of the solution. The hydrolysis of the sodium acetate is given by:

NaC2H3O2 + H2O -> HC2H3

To know more about equivalence point:

https://brainly.com/question/31671460

#SPJ1

In the most acceptable electron-dot structure for carbonyl fluoride, COF2 the central atom is A) C, which is singly-bonded to O. B) C, which is doubly-bonded to O C) O, which is singly-bonded to C D) O, which is doubly-bonded to C

Answers

The most acceptable electron-dot structure for carbonyl fluoride, COF2, shows that the central atom is C, which is doubly-bonded to O.

In the electron-dot structure for COF2, we first identify the total number of valence electrons for the atoms involved. Carbon has 4 valence electrons, while each fluorine has 7 valence electrons, and oxygen has 6 valence electrons. Adding these up, we get a total of 24 valence electrons for COF2.

Next, we arrange the atoms such that the carbon atom is in the center, and the two fluorine atoms are bonded to it. We then draw single bonds between each fluorine atom and the carbon atom, using 4 valence electrons. This leaves us with 16 valence electrons. To satisfy the octet rule for the oxygen atom, we draw a double bond between each oxygen atom and the carbon atom, using 8 valence electrons. This leaves us with 0 valence electrons remaining, which means that we have successfully accounted for all 24 valence electrons.

To know more about atom visit:

https://brainly.com/question/30898688

#SPJ11

A statistics professor finds that when she schedules an office hour for student help, an average of 1.9 students arrive. Find the probability that in a randomly selected office hour, the number of student arrivals is 7.

Answers

To find the probability that in a randomly selected office hour the number of student arrivals is 7, we can use the Poisson distribution formula.

The Poisson distribution is used to model the probability of a certain number of events occurring within a fixed interval of time or space, given the average rate of occurrence.

In this case, the average number of student arrivals is 1.9.

The probability of exactly k events occurring in a Poisson distribution is given by the formula:

P(X=k) = (e^(-λ) * λ^k) / k!

Where λ is the average rate of occurrence.

Using this formula, we can calculate the probability of exactly 7 student arrivals in the given office hour:

P(X=7) = (e^(-1.9) * 1.9^7) / 7!

Calculating this expression will give us the desired probability.

Note: The value of e in the formula represents the base of the natural logarithm and is approximately equal to 2.71828.

 To  learn  more  about Poisson click here:brainly.com/question/31019106

#SPJ11

TRIAL 1 TRIAL 2
Volume of acid ,mL 20.5mL 20.0mL
Intial volume of NaOH in Buret 9.70mL 8.55mL
Final volume of NaOH in buret 30.30mL 28.25mL
volume of NaOH added , mL MB (NaOH) = 0.992M
what is the volume of NaOH added for trial 1 , and trial2?
1) Calculate the concentration of your acetic acid sample for each trial.
What is the average concentration? Use the equation MaVa = MbVb where Ma is
the molarity of the acid, and Va is the volume of the acid. Mb is the molarity of the
base (NaOH), and Vb is the volume of the base.

Answers

The volume of NaOH for trial 1 is 20.6 mL and the concentration of acetic acid is 0.98 M

The volume of the NaOH in trial 2 is 19.05 mL and the concentration of acetic acid is 0.95 M

What is neutralization?

For trial 1;

Volume of the NaOH used = 30.3 - 9.70 = 20.6 mL

Volume of acid used = 20.5mL

Concentration of NaOH = 0.992M

Number of moles of NaOH =  0.992M * 20.6/1000 L

= 0.02 moles

Since the reaction is 1:1, Concentration of the acid = 0.02 moles * 1000/20.5

= 0.98 M

For trial 2

Volume of NaOH = 28.25 - 9.70 = 19.05 mL

Volume of acid used = 20.0mL

Concentration of NaOH = 0.992M

Number of moles of NaOH =  0.992M *  19.05 /1000 L

= 0.019 moles

Concentration of the acid = 0.019 moles * 1000/20 L

= 0.95 M

Learn more about neutralization:https://brainly.com/question/27891712

#SPJ1

determine the most basic nitrogen in each compound. why?

Answers

The most basic nitrogen in a compound refers to the nitrogen atom with the highest ability to attract and donate a proton (H+), resulting in the formation of a stable conjugate acid. To determine the most basic nitrogen, we need to consider factors such as electron density and resonance effects.

To determine the most basic nitrogen in each compound, we need to look at the chemical structure and identify the nitrogen that is the most likely to accept a proton (H+) and form a positive charge. This nitrogen is called the basic nitrogen.


In a compound with multiple nitrogen atoms, the basic nitrogen is typically the one with the lone pair of electrons that is least hindered by neighboring groups or substituents. This is because the lone pair of electrons on the nitrogen is more accessible to an incoming proton.
A long answer to this question would involve analyzing the structures of different compounds and identifying the basic nitrogen in each one.

To  know more about compound visit :-

https://brainly.com/question/13516179

#SPJ11

Calculate the pH for each of the following cases in the titration of 35.0 mL of 0.220 M LiOH(aq), with 0.220 M HCl(aq). (a) before addition of any HCl (b) after addition of 13.5 mL of HCl (c) after addition of 25.5 mL of HCl (d) after the addition of 35.0 mL of HCl (e) after the addition of 40.5 mL of HCl (f) after the addition of 50.0 mL of HCl

Answers

The pH after the addition of 50.0 mL of HCl is 0.89.

The reaction between LiOH and HCl is:

LiOH(aq) + HCl(aq) → LiCl(aq) + [tex]H_2O[/tex](l)

Before any HCl is added, the solution contains only LiOH. Therefore, the initial concentration of hydroxide ions [OH-] is:

[OH-] = 0.220 mol/L

(a) Before any HCl is added:

In this case, the solution is a strong base, and the pH can be calculated using the equation:

pH = 14 - pOH

pH = 14 - log([OH-]) = 14 - log(0.220) = 11.66

(b) After addition of 13.5 mL of HCl:

The moles of HCl added is:

moles of HCl = (0.220 mol/L)(0.0135 L) = 0.00297 mol

After the addition of HCl, the total volume of the solution is:

V = 35.0 mL + 13.5 mL = 48.5 mL = 0.0485 L

The moles of LiOH remaining is:

moles of LiOH = (0.220 mol/L)(0.0350 L) = 0.00770 mol

The moles of OH- remaining is:

moles of OH- = 0.00770 mol - 0.00297 mol = 0.00473 mol

The concentration of OH- ions is:

[OH-] = moles of OH-/V = 0.00473 mol/0.0485 L = 0.0975 mol/L

The pOH is:

pOH = -log[OH-] = -log(0.0975) = 1.01

The pH is:

pH = 14 - pOH = 14 - 1.01 = 12.99

(c) After addition of 25.5 mL of HCl:

The moles of HCl added is:

moles of HCl = (0.220 mol/L)(0.0255 L) = 0.00561 mol

After the addition of HCl, the total volume of the solution is:

V = 35.0 mL + 25.5 mL = 60.5 mL = 0.0605 L

The moles of LiOH remaining is:

moles of LiOH = (0.220 mol/L)(0.0350 L) = 0.00770 mol

The moles of OH- remaining is:

moles of OH- = 0.00770 mol - 0.00561 mol = 0.00209 mol

The concentration of OH- ions is:

[OH-] = moles of OH-/V = 0.00209 mol/0.0605 L = 0.0345 mol/L

The pOH is:

pOH = -log[OH-] = -log(0.0345) = 1.46

The pH is:

pH = 14 - pOH = 14 - 1.46 = 12.54

(d) After addition of 35.0 mL of HCl:

The moles of HCl added is:

moles of HCl = (0.220 mol/L)(0.0350 L) = 0.00770 mol

After the addition of HCl, the total volume of the solution is:

V = 35.0 mL + 35.0 mL = 70.0 mL = 0.0700 L

The moles of LiOH remaining is:

moles of LiOH

(f) after the addition of 50.0 mL of HCl:

Before adding any HCl, the solution contains only LiOH, so we can use the Kb of LiOH to calculate the pOH and then convert to pH:

Kb for LiOH = Kw/Ka = 1.0 × 10^-14/2.0 × 10^-11 = 5.0 × 10^-4

pOH = -log(5.0 × 10^-4) = 3.3

pH = 14 - pOH = 10.7

After adding 50.0 mL of HCl, a total of 35.0 + 50.0 = 85.0 mL of solution is present, and the concentration of HCl is:

(0.220 M/L) × (50.0 mL/85.0 mL) = 0.129 M

This is a strong acid, so we can assume complete dissociation and calculate the pH using the concentration of H+:

pH = -log[H+] = -log(0.129) = 0.89

For more question on pH click on

https://brainly.com/question/172153

#SPJ11

LiOH(aq) and HCl(aq) react in a 1:1 molar ratio, meaning that the number of moles of HCl added to the solution is equal to the number of moles of LiOH originally present.

(a) Before the addition of any HCl:

The initial concentration of LiOH is 0.220 M, so the initial concentration of hydroxide ions, [OH-], can be calculated using the following equation:

LiOH → Li+ + OH-

Thus, [OH-] = 0.220 M.

The pOH of the solution can be calculated using the following equation:

pOH = -log[OH-] = -log(0.220) = 0.657

The pH of the solution can be calculated using the following equation:

pH = 14 - pOH = 14 - 0.657 = 13.343

Therefore, the pH of the solution before the addition of any HCl is 13.343.

(b) After the addition of 13.5 mL of HCl:

The amount of HCl added can be calculated using the following equation:

n(HCl) = C(HCl) x V(HCl) = 0.220 M x 0.0135 L = 0.00297 mol

Since HCl and LiOH react in a 1:1 molar ratio, the amount of LiOH remaining in the solution can be calculated as follows:

n(LiOH) = n(LiOH initial) - n(HCl added) = 0.220 M x 0.0350 L - 0.00297 mol = 0.00523 mol

The new volume of the solution is 35.0 mL + 13.5 mL = 48.5 mL.

The new concentration of LiOH can be calculated as follows:

C(LiOH) = n(LiOH) / V(solution) = 0.00523 mol / 0.0485 L = 0.108 M

The new concentration of hydroxide ions can be calculated using the following equation:

LiOH + HCl → LiCl + H2O

The reaction consumes 0.00297 mol of hydroxide ions, so the new concentration of hydroxide ions is:

[OH-] = (0.220 M x 0.0350 L - 0.00297 mol) / 0.0485 L = 0.064 M

The pOH of the solution can be calculated using the following equation:

pOH = -log[OH-] = -log(0.064) = 1.194

The pH of the solution can be calculated using the following equation:

pH = 14 - pOH = 14 - 1.194 = 12.806

Therefore, the pH of the solution after the addition of 13.5 mL of HCl is 12.806.

(c) After the addition of 25.5 mL of HCl:

The amount of HCl added can be calculated using the same equation as before:

n(HCl) = C(HCl) x V(HCl) = 0.220 M x 0.0255 L = 0.00561 mol

The amount of LiOH remaining in the solution can be calculated as follows:

n(LiOH) = n(LiOH initial) - n(HCl added) = 0.220 M x 0.0350 L - 0.00561 mol = 0.00389 mol

The new volume of the solution is 35.0 mL + 25.5 mL = 60.5 mL.

Learn more about LiOH(aq) and HCl(aq) here:

https://brainly.com/question/7082537

#SPJ11

(A) Calculate (in MeV) the binding energy per nucleon for 56Fe. (B) Calculate (in MeV) the binding energy per nucleon for 207Pb.

Answers

The binding energy per nucleon for 56Fe is 8.802 MeV/nucleon, and the binding energy per nucleon for 207Pb is 7.861 MeV/nucleon.

The mass of a 56Fe nucleus is 55.934941 u, which is equivalent to 931.502 MeV/c² (using E=mc²). Therefore, the total binding energy of the nucleus will be;

B = (56 nucleons) × (8.794 MeV/nucleon) = 492.864 MeV

The binding energy per nucleon is then;

B/A = 492.864 MeV / 56 nucleons

= 8.802 MeV/nucleon

Therefore, the binding energy is 8.802 MeV.

The mass of a 207Pb nucleus is 206.975896 u, which is equivalent to 3,842.943 MeV/c². Therefore, the total binding energy of the nucleus is;

B = (207 nucleons) × (7.870 MeV/nucleon) = 1,627.049 MeV

The binding energy per nucleon is then;

B/A = 1,627.049 MeV / 207 nucleons

= 7.861 MeV/nucleon

Therefore, the binding energy is 7.861 MeV.

To know more about binding energy here

https://brainly.com/question/31745060

#SPJ4

identify the least stable conformation for 1-tert-butyl-3-methylcyclohexane.

Answers

The least stable conformation for 1-tert-butyl-3-methylcyclohexane would be the twist-boat conformation where the tert-butyl and methyl groups are in axial positions, resulting in the maximum steric hindrance.

1-tert-butyl-3-methylcyclohexane is a cyclohexane ring with a tert-butyl group and a methyl group attached to it. To identify the least stable conformation, we need to consider the steric hindrance between the groups and their orientation.

One method to visualize different conformations is to use Newman projections, which show the molecule from the point of view of looking down the C-C bond.

For example, the Newman projection for 1-tert-butyl-3-methylcyclohexane in its most stable conformation would show the tert-butyl group in an equatorial position and the methyl group in an axial position. This is the most stable conformation because it minimizes the steric hindrance between the groups.

To identify the least stable conformation, we need to find the conformation that maximizes the steric hindrance. In this case, the tert-butyl group and the methyl group should be in axial positions to create the most steric hindrance.

This would result in a twist-boat conformation where the carbon atoms in the ring are no longer coplanar. This conformation is significantly less stable than the most stable conformation, which is a chair conformation, due to the increased steric hindrance.

For more question on conformation visit:

https://brainly.com/question/30579110

#SPJ11

consider the molecule cocl2. (cl = chlorine not carbon and iodine) what is the hybridization of the central atom?

Answers

The hybridization of the central atom in COCl₂ is sp³.

The central atom in COCl₂ is carbon, which has four valence electrons. To form the bonds with two chlorine atoms and one oxygen atom, carbon needs to hybridize its orbitals. It combines one s and three p orbitals to form four sp³ hybrid orbitals that are directed towards the corners of a tetrahedron.

The carbon atom then forms a sigma bond with each of the three surrounding atoms using these sp³ hybrid orbitals, while the fourth hybrid orbital contains a lone pair of electrons. This hybridization allows for the geometry of the molecule to be tetrahedral with bond angles of approximately 109.5 degrees.

Hybridization is a concept used to describe the bonding in molecules. It refers to the mixing of atomic orbitals to form new hybrid orbitals that are involved in bonding. In the case of COCl₂ , the central atom is carbon, which has four valence electrons and can form four covalent bonds.

The molecule has a trigonal planar geometry with the chlorine atoms occupying three of the four positions around carbon. This suggests that the carbon atom is sp² hybridized, meaning that it has mixed one s orbital and two p orbitals to form three hybrid orbitals. These hybrid orbitals are arranged in a trigonal planar geometry, with 120° angles between them. The remaining p orbital is perpendicular to the plane of the hybrid orbitals and is used to form a pi bond with the oxygen atom.

learn more about   orbitals here:

https://brainly.com/question/31962087

#SPJ11

Be sure to answer all parts. What acetylide anion and alkyl chloride can be used to prepare the following alkyne? View stnctute Acetylide Anion view stnucture

Answers

To provide a concise answer, I'll need the specific structure of the alkyne you are referring to. However, in general, to prepare an alkyne using an acetylide anion and an alkyl chloride, follow these steps:

To prepare the alkyne shown in the provided structure, we need to use a specific acetylide anion and alkyl chloride. The acetylide anion that we need to use is ethynide anion, which has the structure shown in the provided image. The alkyl chloride that we need to use is 1-bromo-2-chloropropane, which has the structure shown below:


In summary, to prepare the alkyne shown in the provided structure, we need to use ethynide anion and 1-bromo-2-chloropropane in a nucleophilic substitution reaction.

To know more about alkyne visit :-

https://brainly.com/question/9620187

#SPJ11

Choose the relationship that is INCORRECT a. Na+ = 1 Atrial Natriuretic Hormone (ANH) b. Na+ = 1 Atrial Natriuretic Hormone (ANH) c. Na+ = 1 Anti-diuretic hormone (ADH) d. Na+ = | Aldosterone (ALDO)

Answers

The relationship that is INCORRECT is Na+ = | Aldosterone (ALDO). So the correct answer is option d.

The relationship is incorrect because aldosterone promotes the reabsorption of sodium ions, not excretion, so it would not be expected to have a 1:1 relationship with Na+.

The correct relationship is Na+ = 1 Atrial Natriuretic Hormone (ANH), which promotes the excretion of sodium ions, and is therefore inversely related to Na+ levels. Na+ = 1 Anti-diuretic hormone (ADH) is also a correct relationship, as ADH regulates water balance in the body and can indirectly affect Na+ levels.

So option d is the correct answer.

To learn more about Atrial Natriuretic Hormone: https://brainly.com/question/9360479

#SPJ11

Two atoms of cesium (Cs) can form a Cs molecule. The equilibrium distance between the nuclei in a molecule is 0.447 Calculate th…
Two atoms of cesium (Cs) can form a Cs molecule. The equilibrium distance between the nuclei in a molecule is 0.447 Calculate the moment of inertia about an axis through the center of mass of the two nuclei and perpendicular to the line joining them. The mass of a cesium atom is 2.2 .

Answers

The moment of inertia about an axis through the center of mass of the two nuclei and perpendicular to the line joining them is 0.223 kg⋅m².

To calculate the moment of inertia, we need to use the formula:

I = μr²

where I is the moment of inertia, μ is the reduced mass, and r is the distance between the two nuclei.

First, we need to calculate the reduced mass:

μ = m₁m₂ / (m₁ + m₂)

where m₁ and m₂ are the masses of the two Cs atoms.

Since we have two Cs atoms, the mass of each is 2.2, so we have:

μ = (2.2)(2.2) / (2.2 + 2.2) = 1.1

Now we can calculate the moment of inertia:

I = (1.1) (0.447)²

 = 0.223 kg⋅m²

To know more about the moment of inertia, click below.

https://brainly.com/question/15246709

#SPJ11

a piece of metal with a mass of 2185 g absorbs 431 j at 23 0c . its temperature changes to 24 oc. what is the specific heat of the metal?

Answers

The specific heat of the metal is 0.196 J/g°C.

To calculate the specific heat of the metal, we can use the formula:

q = m * c * ΔT

Where q is the amount of heat absorbed, m is the mass of the metal, c is the specific heat of the metal, and ΔT is the change in temperature.

In this case, we know that the mass of the metal is 2185 g and the heat absorbed is 431 J. We also know that the initial temperature is 23°C and the final temperature is 24°C.


First, we need to calculate the change in temperature:
ΔT = final temperature - initial temperature
ΔT = 24°C - 23°C
ΔT = 1°C

Now we can plug in the values we know and solve for c:

431 J = 2185 g * c * 1°C
c = 431 J / (2185 g * 1°C)

c = 0.196 J/g°C

Therefore, the specific heat of the metal is 0.196 J/g°C. This means that it takes 0.196 J of energy to raise the temperature of 1 gram of the metal by 1°C.

To know more about specific heat, refer here:

https://brainly.com/question/29766819#

#SPJ11

Calculate the value of AGº (in kJ) for the following reaction3 NO(g) -> N2O(g) + NO2(g), using the values of ΔGfº (in kJ/mol) given below.• ΔGfº (NO) = 84 • ΔGfº (NO2) = 48 • ΔGfº (N20) = 107 Enter value as an integer (value + 2)

Answers

The value of AGº for the reaction 3 NO(g) -> N2O(g) + NO2(g) is -50 kJ (84 + 48 - 3*107 = -50). To calculate the standard free energy change (ΔGº) for a reaction, we use the formula:

ΔGº = ΣnΔGfº(products) - ΣmΔGfº(reactants)

Where n and m are the stoichiometric coefficients of the products and reactants, respectively. ΔGfº is the standard free energy of formation, which is the free energy change when one mole of a compound is formed from its constituent elements in their standard states (usually at 25°C and 1 atm pressure).

Using the given values of ΔGfº for NO, NO2, and N2O, we can substitute them in the above formula to get the value of ΔGº for the reaction.

ΔGº = [1ΔGfº(N2O) + 1ΔGfº(NO2)] - [3*ΔGfº(NO)]

Substituting the values, we get:

ΔGº = [1*(107) + 1*(48)] - [3*(84)]

ΔGº = -50 kJ

A negative value for ΔGº indicates that the reaction is thermodynamically favorable, meaning that it can occur spontaneously.

learn more about reaction here:

https://brainly.com/question/28984750

#SPJ11

For a galvanic cell using Fe | Fe2+(0.25 M) and Pb | Pb2+0.25 M) half-cells, which of the following statements is correct?Fe2+(aq)+2e−⇌Fe(s); E = -0.41 VPb2+(aq)+2e−⇌ Pb(s); E = -0.13 Va. The iron electrode is the cathode.b. When the cell has completely discharged, the concentration of Pb2+ is zeroc. The mass of the iron electrode increases during discharge.d. The concentration of Pb2+ decreases during discharge.

Answers

The correct statement for the galvanic cell using Fe | Fe²⁺(0.25 M) and Pb | Pb²⁺(0.25 M) half-cells is:  The iron electrode is the cathode. Option a is correct.

This is because the half-reaction with the higher reduction potential (more positive E value) will occur at the cathode, which in this case is Fe²⁺(aq)+2e−⇌Fe(s); E = -0.41 V. Pb²⁺(aq)+2e−⇌ Pb(s); E = -0.13 V will occur at the anode.
b. When the cell has completely discharged, the concentration of Pb²⁺ is zero.
This is not a correct statement as the concentration of Pb²⁺ will still be present in the half-cell. However, it will be depleted as the cell discharges.
c. The mass of the iron electrode increases during discharge.
This is also not a correct statement as the mass of the iron electrode will decrease as it is oxidized to Fe²⁺.
d. The concentration of Pb²⁺ decreases during discharge.
This is a  statement as Pb²⁺ ions will be reduced to Pb(s) at the Pb electrode during discharge, galvanic cell leading to a decrease in the concentration of Pb²⁺ in the half-cell.

Learn more about galvanic cell here

https://brainly.com/question/13031093

#SPJ11

How many moles of a gas would occupy 157 L at 132 kPa and -16.8°C

Answers

The number of moles of gas occupying 157 L at 132 kPa and -16.8°C is approximately 9.34 mol.

To determine the number of moles of gas, we can use the Ideal Gas Law:

PV = nRT

Where:

P = pressure in kilopascals (kPa)

V = volume in liters (L)

n = number of moles of gas

R = gas constant = 8.31 J/(mol*K)

T = temperature in Kelvin (K)

First, we need to convert the temperature from Celsius to Kelvin:

T = -16.8°C + 273.15

= 256.35 K

Now we can plug in the values:

(132 kPa)(157 L) = n(8.31 J/(mol*K))(256.35 K)

Simplifying and solving for n:

n = (132 kPa)(157 L) / (8.31 J/(mol*K))(256.35 K)

= 9.34 mol

For more question on moles of gas click on

https://brainly.com/question/29451300

#SPJ11

When designing equipment for high-temperature and high-pressure service, the maximum allowable stress as a function of temperature of the material of construc- tion is of great importance. Consider a cylindrical vessel shell that is to be designed for pressure of 150 bar (design pressure). The diameter of the vessel is 3.2 m, it is 15 m long, and a corrosion allowance of 6.35 mm (1/4") is to be used. Construct a table that shows the thickness of the vessel walls in the temperature range of 300 to 500°C (in 20°C increments) if the materials of construction are (a) ASME SA515-grade carbon steel and (b) ASME SA-240-grade 316 stainless steel

Answers

when designing equipment for high-temperature and high-pressure service, it is important to consider the maximum allowable stress as a function of temperature of the material of construction.

Designing equipment for high-temperature and high-pressure service requires careful consideration of various factors, including the maximum allowable stress as a function of temperature of the material of construction. When designing a cylindrical vessel shell for a pressure of 150 bar, it is important to determine the appropriate thickness of the vessel walls to ensure its safety and reliability.
To construct a table that shows the thickness of the vessel walls in the temperature range of 300 to 500°C (in 20°C increments), we need to consider two different materials of construction: ASME SA515-grade carbon steel and ASME SA-240-grade 316 stainless steel.
For ASME SA515-grade carbon steel, the maximum allowable stress is 17,500 psi at 400°C. Therefore, the required thickness of the vessel walls for pressures of 150 bar at different temperatures would be:
- 300°C: 19.8 mm
- 320°C: 20.7 mm
- 340°C: 21.7 mm
- 360°C: 22.7 mm
- 380°C: 23.7 mm
- 400°C: 24.7 mm
- 420°C: 25.8 mm
- 440°C: 26.8 mm
- 460°C: 27.8 mm
- 480°C: 28.8 mm
- 500°C: 29.8 mm
For ASME SA-240-grade 316 stainless steel, the maximum allowable stress is 13,750 psi at 400°C. Therefore, the required thickness of the vessel walls for pressures of 150 bar at different temperatures would be:
- 300°C: 11.8 mm
- 320°C: 12.3 mm
- 340°C: 12.8 mm
- 360°C: 13.4 mm
- 380°C: 13.9 mm
- 400°C: 14.4 mm
- 420°C: 14.9 mm
- 440°C: 15.4 mm
- 460°C: 16.0 mm
- 480°C: 16.5 mm
- 500°C: 17.0 mm
In summary, when designing equipment for high-temperature and high-pressure service, it is important to consider the maximum allowable stress as a function of temperature of the material of construction. By using the appropriate thickness of vessel walls for pressures of 150 bar and different temperatures, we can ensure the safety and reliability of the equipment.

To know more about pressure visit :

https://brainly.com/question/18107358

#SPJ11

1.00 mL of water at 25 C is heated to 100 C, at which point it boils at an atmospheric pressure of 1 atm and is vaporized. What is the difference in volume (in mL) when this happens? (At 25 C, liquid water has a density of 0.997 g/mL.)

Answers

1.00 mL of water at 25°C is heated to 100°C, where it boils at 1 atm air pressure and is vaporized. The volume difference is 1989 mL.

The volume difference between liquid water and steam at 100°C can be calculated using the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature in Kelvin.

Assuming the water behaves as an ideal gas, we can use the equation to calculate the volume of water vapor produced:

n = m/M, where m is the mass of the water and M is the molar mass of water.

m = 1.00 mL x 0.997 g/mL = 0.997 g

M = 18.015 g/mol

n = 0.997 g / 18.015 g/mol = 0.0553 mol

The initial pressure is 1 atm and the final pressure is also 1 atm, since the water is boiling at atmospheric pressure. We also know that the temperature is 100°C = 373 K.

Using the ideal gas law, we can solve for the final volume:

V = nRT/P = (0.0553 mol)(0.08206 L·atm/(mol·K))(373 K)/(1 atm) = 1.99 L

Therefore, the difference in volume is:

1.99 L - 0.001 L = 1.989 L = 1989 mL

The volume of the water vapor is much larger than the volume of the liquid water, which is why steam can cause explosions if confined in a closed container.

To know more about the Density, here

https://brainly.com/question/15966885

#SPJ4

Consider the following reaction between oxides of nitrogen: NO2(g)+N2O(g)?3NO(g)
Part A
Use data in Appendix C in the textbook to predict how ?G? for the reaction varies with increasing temperature.

Answers

The reaction is spontaneous at all temperatures, so ?G? decreases as temperature increases.

Appendix C provides standard free energy of formation values for various compounds at 298 K. Using these values, we can calculate the standard free energy change (?G°) for the reaction at 298 K. The value of ?G° is negative, indicating that the reaction is spontaneous under standard conditions. Since ?G° is negative, ?G will decrease with increasing temperature according to the equation ?G = ?H - T?S. As the temperature increases, the positive T?S term becomes more dominant, causing ?G to decrease. Therefore, the reaction remains spontaneous at all temperatures, and ?G becomes more negative as the temperature increases.

Learn more about reaction here:

https://brainly.com/question/28984750

#SPJ11

4-nitrophenol is more acidic than phenol due to resonance stabilization of the conjugate base. Based on this reasoning, do you expect 3-nitrophenol to be more acidic than 4-nitrophenol, less acidic, or about the same? Explain your answer and draw all relevant resonance structures.
I'm not even sure what resonance stabilization is =/

Answers

Resonance stabilization refers to the distribution of electrons within a molecule or ion due to the presence of multiple resonance structures. In the case of 4-nitrophenol, the nitro group (-NO₂) can donate its electron density to the phenol ring, creating a resonance structure where the negative charge is spread over both the oxygen atom and the adjacent carbon atom. This makes the conjugate base of 4-nitrophenol more stable and therefore more acidic than the conjugate base of phenol.


Now, when it comes to 3-nitrophenol, the nitro group is attached to a different carbon atom on the phenol ring. This means that the resonance stabilization of the conjugate base will be different. Specifically, the negative charge will be spread over the oxygen atom and a different carbon atom compared to 4-nitrophenol. Therefore, we cannot assume that 3-nitrophenol will be more or less acidic than 4-nitrophenol based solely on the presence of the nitro group. Instead, we would need to compare the relative stability of the two conjugate bases by drawing their resonance structures.

To draw the resonance structures for 3-nitrophenol, we can first deprotonate it to form the conjugate base. This will result in a negatively charged oxygen atom attached to the phenol ring. We can then move the double bond between the oxygen and the carbon atom adjacent to the nitro group to form a resonance structure where the negative charge is spread over the oxygen and the adjacent carbon. Finally, we can move the double bond between the carbon atom adjacent to the nitro group and the nitrogen atom of the nitro group to form a second resonance structure where the negative charge is spread over the oxygen and the nitrogen. These resonance structures are shown below:


By comparing the stability of the two conjugate bases (one from 3-nitrophenol and one from 4-nitrophenol) based on their respective resonance structures, we can determine which is more acidic. However, without knowing the pKa values for these compounds, we cannot make a definitive prediction about their relative acidity.

To know more about resonance structures, visit:

https://brainly.com/question/29547999

#SPJ11

when considering the relationship among standard free energy change, equilibrium constants, and standard cell potential, the equation δg∘=−nfe∘cell is _______.

Answers

The equation δG° = -nFE°cell relates the standard free energy change (ΔG°), the number of moles of electrons transferred (n), and the standard cell potential (E°cell) of a redox reaction.

This equation is derived from the relationship between Gibbs free energy and the work done by a cell in a reversible process.

The equation shows that the standard free energy change is directly proportional to the number of moles of electrons transferred and the standard cell potential.

The negative sign indicates that the reaction is spontaneous when ΔG° is negative.

This equation is useful in predicting the feasibility of a redox reaction and can be used to calculate the equilibrium constant for the reaction using the relationship ΔG° = -RT ln K.

To know more about redox reaction, refer here:

https://brainly.com/question/13293425#

#SPJ11

how many milliliters of an 15m hydrogen peroxide solution is required to prepare 250ml of 0.85m solution?

Answers

To calculate the required milliliters of 15m hydrogen peroxide solution, we need to use the formula:
M1V1 = M2V2
Where M1 is the initial concentration, V1 is the initial volume, M2 is the final concentration, and V2 is the final volume.
Substituting the given values, we get:
15m x V1 = 0.85m x 250ml
V1 = (0.85m x 250ml) / 15m



Therefore, 14.17ml of a 15m hydrogen peroxide solution is required to prepare 250ml of 0.85m solution.
To find out how many milliliters of a 15M hydrogen peroxide solution are required to prepare 250mL of a 0.85M solution, you can use the dilution formula:
M1V1 = M2V2
Where M1 and V1 represent the initial molarity and volume, and M2 and V2 represent the final molarity and volume. In this case, M1 is 15M, M2 is 0.85M, and V2 is 250mL. You need to find V1.

Rearranging the formula to solve for V1:
V1 = (M2V2) / M1
Now, plug in the values:
V1 = (0.85M * 250mL) / 15M
V1 = (212.5) / 15
V1 ≈ 14.17mL
So, approximately 14.17 milliliters of a 15M hydrogen peroxide solution are required to prepare 250mL of a 0.85M solution.

To know more about Hydrogen Peroxide visit-

https://brainly.com/question/29102186

#SPJ11

Which compound is an alcohol? a. CH3OCH3 b. CH4 c. C2H6 d. C6H5OH e. CH3NH2

Answers

The compound that is an alcohol is option d, C6H5OH. This is because the compound has the -OH functional group, which is the defining feature of alcohols. Option a, CH3OCH3, is a compound called dimethyl ether and is not an alcohol. Option b, CH4, is methane and does not have any functional groups.

Option c, C2H6, is ethane and is also not an alcohol. Option e, CH3NH2, is methylamine and does not have an -OH functional group, so it is also not an alcohol.

The options are a. CH3OCH3, b. CH4, c. C2H6, d. C6H5OH, and e. CH3NH2.

The compound that is an alcohol is d. C6H5OH. Alcohols are organic compounds containing a hydroxyl (-OH) group attached to a carbon atom. In C6H5OH, also known as phenol, the hydroxyl group is bonded to a carbon atom in a benzene ring, fulfilling the criteria of an alcohol. The other compounds are not alcohols: a. CH3OCH3 is an ether, b. CH4 is a hydrocarbon (methane), c. C2H6 is a hydrocarbon (ethane), and e. CH3NH2 is an amine (methylamine).

To know more about Alcohol visit:

https://brainly.com/question/30829120

#SPJ11

if you start with 1.115 g of aluminum, how many grams of alum should be obtained?

Answers

To calculate the grams of alum that should be obtained from 1.115 g of aluminum, you need to know the balanced chemical equation involving aluminum and alum, as well as the molar masses of the substances involved. Alum is a general term for double sulfates with the formula M2SO4·Al2(SO4)3·24H2O, where M is a monovalent metal (e.g potassium, sodium). Assuming potassium alum (KAl(SO4)2·12H2O) as an example: 2 Al + 2 K2SO4 + 4 H2SO4 + 24 H2O → 2 KAl(SO4)2·12H2O Now, calculate the molar masses: - Aluminum (Al)= 26.98g/mol - Potassium alum (KAl(SO4)2·12H2O): 474.38 g/mol Determine the moles of aluminum: 1.115g Al × (1 mol Al / 26.98g Al) = 0.0413 mol Al Using the stoichiometry of the balanced equation: 0.0413 mol Al × (1 mol KAl(SO4)2·12H2O / 1 mol Al) = 0.0413 mol KAl(SO4)2·12H2O Calculate the grams of potassium alum= 0.0413 mol KAl(SO4)2·12H2O × (474.38 g KAl(SO4)2·12H2O / 1 mol KAl(SO4)2·12H2O) = 19.57 g KAl(SO4)2·12H2O So, if you start with 1.115 g of aluminum, you should obtain approximately 19.57 g of potassium alum. Note that this answer is specific to potassium alum and may vary for other types of alum.

About Aluminum

Aluminum is the most abundant metal. Aluminum is not a heavy metal, but it is an element that accounts for about 8% of the earth's surface and is the third most abundant. An equation is a mathematical statement in the form of a symbol that states that two things are exactly the same. Equations are written with an equal sign, as follows: x + 3 = 5, which states that the value x = 2. 2x + 3 = 5, which states that the value x = 1. The statement above is an equation.

Learn more about aluminum at https://brainly.com/question/246454

#SPJ11

the following two half-reactions take place in a galvanic cell. at standard conditions, what species are produced at each electrode? sn2 2e– → sn e° = –0.14 v cu2 2e– → cu e° = 0.34 v

Answers

At the cathode, Sn will be produced and at the anode, Cu will be produced.

In a galvanic cell, the species that is reduced will be produced at the cathode, while the species that is oxidized will be produced at the anode.

The half-reaction: [tex]Sn^{2}[/tex]+ + 2[tex]e^{-}[/tex] → Sn has a standard reduction potential (E°) of -0.14 V. Since the reduction potential is negative, this half-reaction is oxidizing and the species Sn^2+ is being reduced to Sn. Therefore, Sn will be produced at the cathode.

The half-reaction: [tex]Cu^{2}[/tex]+ + 2[tex]e^{-}[/tex] → Cu has a standard reduction potential (E°) of 0.34 V. Since the reduction potential is positive, this half-reaction is reducing and the species [tex]Cu^{2}[/tex]+ is being oxidized to Cu. Therefore, Cu will be produced at the anode.

Overall, the cell reaction can be written as:

Sn^2+ + Cu → Sn + Cu^2+

At the cathode, Sn will be produced and at the anode, Cu will be produced.

Know more about     here:

#SPJ11

Other Questions
two key concepts that underlie management's design and implementation of internal control are MA.7.AR.4.1Johnny and Eleanor went to their local gas station to collect information about the cost offuel for compact cars. They observed both regular and premium gas purchases that day andrecorded their data in the table below.Gallons Purchased 11.5 7.21014.3 6.89.7Cost$25.23 $15.80 $21.94 $40.63 $14.92 $27.56Part A. Is there a proportional relationship between the number of gallons of gas sold andthe cost? Explain your answer.Part B. If the relationship is not proportional, which data value or values should bechanged to make the relationship proportional? What could explain thisdifference? Scores on a final exam in a large class were normally distributed with a mean of 75 and a standard deviation of 8. What percent of the students scored above an 83? Which one of these people is not Deviant? Group of answer choices:Martin Luther KingRosa ParkGeorge WashingtonAdolph HIlterNone, they are all Deviants 1. What is the source of the wave puise? 2. How do you describe the motion of your hand as you create the pulse? 3. How do you describe the motion of the pulse with respect to the source? What is it an advantage to periodically monitor a corporation's risk management treatment plan? true/false. let f be a composition of two reflections in two hyperbolic lines prove that if the two lines are parallel, then f is parabolic. The automobile assembly plant you manage has a Cobb-Douglas production function given byP = 20x0. 5y0. 5where P is the number of automobiles it produces per year, x is the number of employees, and y is the daily operating budget (in dollars). Assume that you maintain a constant work force of 130 workers and wish to increase production in order to meet a demand that is increasing by 80 automobiles per year. The current demand is 1200 automobiles per year. How fast should your daily operating budget be increasing? HINT [See Example 4. ] (Round your answer to the nearest cent. )$ Incorrect: Your answer is incorrect. Per year the ________________ movement reacted against industrialization and sought to produce functional objects with high aesthetic value for a wide public. could the following bit strings have been received correctly if the last bit is a parity bit? a) 1000011 b) 111111000 c) 10101010101 d) 110111011100 Trade negotiations are repeated each year. In a repeated game scenario it is likely that a. Chinese negotiators will assume that United States negotiators will never retaliate for a noncooperative trade policy. b. both parties will assume that the other will choose a strategy that optimizes the total value of the trade relationship. c. the Nash equilibrium will provide the largest possible gains to each party. d. cach will follow a dominant strategy based entirely on self-interest. true or false: one way to generate a zero-mean wss process with a desired psd is to pass white noise through an appropriate lti system. question 1 options: true false public class Main extends Exception { 2 3 public Main(){} 4- public Main(string str) { 5 super(str); } 7 int importantData = 5; 9 public static void main(String[] args) { Main t = new Main(); t.importantMethod(); 12 } 13 14 private void importantMethod(){ 15 if( importantData > 5) 16 throw new Main("Important data is invalid"); 17 else 18 System.out.println(importantData); 19 } } 20 }What is the output?a. No Outputb. 5c. Exception-Important Data is invalidd. Compilation error a stock is currently selling for $99.75 and is expected to sell for $105.71 in 1 year. if the company pays a dividend of $0.71 what is the stock's hpr? For this assignment, you will create a time line of key dates and journeys by European explorers. can anyone help me with this?? im confused on what i have to do + what to put down a solution containing 15.0ml of 4.00mhno3 is diluted to a volume of 1.00l. what is the ph of the solution? round your answer to two decimal places. k-4j+12, when k=8, j=2 The Nut Shack sells cashews for $6.80 per pound and Brazil nuts for $4.70 per pound. How much ofeach type should be used to make a 37 pound mixture that sells for $5.78 per pound?Round answers to the nearest pound.pounds of cashewspounds of Brazil nuts> Next Question TRUE/FALSE. a class that implements an interface does not have to provide an implementation for all of the members of the interface. an amplifier has an open-circuit voltage gain of 120. with a 11 k load connected, the voltage gain is found to be only 50..a) Find the output resistance of the amplifier.