use toolpak t-test: two-sample assuming unequal variances with variable 1 as the change in psi for the patriots and variable 2 as the change in psi for the colts.

Answers

Answer 1

The Patriot's sample average change: -1.391

The Colts sample average change: -0.375

The difference in the teams average changes -1.016

How to perform two sample t-test

The difference in the teams average changes: (-1.391) - (-0.375) = -1.016

To find the t-statistic for the hypothesis test, we can use the formula

[tex]t = (X_1 - X-2) / (s_1^2/n_1 + s_2^2/n_2)^0.5[/tex]

where X1 and X2 are the sample means, s1 and s2 are the sample standard deviations, and n1 and n2 are the sample sizes.

Using the sample data

X1 = -1.391, X2 = -0.375

s1 = 0.858, s2 = 0.605

n1 = n2 = 12

Substitute the values

[tex]t = (-1.391 - (-0.375)) / (0.858^2/12 + 0.605^2/12)^0.5[/tex]

≈ -2.145

Therefore, the t-statistic for the hypothesis test is approximately -2.145.

To find the p-value for the hypothesis test,

From a t-distribution table with 22 df and the absolute value of the t-statistic. Using a two-tailed test at the 5% significance level, the p-value is approximately 0.042.

Therefore, the p-value for the hypothesis test is approximately 0.042.

Learn more on two-sample t-test on https://brainly.com/question/13201390

#SPJ4

Question is incomplete, find the complete question below

Question 13 1 pts Use ToolPak t-Test: Two-Sample Assuming Unequal Variances with Variable 1 as the change in PSI for the Patriots and Variable 2 as the change in PSI for the Colts. a. The Patriot's sample average change: [Choose b. The Colts sample average change: [Choose) c. The difference in the teams average changes Choose) e. The t-statistic for the hypothesis testi Choose) The p-value for the hypothesis test: [Choose Team P P P 12.5 AaaaaAAAUUUU PSI Halftim PSI Pregame 11.5 12.5 10.85 12.5 11.15 12.5 10.7 12.5 11.1 12.5 11.6 11.85 12.5 11.1 12.5 10.95 12.5 10.5 12.5 10.9 12.5 12.7 13 12.75 13 12.5 13 12.55 13 ak t-Test: Two-Sample Assuming Unequal Variances with Variable 1 as the change in PSI for ets and Variable 2 as the change in PSI for the Colts. triot's sample average change: olts sample average change: [Choose ] -1.391 -0.375 2.16 -7.518 0.162 -1.016 4.39E-06 (0.00000439) difference in the teams average S: t-statistic for the hypothesis test: [Choose) p-value for the hypothesis test: [Choose


Related Questions

4. Determine a scalar equation for the plane through the points M(1, 2, 3) and N(3,2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0. (Thinking - 2)

Answers

The normal vector of the desired plane is (6, 0, -12), and a scalar equation for the plane is 6x - 12z + k = 0, where k is a constant that can be determined by substituting the coordinates of one of the given points, such as M(1, 2, 3).

A scalar equation for the plane through points M(1, 2, 3) and N(3, 2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0 is:

3x + 2y + 6z + k = 0,

where k is a constant to be determined.

To find a plane perpendicular to the given plane, we can use the fact that the normal vector of the desired plane will be parallel to the normal vector of the given plane.

The given plane has a normal vector of (3, 2, 6) since its equation is 3x + 2y + 6z + 1 = 0.

To determine the normal vector of the desired plane, we can calculate the vector between the two given points: MN = N - M = (3 - 1, 2 - 2, -1 - 3) = (2, 0, -4).

Now, we need to find a scalar multiple of (2, 0, -4) that is parallel to (3, 2, 6). By inspection, we can see that if we multiply (2, 0, -4) by 3, we get (6, 0, -12), which is parallel to (3, 2, 6).

to learn more about scalar equation click here:

brainly.com/question/33063973

#SPJ11

A box contains 12 distinct colored balls (for instance, we could label them as 1, 2, ..., 12 to distinguish them). Three of them are red, four are yellow, and five are green. Three balls are selected at random from the box, with replacement. Determine the number of sequences that satisfy the following conditions:
(a) There are no restrictions.
(b) The first ball is red, the second is yellow, and the third is green.
(c) The first ball is red, and the second and third balls are green.
(d) Exactly two balls are yellow.
(e) All three balls are green.
(f) All three balls are the same color.
(g) At least one of the three balls is red.

Answers

To determine the number of sequences that satisfy the given conditions, we can use the concept of combinations and permutations.

(a) There are no restrictions:

Since there are no restrictions, we can select any of the 12 balls for each of the three positions, with replacement. Therefore, the number of sequences is 12^3 = 1728.

(b) The first ball is red, the second is yellow, and the third is green:

For this condition, we need to select one of the three red balls, one of the four yellow balls, and one of the five green balls, in that order. The number of sequences is 3 * 4 * 5 = 60.

(c) The first ball is red, and the second and third balls are green:

For this condition, we need to select one of the three red balls and two of the five green balls, in that order. The number of sequences is 3 * 5C2 = 3 * (5 * 4) / (2 * 1) = 30.

(d) Exactly two balls are yellow:

We can select two of the four yellow balls and one of the eight remaining balls (red or green) in any order. The number of sequences is 4C2 * 8 = (4 * 3) / (2 * 1) * 8 = 48.

(e) All three balls are green:

Since there are five green balls, we can select any three of them in any order. The number of sequences is 5C3 = (5 * 4) / (2 * 1) = 10.

(f) All three balls are the same color:

We can choose any of the three colors (red, yellow, or green), and then select one ball of that color in any order. The number of sequences is 3 * 1 = 3.

(g) At least one of the three balls is red:

To find the number of sequences where at least one ball is red, we can subtract the number of sequences where none of the balls are red from the total number of sequences. The number of sequences with no red balls is 8^3 = 512. Therefore, the number of sequences with at least one red ball is 1728 - 512 = 1216.

In summary:

(a) 1728 sequences

(b) 60 sequences

(c) 30 sequences

(d) 48 sequences

(e) 10 sequences

(f) 3 sequences

(g) 1216 sequences

Learn more about sequences

https://brainly.com/question/30262438

#SPJ11

Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7

Answers

A: ZABC is a right angle. (Given)

B: DB bisects ZABC. (Given)

C: m/ABD = m/CBD. (Definition of angle bisector)

D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)

By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.

A: Given: ZABC is a right angle.

B: Given: DB bisects ZABC.

C: To prove: m/CBD = 45°

D: Proof:

ZABC is a right angle. (Given)

DB bisects ZABC. (Given)

m/ABD = m/CBD. (Definition of angle bisector)

m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)

Substitute m/CBD with m/ABD in equation (4).

m/ABD + m/ABD = 90°.

2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))

Divide both sides of equation (6) by 2.

m/ABD = 45°.

Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)

Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.

Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.

Therefore, m/ABD and m/CBD are equal.

For similar question on substitution property.

https://brainly.com/question/29058226  

#SPJ8

Use the formula for future value, A=P(1+rt), and elementary algebra to find the missing quantity. A=$2,160; r=5%; 1= 4 years

Answers

Answer:

Step-by-step explanation:

To find the missing quantity in the formula for future value, A = P(1 + rt), where A = $2,160, r = 5%, and t = 4 years, we can rearrange the formula to solve for P (the initial principal or present value).

The formula becomes:

A = P(1 + rt)

Substituting the given values:

$2,160 = P(1 + 0.05 * 4)

Simplifying:

$2,160 = P(1 + 0.20)

$2,160 = P(1.20)

To isolate P, divide both sides of the equation by 1.20:

$2,160 / 1.20 = P

P ≈ $1,800

Therefore, the missing quantity, P, is approximately $1,800.

Consider a firm whose production function is q=(KL)

γ

Suppose that γ>1/2. Assume that (w,r)=(1,1). ** Part a (5 marks) Is the production function exhibiting increasing returns to scale/decreasing returns to scale? ** Part b (5 marks) Derive the long-run cost function C(q,γ). ** Part c (5 marks) Show that the long-run cost function is linear/strictly convex/strictly concave in q

Answers

γ > 1/2, (1-2γ)/γ < 0, which means the second derivative is negative. Therefore, the long-run cost function is strictly concave in q.

Part a: To determine whether the production function exhibits increasing returns to scale or decreasing returns to scale, we need to examine how changes in inputs affect output.

In general, a production function exhibits increasing returns to scale if doubling the inputs more than doubles the output, and it exhibits decreasing returns to scale if doubling the inputs less than doubles the output.

Given the production function q = (KL)^γ, where γ > 1/2, let's consider the effect of scaling the inputs by a factor of λ, where λ > 1.

When we scale the inputs by a factor of λ, we have K' = λK and L' = λL. Substituting these values into the production function, we get:

q' = (K'L')^γ

  = (λK)(λL)^γ

  = λ^γ * (KL)^γ

  = λ^γ * q

Since λ^γ > 1 (because γ > 1/2 and λ > 1), we can conclude that doubling the inputs (λ = 2) results in more than doubling the output. Therefore, the production function exhibits increasing returns to scale.

Part b: To derive the long-run cost function C(q, γ), we need to determine the cost of producing a given quantity q, taking into account the production function and input prices.

The cost function can be expressed as C(q) = wK + rL, where w is the wage rate and r is the rental rate.

In this case, we are given that (w, r) = (1, 1), so the cost function simplifies to C(q) = K + L.

Using the production function q = (KL)^γ, we can express L in terms of K and q as follows:

q = (KL)^γ

q^(1/γ) = KL

L = (q^(1/γ))/K

Substituting this expression for L into the cost function, we have:

C(q) = K + (q^(1/γ))/K

Therefore, the long-run cost function is C(q, γ) = K + (q^(1/γ))/K.

Part c: To determine whether the long-run cost function is linear, strictly convex, or strictly concave in q, we need to examine the second derivative of the cost function with respect to q.

Taking the second derivative of C(q, γ) with respect to q:

d^2C(q, γ)/[tex]dq^2 = d^2/dq^2[/tex][K + (q^(1/γ))/K]

              = d/dq [(1/γ)(q^((1-γ)/γ))/K]

              = (1/γ)((1-γ)/γ)(q^((1-2γ)/γ))/K^2

To know more about derivative visit:

brainly.com/question/29144258

#SPJ11



Determine whether the events are independent or dependent. Explain. Jeremy took the SAT on Saturday and scored 1350. The following week he took the ACT and scored 23 .

Answers

The events of Jeremy's SAT score and his ACT score are independent.

Two events are considered independent if the outcome of one event does not affect the outcome of the other. In this case, Jeremy's SAT score of 1350 and his ACT score of 23 are independent events because the scores he achieved on the SAT and ACT are separate and unrelated assessments of his academic abilities.

The SAT and ACT are two different standardized tests used for college admissions in the United States. Each test has its own scoring system and measures different aspects of a student's knowledge and skills. The fact that Jeremy scored 1350 on the SAT does not provide any information or influence his subsequent performance on the ACT. Similarly, his ACT score of 23 does not provide any information about his SAT score.

Since the SAT and ACT are distinct tests and their scores are not dependent on each other, the events of Jeremy's SAT score and ACT score are considered independent.

To know more about independent events, refer here:

https://brainly.com/question/32716243#

#SPJ11

Make y the subject of the inequality x<−9/y−7

Answers

The resulted inequality is y > (9 + x) / 7.

To make y the subject of the inequality x < -9/y - 7, we need to isolate y on one side of the inequality.

Let's start by subtracting x from both sides of the inequality:

x + 9/y < 7

Next, let's multiply both sides of the inequality by y to get rid of the fraction:

y(x + 9/y) < 7y

This simplifies to:

x + 9 < 7y

Finally, let's isolate y by subtracting x from both sides:

x + 9 - x < 7y - x

9 < 7y - x

Now, we can rearrange the inequality to make y the subject:

7y > 9 + x

Divide both sides by 7:

y > (9 + x) / 7

So, the inequality x < -9/y - 7 can be rewritten as y > (9 + x) / 7.


To know more about inequalities, refer here:

https://brainly.com/question/20383699#

#SPJ11

In 1984 the price of a 12oz box of kellogg corn flakes was $0.89 what was the price in 2008 with a increased amount of 235% and increase by 105%

Answers

The approximate price of a 12oz box of Kellogg's Corn Flakes in 2008, with an initial price of $0.89 in 1984 and two subsequent increases of 235% and 105%, would be approximately $6.12

To calculate the price of a 12oz box of Kellogg's Corn Flakes in 2008, considering an increase of 235% and an additional increase of 105% from the initial price in 1984, we can follow these steps:

Step 1: Calculate the first increase of 235%:

First, we need to find the price after the first increase. To do this, we multiply the initial price in 1984 by 235% and add it to the initial price:

First increase = $0.89 * (235/100) = $2.09315

New price after the first increase = $0.89 + $2.09315 = $2.98315 (rounded to 5 decimal places)

Step 2: Calculate the additional increase of 105%:

Next, we need to calculate the second increase based on the price after the first increase. To do this, we multiply the price after the first increase by 105% and add it to the price:

Second increase = $2.98315 * (105/100) = $3.13231

New price after the additional increase = $2.98315 + $3.13231 = $6.11546 (rounded to 5 decimal places)

Therefore, the approximate price of a 12oz box of Kellogg's Corn Flakes in 2008, with an initial price of $0.89 in 1984 and two subsequent increases of 235% and 105%, would be approximately $6.12.

To know more about rounded refer to:

https://brainly.com/question/29878750

#SPJ11

PLS ANSWER QUICKLY ASAP




There is screenshot I need help
uwu

Answers

Answer:

What are you trying to find???

Step-by-step explanation:

If it is median, then it is the line in the middle of the box, which is on 19.

Consider the following deffinitions for sets of charactets: - Dights ={0,1,2,3,4,5,6,7,8,9} - Special characters ={4,8,8. #\} Compute the number of pakswords that sat isfy the given constraints. (i) Strings of length 7 . Characters can be special claracters, digits, or letters, with no repeated charscters. (ii) Strings of length 6. Characters can be special claracters, digits, or letterss, with no repeated claracters. The first character ean not be a special character.

Answers

For strings of length 7 with no repeated characters, there are 1,814,400 possible passwords. For strings of length 6 with no repeated characters and the first character not being a special character, there are 30,240 possible passwords.

To compute the number of passwords that satisfy the given constraints, let's analyze each case separately:

(i) Strings of length 7 with no repeated characters:

In this case, the first character can be any character except a special character. The remaining six characters can be chosen from the set of digits, special characters, or letters, with no repetition.

1. First character: Any character except a special character, so there are 10 choices.

2. Remaining characters: 10 choices for the first position, 9 choices for the second position, 8 choices for the third position, and so on until 5 choices for the sixth position.

Therefore, the total number of passwords that satisfy the constraints for strings of length 7 is:

10 * 10 * 9 * 8 * 7 * 6 * 5 = 1,814,400 passwords.

(ii) Strings of length 6 with no repeated characters and the first character not being a special character:

In this case, the first character cannot be a special character, so there are 10 choices for the first character (digits or letters). The remaining five characters can be chosen from the set of digits, special characters, or letters, with no repetition.

1. First character: Any digit (0-9) or letter (a-z, A-Z), so there are 10 choices.

2. Remaining characters: 10 choices for the second position, 9 choices for the third position, 8 choices for the fourth position, and so on until 6 choices for the sixth position.

Therefore, the total number of passwords that satisfy the constraints for strings of length 6 is:

10 * 10 * 9 * 8 * 7 * 6 = 30,240 passwords.

Note: It seems there's a typo in the "Special characters" set definition. The third character, "8. #\", appears to be a combination of characters rather than a single character.

To know more about string, refer to the link below:

https://brainly.com/question/30214499#

#SPJ11

FIFTY POINTS!! find the surface area of the composite figure

Answers

Answer:

218 cm²

Step-by-step explanation:

The lateral surface area (LSA) is the area of the sides excluding the top and botton part

LSA formula: 2h(l+b)

For the larger(green) cuboid, h = 4, l = 10, b =5

For the smaller(pink) cuboid, h = 6, l = 2, b =2

Total area = LSA(green) + top part of green + LSA(pink) + top of pink

LSA of green :

2h(l+b) = 2(4)(10+5)

= 8*15

= 120  -----eq(1)

Top part of green:

The area of green cuboid's top- area of pink cuboid's base

= (10*5) - (2*2)

= 50 - 4

= 46  -----eq(2)

LSA of pink:

2h(l+b) = 2(6)(2+2)

= 12*4

= 48  -----eq(3)

Top part of pink:

2*2 = 4  -----eq(3)

Total area:

eq(1) + eq(2) + eq(3) + eq(4)

= 120 + 45 + 48 + 4

= 218 cm²

Let A and B be two matrices of size 4 X 4 such that det(A) = 1. If B is a singular matrix then det(2A⁻²Bᵀ) – 1 = a 1 b 0 c 2 d None of the mentioned

Answers

d) None of the mentioned. Let's break down the given expression and evaluate it step by step:

det(2A^(-2)B^ᵀ) - 1

First, let's analyze the term 2A^(-2)B^ᵀ.

Since A is a 4x4 matrix and det(A) = 1, we know that A is invertible. Therefore, A^(-1) exists.

Using the property of determinants, we can rewrite the expression as:

det(2A^(-2)B^ᵀ) = det(2(A^(-1))^2B^ᵀ)

Now, let's focus on the term (A^(-1))^2.

Since A^(-1) is the inverse of A, we can rewrite it as A^(-1) = 1/A.

Taking the square of A^(-1), we have:

(A^(-1))^2 = (1/A)^2 = 1/A^2

Now, substituting this back into the expression:

det(2A^(-2)B^ᵀ) = det(2(1/A^2)B^ᵀ) = 2^(4) * det((1/A^2)B^ᵀ)

Since B is a singular matrix, det(B) = 0.

Now, we can evaluate the expression: det(2A^(-2)B^ᵀ) - 1 = 2^(4) * det((1/A^2)B^ᵀ) - 1 = 16 * (1/A^2) * det(B^ᵀ) - 1 = 16 * (1/A^2) * 0 - 1 = -1

Therefore, det(2A^(-2)B^ᵀ) - 1 = -1.

The correct answer is d) None of the mentioned.

Learn more about expression here

https://brainly.com/question/1859113

#SPJ11

What is the distance a car will travel in 12 minutes of it is going 50mph ?

Answers

If a car is traveling at a constant rate of 50 miles per hour, we can determine how far it will travel in 12 minutes. We know that 1 hour is equivalent to 60 minutes. Therefore, 50 miles per hour is the same as 50/60 miles per minute, or 5/6 miles per minute.

To find the distance traveled in 12 minutes, we can multiply the speed by the time:distance = speed × time

= (5/6) miles/minute × 12 minutes

= 10 milesSo, a car traveling at a constant rate of 50 miles per hour will travel a distance of 10 miles in 12 minutes.

To know more about constant visit:
https://brainly.com/question/31730278

#SPJ11

Which is better value for money?

600ml bottle of milk for 50p
Or
4.5liter bottle of milk for £3.70

Answers

Answer:

50 p Is a better deal

Step-by-step explanation:

if wrong let me know



Use an inverse matrix to solve each question or system.


[-6 0 7 1]

[-12 -6 17 9]

Answers

The inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]

Given matrix is: A = [-6 0 7 1][ -12 -6 17 9]

To find inverse matrix, we use Gauss-Jordan elimination method as follows:We append an identity matrix of same order to matrix A, perform row operations until the left side of matrix reduces to an identity matrix, then the right side will be our inverse matrix.So, [A | I] = [-6 0 7 1 | 1 0 0 0][ -12 -6 17 9 | 0 1 0 0]

Performing the following row operations, we get,

[A | I] = [1 0 0 0 | 3/2 -7/4][0 1 0 0 | 1/2 -3/4][0 0 1 0 |-1 1][0 0 0 1 |1/2]

So, the inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]

Multiplying A^-1 with A, we should get an identity matrix, i.e.,A * A^-1 = [ 1 0][ 0 1]

Therefore, the solution of the system of equations is obtained by multiplying the inverse matrix by the matrix containing the constants of the system.

Know more about matrix  here,

https://brainly.com/question/28180105

#SPJ11









Find the work required to pitch a 6. 6 oz softball at 90 ft/sec. GOODS The work required to pitch a 6. 6 oz softball at 90 ft/sec is ft-lb. (Do not round until the final answer. Then round to the neares

Answers

The work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.

To find the work required to pitch a softball, we can use the formula:

Work = Force * Distance

In this case, we need to calculate the force and the distance.

Force:

The force required to pitch the softball can be calculated using Newton's second law, which states that force is equal to mass times acceleration:

Force = Mass * Acceleration

The mass of the softball is given as 6.6 oz. We need to convert it to pounds for consistency. Since 1 pound is equal to 16 ounces, the mass of the softball in pounds is:

6.6 oz * (1 lb / 16 oz) = 0.4125 lb (rounded to four decimal places)

Acceleration:

The acceleration is given as 90 ft/sec.

Distance:

The distance is also given as 90 ft.

Now we can calculate the work:

Work = Force * Distance

= (0.4125 lb) * (90 ft)

= 37.125 lb-ft (rounded to three decimal places)

Therefore, the work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.

Learn more about softbal here:

https://brainly.com/question/15069776

#SPJ11

suppose that a and b vary inversely and that b = 5/3 when a=9. Write a function that models the inverse variation

Answers

The function that models the inverse variation between variables a and b is given by b = k/a, where k is the constant of variation.

In inverse variation, two variables are inversely proportional to each other. This can be represented by the equation b = k/a, where b and a are the variables and k is the constant of variation.

To Find the specific function that models the inverse variation between a and b, we can use the given information. When a = 9, b = 5/3.

Plugging these values into the inverse variation equation, we have:

5/3 = k/9

To solve for k, we can cross-multiply:

5 * 9 = 3 * k

45 = 3k

Dividing both sides by 3:

k = 45/3

Simplifying:

k = 15

Therefore, the function that models the inverse variation between a and b is:

b = 15/a

This equation demonstrates that as the value of a increases, the value of b decreases, and vice versa. The constant of variation, k, determines the specific relationship between the two variables.

For more such questions on inverse variation, click on:

https://brainly.com/question/13998680

#SPJ8

There are four white and six black socks in a drawer. One is pulled out at random. Find the probability that it is white. Round to the nearest whole percentage. Select one: a. 25% b. 60% c. 17% d. 40%

Answers

The probability that a randomly pulled out sock from a drawer containing four white and six black socks is white is approximately 40%.

What is the rounded percentage probability of pulling out a white sock from the drawer?

To find the probability that a randomly pulled out sock from the drawer is white, we divide the number of white socks by the total number of socks. In this case, there are four white socks and a total of ten socks (four white + six black).

Probability of selecting a white sock = Number of white socks / Total number of socks

= 4 / 10

= 0.4

To express the probability as a percentage, we multiply the result by 100 and round it to the nearest whole number.

Probability of selecting a white sock = 0.4 * 100 ≈ 40%

Therefore, the probability that the randomly pulled out sock is white is approximately 40%. Hence, the correct option is d. 40%.

Learn more about Probability

brainly.com/question/31828911

#SPJ11

Do not use EXCEL One of the fast food restaurants near my neighbourhood claims that the average delivery time of its service is less than 6 minutes. Using a random sample of 12 delivery times with a sample mean of 5.69 minutes and 1.58 minutes sample standard deviation, determine if there is sufficient evidence to support this restaurant's claim of the delivery time at the 5% level of significance. (i) Formulate the hypothesis (2 Points) (ii) State your conclusion using the critical value approach with a distribution graph (4 Points) (iii) State your conclusion using the p-value approach a distribution graph

Answers

By following the critical value approach and the p-value approach, we have examined the hypothesis and reached conclusions based on the test statistic and the significance level.

(i) Formulate the hypothesis:

The hypothesis testing can be done by following the given steps:

Step 1: State the hypothesis

Step 2: Set the criteria for the decision

Step 3: Calculate the test statistic and probability of the test statistic

Step 4: Make the decision in light of steps 2 and 3

The null hypothesis H0: μ ≥ 6

The alternative hypothesis H1: μ < 6

Where μ = Population Mean

(ii) State your conclusion using the critical value approach with a distribution graph:

The critical value is determined by:

α/2 = 0.05/2 = 0.025

Degrees of freedom = n - 1 = 12 - 1 = 11

Level of significance = α = 0.05

Critical value = -t0.025, 11 = -2.201

The test statistic, t = (x - μ) / (s / √n)

Where,

x = Sample Mean = 5.69

μ = Population Mean = 6

s = Sample Standard Deviation = 1.58

n = Sample size = 12

t = (5.69 - 6) / (1.58 / √12) = -1.64

The rejection region is (-∞, -2.201)

The test statistic is outside of the rejection region, thus we reject the null hypothesis. Hence, there is sufficient evidence to support the claim that the delivery time is less than 6 minutes.

(iii) State your conclusion using the p-value approach and a distribution graph:

The p-value is given as P(t < -1.64) = 0.0642

The p-value is greater than α, thus we accept the null hypothesis. Therefore, we cannot support the restaurant's claim that the average delivery time of its service is less than 6 minutes.

Learn more about standard deviation

https://brainly.com/question/29115611

#SPJ11

Given the system of simultaneous equations 2x+4y−2z=4
2x+5y−(k+2)z=3
−x+(k−5)y+z=1
​Find values of k for which the equations have a. a unique solution b. no solution c. infinite solutions and in this case find the solutions

Answers

a. The determinant of A is nonzero (-2 ≠ 0), the system of equations has a unique solution for all values of k.

b. For values of k less than 3, the system of equations has no solution.

c. There are no values of k for which the system of equations has infinite solutions.

To determine the values of k for which the given system of simultaneous equations has a unique solution, no solution, or infinite solutions, let's consider each case separately:

a. To find the values of k for which the equations have a unique solution, we need to check if the determinant of the coefficient matrix is nonzero. If the determinant is nonzero, it means that the equations can be uniquely solved.

To compute the determinant, we can write the coefficient matrix A as follows:
A = [[2, 4, -2], [2, 5, -(k+2)], [-1, k-5, 1]]

Expanding the determinant of A, we have:
det(A) = 2(5(1)-(k-5)(-2)) - 4(2(1)-(k+2)(-1)) - 2(2(k-5)-(-1)(2))

Simplifying this expression, we get:
det(A) = 10 + 2k - 10 - 4k - 4 + 2k + 4k - 10

Combining like terms, we have:
det(A) = -2

Since the determinant of A is nonzero (-2 ≠ 0), the system of equations has a unique solution for all values of k.


b. To find the values of k for which the equations have no solution, we can check if the determinant of the augmented matrix, [A|B], is nonzero, where B is the column vector on the right-hand side of the equations.

The augmented matrix is:
[A|B] = [[2, 4, -2, 4], [2, 5, -(k+2), 3], [-1, k-5, 1, 1]]

Expanding the determinant of [A|B], we have:
det([A|B]) = (2(5) - 4(2))(1) - (2(1) - (k+2)(-1))(4) + (-1(2) - (k-5)(-2))(3)

Simplifying this expression, we get:
det([A|B]) = 10 - 8 - 4k + 8 - 2k + 4 + 2 + 6k - 6

Combining like terms, we have:
det([A|B]) = -6k + 18

For the system to have no solution, the determinant of [A|B] must be nonzero. Therefore, for no solution, we must have:
-6k + 18 ≠ 0

Simplifying this inequality, we get:
-6k ≠ -18

Dividing both sides by -6 (and flipping the inequality), we have:
k < 3

Thus, for values of k less than 3, the system of equations has no solution.


c. To find the values of k for which the equations have infinite solutions, we can check if the determinant of A is zero and if the determinant of the augmented matrix, [A|B], is also zero.

From part (a), we know that the determinant of A is -2.

Therefore, to have infinite solutions, we must have:
-2 = 0

However, since -2 is not equal to zero, there are no values of k for which the system of equations has infinite solutions.

Learn more about 'solutions':

https://brainly.com/question/17145398

#SPJ11

What is the perimeter of the rectangle with vertices at 4,5) 4,-1) , -5,-1) and -5,5)

Answers

Answer:

30 units

Step-by-step explanation:

(4,5) to (4,-1) = 6

(4,-1) to (-5,-1) = 9

(-5,-1) to (-5,5) = 6

(-5,5) to (4,5) = 9

6+9+6+9=30

Joining the points (2, 16) and (8,4).​

Answers

To join the points (2, 16) and (8, 4), we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.

First, let's calculate the slope (m) using the formula:

m = (y2 - y1) / (x2 - x1)

Substituting the coordinates of the two points:

m = (4 - 16) / (8 - 2)

m = -12 / 6

m = -2

Now that we have the slope, we can choose either of the two points and substitute its coordinates into the slope-intercept form to find the y-intercept (b).

Let's choose the point (2, 16):

16 = -2(2) + b

16 = -4 + b

b = 20

Now we have the slope (m = -2) and the y-intercept (b = 20), we can write the equation of the line:

y = -2x + 20

This equation represents the line passing through the points (2, 16) and (8, 4).

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

A is the point with coordinates (5,9)

The gradient of the line AB is 3

Work out the value of d

Answers

The value of d is sqrt(10), which is approximately 3.162.

To find the value of d, we need to determine the coordinates of point B on the line AB. We know that the gradient of the line AB is 3, which means that for every 1 unit increase in the x-coordinate, the y-coordinate increases by 3 units.

Given that point A has coordinates (5, 9), we can use the gradient to find the coordinates of point B. Since B lies on the line AB, it must have the same gradient as AB. Starting from point A, we move 1 unit in the x-direction and 3 units in the y-direction to get to point B.

Therefore, the coordinates of B can be calculated as follows:

x-coordinate of B = x-coordinate of A + 1 = 5 + 1 = 6

y-coordinate of B = y-coordinate of A + 3 = 9 + 3 = 12

So, the coordinates of point B are (6, 12).

Now, to find the value of d, we can use the distance formula between points A and B:

d = [tex]sqrt((x2 - x1)^2 + (y2 - y1)^2)[/tex]

= [tex]sqrt((6 - 5)^2 + (12 - 9)^2)[/tex]

= [tex]sqrt(1^2 + 3^2)[/tex]

= sqrt(1 + 9)

= sqrt(10)

For more such questions on value

https://brainly.com/question/843074

#SPJ8

1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]

Answers

The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Step 1: Find the critical points by setting the derivative equal to zero and solving for x.

() = 12 9 − 32 − 3

() = 27 − 96x² − 3x²

Setting the derivative equal to zero, we have:

27 − 96x² − 3x² = 0

-99x² + 27 = 0

x² = 27/99

x = ±√(27/99)

x ≈ ±0.183

Step 2: Evaluate the function at the critical points and endpoints.

() = 12 9 − 32 − 3

() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)

() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)

Step 3: Compare the values to determine the absolute maximum and minimum.

The absolute maximum occurs at x = 0 with a value of -3.

The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.

Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11



Evaluate the expression if a=2, b=6 , and c=3 .

\frac{1}{2} c(b+a)

Answers

Substituting a = 2, b = 6, and c = 3 into the expression:

1

2

(

3

)

(

6

+

2

)

2

1

(3)(6+2)

Simplifying the expression:

1

2

(

3

)

(

8

)

=

12

2

1

(3)(8)=12

Therefore, when a = 2, b = 6, and c = 3, the expression

1

2

(

+

)

2

1

c(b+a) evaluates to 12.

To evaluate the expression

1

2

(

+

)

2

1

c(b+a) when a = 2, b = 6, and c = 3, we substitute these values into the expression and perform the necessary calculations.

First, we substitute a = 2, b = 6, and c = 3 into the expression:

1

2

(

3

)

(

6

+

2

)

2

1

(3)(6+2)

Next, we simplify the expression following the order of operations (PEMDAS/BODMAS):

Within the parentheses, we have 6 + 2, which equals 8. Substituting this result into the expression, we get:

1

2

(

3

)

(

8

)

2

1

(3)(8)

Next, we multiply 3 by 8, which equals 24:

1

2

(

24

)

2

1

(24)

Finally, we multiply 1/2 by 24, resulting in 12:

12

Therefore, when a = 2, b = 6, and c = 3, the expression

1

2

(

+

)

2

1

c(b+a) evaluates to 12.

Learn more about expression here:

brainly.com/question/14083225

#SPJ11

Express the following as a linear combination of u =(4, 1, 6), v = (1, -1, 5) and w=(4, 2, 8). (17, 9, 17) = i u- i V+ i W

Answers

The given vector as a linear combination are

4i + j + 4k = 17 (Equation 1)i - j + 2k = 9 (Equation 2)6i + 5j + 8k = 17 (Equation 3)

To express the vector (17, 9, 17) as a linear combination of u, v, and w, we need to find the coefficients (i, j, k) such that:

(i)u + (j)v + (k)w = (17, 9, 17)

Substituting the given values for u, v, and w:

(i)(4, 1, 6) + (j)(1, -1, 5) + (k)(4, 2, 8) = (17, 9, 17)

Expanding the equation component-wise:

(4i + j + 4k, i - j + 2k, 6i + 5j + 8k) = (17, 9, 17)

By equating the corresponding components, we can solve for i, j, and k:

4i + j + 4k = 17 (Equation 1)

i - j + 2k = 9 (Equation 2)

6i + 5j + 8k = 17 (Equation 3)

Know more about linear combination here:

brainly.com/question/30341410

#SPJ11

A circle has a diameter with endpoints at A (-1. -9) and B (-11, 5). The point M (-6, -2) lies on the diameter. Prove or disprove that point M is the center of the circle by answering the following questions. Round answers to the nearest tenth (one decimal place). What is the distance from A to M? What is the distance from B to M? Is M the center of the circle? Yes or no?​

Answers

Answer:

AM: 8.6 units

BM: 8.6 units

M is the center

Step-by-step explanation:

Pre-Solving

We are given that the diameter of a circle is AB, where point A is at (-1, -9) and point B is (-11, 5).

We know that point M, which is at (-6, -2) is on AB. We want to know if it is the center of the circle.

If it is the center, then it means that the distance (measure) of AM is the same as the distance (measure) of BM.

Recall that the distance formula is [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex], where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points.

SolvingLength of AM

The endpoints are point A and point M. We can label the values of the points to get:

[tex]x_1=-1\\y_1=-9\\x_2=-6\\y_2=-2[/tex]

Now, plug them into the formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(-6--1)^2+(-2--9)^2}[/tex]

[tex]d=\sqrt{(-6+1)^2+(-2+9)^2}[/tex]

[tex]d=\sqrt{(-5)^2+(7)^2}[/tex]

[tex]d=\sqrt{25+49}[/tex]

[tex]d=\sqrt{74}[/tex] ≈ 8.6 units

Length of BM

The endpoints are point B and point M. We can label the values and get:

[tex]x_1=-11\\y_1=5\\x_2=-6\\y_2=-2[/tex]

Now, plug them into the formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(-6--11)^2+(-2-5)^2}[/tex]

[tex]d=\sqrt{(-6+11)^2+(-2-5)^2}[/tex]

[tex]d=\sqrt{(5)^2+(-7)^2}[/tex]

[tex]d=\sqrt{25+49}[/tex]

[tex]d=\sqrt{74}[/tex] ≈ 8.6 units.

Since the length of AM an BM are the same, M is the center of the circle.

How many six-letter permutations can be formed from the first eight letters of the alphabet?
How many different signals can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time?

Answers

There are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.

There are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.

To determine the number of six-letter permutations that can be formed from the first eight letters of the alphabet, we need to calculate the number of ways to choose 6 letters out of the available 8 and then arrange them in a specific order.

The number of ways to choose 6 letters out of 8 is given by the combination formula "8 choose 6," which can be calculated as follows:

C(8, 6) = 8! / (6! * (8 - 6)!) = 8! / (6! * 2!) = (8 * 7) / (2 * 1) = 28.

Now that we have chosen 6 letters, we can arrange them in a specific order, which is a permutation. The number of ways to arrange 6 distinct letters is given by the formula "6 factorial" (6!). Thus, the number of six-letter permutations from the first eight letters of the alphabet is:

28 * 6! = 28 * 720 = 20,160.

Therefore, there are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.

Now let's move on to the second question regarding the number of different signals that can be made by hoisting flags on a ship's mast. In this case, we have 4 yellow flags, 2 green flags, and 2 red flags.

To find the number of different signals, we need to calculate the number of ways to arrange these flags. We can do this using the concept of permutations with repetitions. The formula to calculate the number of permutations with repetitions is:

n! / (n₁! * n₂! * ... * nk!),

where n is the total number of objects and n₁, n₂, ..., nk are the counts of each distinct object.

In this case, we have a total of 8 flags (4 yellow flags, 2 green flags, and 2 red flags). Applying the formula, we get:

8! / (4! * 2! * 2!) = (8 * 7 * 6 * 5) / (4 * 3 * 2 * 1) = 70.

Therefore, there are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.

Learn more about permutations

brainly.com/question/29990226

#SPJ11

If f(x) = -3x2 + 7 determine f (a+2)

Answers

f(a + 2) is represented as -3a^2 - 12a - 5.

To determine f(a + 2) when f(x) = -3x^2 + 7, we substitute (a + 2) in place of x in the given function:

f(a + 2) = -3(a + 2)^2 + 7

Expanding the equation further:

f(a + 2) = -3(a^2 + 4a + 4) + 7

Now, distribute the -3 across the terms within the parentheses:

f(a + 2) = -3a^2 - 12a - 12 + 7

Combine like terms:

f(a + 2) = -3a^2 - 12a - 5

Therefore, f(a + 2) is represented as -3a^2 - 12a - 5.

Learn more about parentheses here

https://brainly.com/question/3572440

#SPJ11

Solución de este problema matemático

Answers

The value of x, considering the similar triangles in this problem, is given as follows:

x = 2.652.

El valor de x es el seguinte:

x = 2.652.

What are similar triangles?

Two triangles are defined as similar triangles when they share these two features listed as follows:

Congruent angle measures, as both triangles have the same angle measures.Proportional side lengths, which helps us find the missing side lengths.

The proportional relationship for the side lengths in this triangle is given as follows:

x/3.9 = 3.4/5

Applying cross multiplication, the value of x is obtained as follows:

5x = 3.9 x 3.4

x = 3.9 x 3.4/5

x = 2.652.

More can be learned about similar triangles at brainly.com/question/14285697

#SPJ1

Other Questions
let the ratio of two numbers x+1/2 and y be 1:3 then draw the graph of the equation that shows the ratio of these two numbers. An AC generator supplies an rms voltage of 240 V at 50.0 Hz. It is connected in series with a 0.250 H inductor, a 5.80 F capacitor and a 286 resistor.What is the impedance of the circuit?Tries 0/12 What is the rms current through the resistor?Tries 0/12 What is the average power dissipated in the circuit?Tries 0/12 What is the peak current through the resistor?Tries 0/12 What is the peak voltage across the inductor?Tries 0/12 What is the peak voltage across the capacitor?Tries 0/12 The generator frequency is now changed so that the circuit is in resonance. What is that new (resonance) frequency? Chasteen Hall currently has 58 days in its cash cycle and 137 days in its operating cycle. The firm purchases its inventory from one supplier. This suppiler has offered a 5 percent discount to the firm if it will pay for its purchases within 10 days instead of the normal 35 days. If the firm opts to take advantage of the discount offered, its new operating cycle will be days and its new cash cycle will be days: What mass of fluorine-18 (F-18) is needed to have anactivity of 1 mCi? How long will it take forthe activity to decrease to 0.25 mCi? A horizontal wire of length 3.0 m carries a current of 6.0 A and is oriented so that the current direction is 50 S of W. The Earth's magnetic field is due north at this point and has a strength of 0.1410 ^4 T. What are the magnitude and direction of the force on the wire? 1.910 N ^4 , out of the Earth's surface None of the choices is correct. 1.610 N ^4 , out of the Earth's surface 1.910 N ^4 , toward the Earth's surface 1.610 N ^4 , toward the Earth's surface Please help what is the slope of the line? I f cos (2/3+x) = 1/2, find the correct value of xA. 2/3B. 4/3C. /3D. Which of the following is an example of redirection? Group of answer choicesgiving a cookie to a crying child.putting an infant in time out.giving a ball to a child who is throwing a toy car.distracting a child who is experiencing separation anxiety. 1. With sound waves, pitch is related to frequency. (T or F) 2. In a water wave, water move along in the same direction as the wave? (T or F) 3. The speed of light is always constant? (T or F) 4. Heat can flow from cold to hot (T or F) 5. Sound waves are transverse waves. (T or F) 6. What is the definition of a wave? 7. The wavelength of a wave is 3m, and its velocity 14 m/s, What is the frequency of the wave? 8. Why does an objects temperature not change while it is melting? This/these researcher(s) demonstrated that fear could be classically conditioned in humans and that fear can generaliz from one thing (awhite rat) to similar things (white furry things).O B.F. Skinner WatsonO pavlovO Watson and Raynor Please remember that your answers must be returned + Please cle what source you used website, book, journal artic Please be sure you use proper grammar, apeiting, and punctuation Remember that assignments are to be handed in an tima- NO EXCEPTIONS Whaley is a 65 year old man with a history of COPD who presents to fus prenary care provider's (PCP) office complaining Ta productive cough off and on for 2 years and shortness of tree for the last 3 days. He reports that he have had several chest colds in the last few years, but this time won't go wway. His wife says he has been leverth for a few days, but doesn't have a specific temperature to report. He reports smoking a pack of cigaretes a day for 25 years plus the occasional cigar Upon Nurther assessment, Mr. Whaley has crackles throughout the lower lobes of his lungs, with occasional expertory whezes throughout the lung felds. His vital signs are as follows OP 142/86 mmHg HR 102 bpm RR 32 bpm Temp 102.3 5002 80% on room ar The nurse locates a portable coxygen tank and places the patient on 2 pm oxygen vis nasal cannula Based on these findings Mc Whaley's PCP decides to cal an ambulance to send Mr Whaley to the Emergency Department (ED) While waiting for the ambulance, the nurse repests the 502 and de Mr. Whaley's S02 is only 0% She increases his cygen to 4L/min, rechecks and notes an Sp02 of 95% The ambulance crew arrives, the nurse reports to them that the patient was short of breath and hypoxic, but saturation are now 95% and he is resting Per EMS, he is alent and oriented x3 Upon arrival to the ED, the RN finds Mr. Whaley is somnolent and difficult to arouse. He takes a set of vital signs and finds the following BP 138/78 mmHg HR 96 bpm RR 10 bpm Temp 38.4C Sp02 90% on 4 L/min nasal cannula The provider weites the following orders Keep sats 88-92% . CXR 2004 Labs: ABG, CBC, BMP Insert peripheral V Albuterol nebulizer 2.5mg Budesonide-formoterol 1604.5 mcg The nurse immediately removes the supplemental oxygen from Mr. Whaley and attempts to stimulate him awake. Mr. Whaley is still quite drowsy, but is able to awake long enough to state his full name. The nurse inserts a peripheral IV and draws the CBC and BMP, while the Respiratory Therapist (RT) draws an arterial blood gas (ABG). Blood gas results are as follows: pH 7.301 . pCO2 58 mmHg .HCO3-30 mEq/L . p02 50 mmHg Sa02 92% Mr. Whaley's chest x-ray shows consolidation in bilateral lower lobes. Mr. Whaley's condition improves after a bronchodilator and corticosteroid breathing treatment. His Sp02 remains 90% on room air and his shortness of breath has significantly decreased. He is still running a fever of 38.3C. The ED provider orders broad spectrum antibiotics for a likely pneumonia. which may have caused this COPD exacerbation. The provider also orders two inhalers for Mr. Whale one bronchodilator and one corticosteroid. Satisfied with his quick improvement, the provider decides is safe for Mr. Whaley to recover at home with proper instructions for his medications and follow up fr his PCP. 1. What are the top 3 things you want to assess? 2. What does somnolence mean and why is the patient feeling this way? 3. What do the results of the ABG show? How did you reach your answer? 4. Why are albuterol and budesonide prescribed? Explain what the action of these medications a 5. List and explain 3 points of focus for his discharge teaching. MiRR unequal lives. Singing Fish Fine Foods has $1,960,000 for capital investments this year and is considering two potential projects for the funds. Project 1 is updating the store's deli section for additional food service. The estimated after-tax cash flow of this project is $630,000 per year for the next five years. Project 2 is updating the store's wine section. The estimated annual after-tax cash flow for this project is $490,000 for the next six years. The appropriate discount rate for the deli expansion is 9.6% and the appropriate discount rate for the wine section is 9.0%. What are the MiRR: for the Singing Fish Fine Foods projecis? What are the MIRRs when you adjust for unequal lives? Do the MiRR adjusted for unequal lives change the decision based on MIRRs? Hint: Take all cash fows to the same end ng period as the longest project. Explain why a company committed to best practice customer services may choose to measure its service standards. Explain the concept of public relations as a method of marketing communication. In your answer, explain how it can be used as a form of product and/or service promotion. Describe five methods through which a company can promote its products. Dolley Madisons letter describes her preparations to flee the White House in advance of a British attack. In which war did this attack take place?A. War of Jenkins EarB. French and Indian WarC. Revolutionary WarD. War of 1812 (a) (3 pts) Let f: {2k | k Z} Z defined by f(x) = "y Z such that 2y = x". (A) One-to-one only (B) Onto only (C) Bijection (D) Not one-to-one or onto (E) Not a function (b) (3 pts) Let R>o R defined by g(u) = "v R such that v = u". (A) One-to-one only (B) Onto only (D) Not one-to-one or onto (E) Not a function (c) (3 pts) Let h: R - {2} R defined by h(t) = 3t - 1. (A) One-to-one only (B) Onto only (D) Not one-to-one or onto (E) Not a function (C) Bijection (C) Bijection (d) (3 pts) Let K : {Z, Q, R Q} {R, Q} defined by K(A) = AUQ. (A) One-to-one only (B) Onto only (D) Not one-to-one or onto (E) Not a function (C) Bijection Determine whether or not the following equation is true orfalse: arccos(cos(5/6)) = 5/6, Explain your answer. What are thr components of bone's extracellular matrix?1. Inorganic2. Organic Self Assessment elf Assessment - Chapter 2 Question 1 List the support services offered through home care. Paragraph Done here to search BI Uv Ev > AM O 59 Exercise 1 Rewrite each sentence to eliminate any unclear pronoun reference.Then in 1861, the first telegraph lines were stretched across the country, which allowed you to send messages faster. Which words and phrases from the sentence useinformal language and need to be revised? Check all that apply.manyyoungkidstrySuper-dangerousevery yearsafety