The Patriot's sample average change: -1.391
The Colts sample average change: -0.375
The difference in the teams average changes -1.016
How to perform two sample t-testThe difference in the teams average changes: (-1.391) - (-0.375) = -1.016
To find the t-statistic for the hypothesis test, we can use the formula
[tex]t = (X_1 - X-2) / (s_1^2/n_1 + s_2^2/n_2)^0.5[/tex]
where X1 and X2 are the sample means, s1 and s2 are the sample standard deviations, and n1 and n2 are the sample sizes.
Using the sample data
X1 = -1.391, X2 = -0.375
s1 = 0.858, s2 = 0.605
n1 = n2 = 12
Substitute the values
[tex]t = (-1.391 - (-0.375)) / (0.858^2/12 + 0.605^2/12)^0.5[/tex]
≈ -2.145
Therefore, the t-statistic for the hypothesis test is approximately -2.145.
To find the p-value for the hypothesis test,
From a t-distribution table with 22 df and the absolute value of the t-statistic. Using a two-tailed test at the 5% significance level, the p-value is approximately 0.042.
Therefore, the p-value for the hypothesis test is approximately 0.042.
Learn more on two-sample t-test on https://brainly.com/question/13201390
#SPJ4
Question is incomplete, find the complete question below
Question 13 1 pts Use ToolPak t-Test: Two-Sample Assuming Unequal Variances with Variable 1 as the change in PSI for the Patriots and Variable 2 as the change in PSI for the Colts. a. The Patriot's sample average change: [Choose b. The Colts sample average change: [Choose) c. The difference in the teams average changes Choose) e. The t-statistic for the hypothesis testi Choose) The p-value for the hypothesis test: [Choose Team P P P 12.5 AaaaaAAAUUUU PSI Halftim PSI Pregame 11.5 12.5 10.85 12.5 11.15 12.5 10.7 12.5 11.1 12.5 11.6 11.85 12.5 11.1 12.5 10.95 12.5 10.5 12.5 10.9 12.5 12.7 13 12.75 13 12.5 13 12.55 13 ak t-Test: Two-Sample Assuming Unequal Variances with Variable 1 as the change in PSI for ets and Variable 2 as the change in PSI for the Colts. triot's sample average change: olts sample average change: [Choose ] -1.391 -0.375 2.16 -7.518 0.162 -1.016 4.39E-06 (0.00000439) difference in the teams average S: t-statistic for the hypothesis test: [Choose) p-value for the hypothesis test: [Choose
4. Determine a scalar equation for the plane through the points M(1, 2, 3) and N(3,2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0. (Thinking - 2)
The normal vector of the desired plane is (6, 0, -12), and a scalar equation for the plane is 6x - 12z + k = 0, where k is a constant that can be determined by substituting the coordinates of one of the given points, such as M(1, 2, 3).
A scalar equation for the plane through points M(1, 2, 3) and N(3, 2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0 is:
3x + 2y + 6z + k = 0,
where k is a constant to be determined.
To find a plane perpendicular to the given plane, we can use the fact that the normal vector of the desired plane will be parallel to the normal vector of the given plane.
The given plane has a normal vector of (3, 2, 6) since its equation is 3x + 2y + 6z + 1 = 0.
To determine the normal vector of the desired plane, we can calculate the vector between the two given points: MN = N - M = (3 - 1, 2 - 2, -1 - 3) = (2, 0, -4).
Now, we need to find a scalar multiple of (2, 0, -4) that is parallel to (3, 2, 6). By inspection, we can see that if we multiply (2, 0, -4) by 3, we get (6, 0, -12), which is parallel to (3, 2, 6).
to learn more about scalar equation click here:
brainly.com/question/33063973
#SPJ11
A box contains 12 distinct colored balls (for instance, we could label them as 1, 2, ..., 12 to distinguish them). Three of them are red, four are yellow, and five are green. Three balls are selected at random from the box, with replacement. Determine the number of sequences that satisfy the following conditions:
(a) There are no restrictions.
(b) The first ball is red, the second is yellow, and the third is green.
(c) The first ball is red, and the second and third balls are green.
(d) Exactly two balls are yellow.
(e) All three balls are green.
(f) All three balls are the same color.
(g) At least one of the three balls is red.
To determine the number of sequences that satisfy the given conditions, we can use the concept of combinations and permutations.
(a) There are no restrictions:
Since there are no restrictions, we can select any of the 12 balls for each of the three positions, with replacement. Therefore, the number of sequences is 12^3 = 1728.
(b) The first ball is red, the second is yellow, and the third is green:
For this condition, we need to select one of the three red balls, one of the four yellow balls, and one of the five green balls, in that order. The number of sequences is 3 * 4 * 5 = 60.
(c) The first ball is red, and the second and third balls are green:
For this condition, we need to select one of the three red balls and two of the five green balls, in that order. The number of sequences is 3 * 5C2 = 3 * (5 * 4) / (2 * 1) = 30.
(d) Exactly two balls are yellow:
We can select two of the four yellow balls and one of the eight remaining balls (red or green) in any order. The number of sequences is 4C2 * 8 = (4 * 3) / (2 * 1) * 8 = 48.
(e) All three balls are green:
Since there are five green balls, we can select any three of them in any order. The number of sequences is 5C3 = (5 * 4) / (2 * 1) = 10.
(f) All three balls are the same color:
We can choose any of the three colors (red, yellow, or green), and then select one ball of that color in any order. The number of sequences is 3 * 1 = 3.
(g) At least one of the three balls is red:
To find the number of sequences where at least one ball is red, we can subtract the number of sequences where none of the balls are red from the total number of sequences. The number of sequences with no red balls is 8^3 = 512. Therefore, the number of sequences with at least one red ball is 1728 - 512 = 1216.
In summary:
(a) 1728 sequences
(b) 60 sequences
(c) 30 sequences
(d) 48 sequences
(e) 10 sequences
(f) 3 sequences
(g) 1216 sequences
Learn more about sequences
https://brainly.com/question/30262438
#SPJ11
Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7
A: ZABC is a right angle. (Given)
B: DB bisects ZABC. (Given)
C: m/ABD = m/CBD. (Definition of angle bisector)
D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.
A: Given: ZABC is a right angle.
B: Given: DB bisects ZABC.
C: To prove: m/CBD = 45°
D: Proof:
ZABC is a right angle. (Given)
DB bisects ZABC. (Given)
m/ABD = m/CBD. (Definition of angle bisector)
m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)
Substitute m/CBD with m/ABD in equation (4).
m/ABD + m/ABD = 90°.
2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))
Divide both sides of equation (6) by 2.
m/ABD = 45°.
Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)
Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.
Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.
Therefore, m/ABD and m/CBD are equal.
For similar question on substitution property.
https://brainly.com/question/29058226
#SPJ8
Use the formula for future value, A=P(1+rt), and elementary algebra to find the missing quantity. A=$2,160; r=5%; 1= 4 years
Answer:
Step-by-step explanation:
To find the missing quantity in the formula for future value, A = P(1 + rt), where A = $2,160, r = 5%, and t = 4 years, we can rearrange the formula to solve for P (the initial principal or present value).
The formula becomes:
A = P(1 + rt)
Substituting the given values:
$2,160 = P(1 + 0.05 * 4)
Simplifying:
$2,160 = P(1 + 0.20)
$2,160 = P(1.20)
To isolate P, divide both sides of the equation by 1.20:
$2,160 / 1.20 = P
P ≈ $1,800
Therefore, the missing quantity, P, is approximately $1,800.
Consider a firm whose production function is q=(KL)
γ
Suppose that γ>1/2. Assume that (w,r)=(1,1). ** Part a (5 marks) Is the production function exhibiting increasing returns to scale/decreasing returns to scale? ** Part b (5 marks) Derive the long-run cost function C(q,γ). ** Part c (5 marks) Show that the long-run cost function is linear/strictly convex/strictly concave in q
γ > 1/2, (1-2γ)/γ < 0, which means the second derivative is negative. Therefore, the long-run cost function is strictly concave in q.
Part a: To determine whether the production function exhibits increasing returns to scale or decreasing returns to scale, we need to examine how changes in inputs affect output.
In general, a production function exhibits increasing returns to scale if doubling the inputs more than doubles the output, and it exhibits decreasing returns to scale if doubling the inputs less than doubles the output.
Given the production function q = (KL)^γ, where γ > 1/2, let's consider the effect of scaling the inputs by a factor of λ, where λ > 1.
When we scale the inputs by a factor of λ, we have K' = λK and L' = λL. Substituting these values into the production function, we get:
q' = (K'L')^γ
= (λK)(λL)^γ
= λ^γ * (KL)^γ
= λ^γ * q
Since λ^γ > 1 (because γ > 1/2 and λ > 1), we can conclude that doubling the inputs (λ = 2) results in more than doubling the output. Therefore, the production function exhibits increasing returns to scale.
Part b: To derive the long-run cost function C(q, γ), we need to determine the cost of producing a given quantity q, taking into account the production function and input prices.
The cost function can be expressed as C(q) = wK + rL, where w is the wage rate and r is the rental rate.
In this case, we are given that (w, r) = (1, 1), so the cost function simplifies to C(q) = K + L.
Using the production function q = (KL)^γ, we can express L in terms of K and q as follows:
q = (KL)^γ
q^(1/γ) = KL
L = (q^(1/γ))/K
Substituting this expression for L into the cost function, we have:
C(q) = K + (q^(1/γ))/K
Therefore, the long-run cost function is C(q, γ) = K + (q^(1/γ))/K.
Part c: To determine whether the long-run cost function is linear, strictly convex, or strictly concave in q, we need to examine the second derivative of the cost function with respect to q.
Taking the second derivative of C(q, γ) with respect to q:
d^2C(q, γ)/[tex]dq^2 = d^2/dq^2[/tex][K + (q^(1/γ))/K]
= d/dq [(1/γ)(q^((1-γ)/γ))/K]
= (1/γ)((1-γ)/γ)(q^((1-2γ)/γ))/K^2
To know more about derivative visit:
brainly.com/question/29144258
#SPJ11
Determine whether the events are independent or dependent. Explain. Jeremy took the SAT on Saturday and scored 1350. The following week he took the ACT and scored 23 .
The events of Jeremy's SAT score and his ACT score are independent.
Two events are considered independent if the outcome of one event does not affect the outcome of the other. In this case, Jeremy's SAT score of 1350 and his ACT score of 23 are independent events because the scores he achieved on the SAT and ACT are separate and unrelated assessments of his academic abilities.
The SAT and ACT are two different standardized tests used for college admissions in the United States. Each test has its own scoring system and measures different aspects of a student's knowledge and skills. The fact that Jeremy scored 1350 on the SAT does not provide any information or influence his subsequent performance on the ACT. Similarly, his ACT score of 23 does not provide any information about his SAT score.
Since the SAT and ACT are distinct tests and their scores are not dependent on each other, the events of Jeremy's SAT score and ACT score are considered independent.
To know more about independent events, refer here:
https://brainly.com/question/32716243#
#SPJ11
Make y the subject of the inequality x<−9/y−7
The resulted inequality is y > (9 + x) / 7.
To make y the subject of the inequality x < -9/y - 7, we need to isolate y on one side of the inequality.
Let's start by subtracting x from both sides of the inequality:
x + 9/y < 7
Next, let's multiply both sides of the inequality by y to get rid of the fraction:
y(x + 9/y) < 7y
This simplifies to:
x + 9 < 7y
Finally, let's isolate y by subtracting x from both sides:
x + 9 - x < 7y - x
9 < 7y - x
Now, we can rearrange the inequality to make y the subject:
7y > 9 + x
Divide both sides by 7:
y > (9 + x) / 7
So, the inequality x < -9/y - 7 can be rewritten as y > (9 + x) / 7.
To know more about inequalities, refer here:
https://brainly.com/question/20383699#
#SPJ11
In 1984 the price of a 12oz box of kellogg corn flakes was $0.89 what was the price in 2008 with a increased amount of 235% and increase by 105%
The approximate price of a 12oz box of Kellogg's Corn Flakes in 2008, with an initial price of $0.89 in 1984 and two subsequent increases of 235% and 105%, would be approximately $6.12
To calculate the price of a 12oz box of Kellogg's Corn Flakes in 2008, considering an increase of 235% and an additional increase of 105% from the initial price in 1984, we can follow these steps:
Step 1: Calculate the first increase of 235%:
First, we need to find the price after the first increase. To do this, we multiply the initial price in 1984 by 235% and add it to the initial price:
First increase = $0.89 * (235/100) = $2.09315
New price after the first increase = $0.89 + $2.09315 = $2.98315 (rounded to 5 decimal places)
Step 2: Calculate the additional increase of 105%:
Next, we need to calculate the second increase based on the price after the first increase. To do this, we multiply the price after the first increase by 105% and add it to the price:
Second increase = $2.98315 * (105/100) = $3.13231
New price after the additional increase = $2.98315 + $3.13231 = $6.11546 (rounded to 5 decimal places)
Therefore, the approximate price of a 12oz box of Kellogg's Corn Flakes in 2008, with an initial price of $0.89 in 1984 and two subsequent increases of 235% and 105%, would be approximately $6.12.
To know more about rounded refer to:
https://brainly.com/question/29878750
#SPJ11
PLS ANSWER QUICKLY ASAP
There is screenshot I need help
uwu
Answer:
What are you trying to find???
Step-by-step explanation:
If it is median, then it is the line in the middle of the box, which is on 19.
Consider the following deffinitions for sets of charactets: - Dights ={0,1,2,3,4,5,6,7,8,9} - Special characters ={4,8,8. #\} Compute the number of pakswords that sat isfy the given constraints. (i) Strings of length 7 . Characters can be special claracters, digits, or letters, with no repeated charscters. (ii) Strings of length 6. Characters can be special claracters, digits, or letterss, with no repeated claracters. The first character ean not be a special character.
For strings of length 7 with no repeated characters, there are 1,814,400 possible passwords. For strings of length 6 with no repeated characters and the first character not being a special character, there are 30,240 possible passwords.
To compute the number of passwords that satisfy the given constraints, let's analyze each case separately:
(i) Strings of length 7 with no repeated characters:
In this case, the first character can be any character except a special character. The remaining six characters can be chosen from the set of digits, special characters, or letters, with no repetition.
1. First character: Any character except a special character, so there are 10 choices.
2. Remaining characters: 10 choices for the first position, 9 choices for the second position, 8 choices for the third position, and so on until 5 choices for the sixth position.
Therefore, the total number of passwords that satisfy the constraints for strings of length 7 is:
10 * 10 * 9 * 8 * 7 * 6 * 5 = 1,814,400 passwords.
(ii) Strings of length 6 with no repeated characters and the first character not being a special character:
In this case, the first character cannot be a special character, so there are 10 choices for the first character (digits or letters). The remaining five characters can be chosen from the set of digits, special characters, or letters, with no repetition.
1. First character: Any digit (0-9) or letter (a-z, A-Z), so there are 10 choices.
2. Remaining characters: 10 choices for the second position, 9 choices for the third position, 8 choices for the fourth position, and so on until 6 choices for the sixth position.
Therefore, the total number of passwords that satisfy the constraints for strings of length 6 is:
10 * 10 * 9 * 8 * 7 * 6 = 30,240 passwords.
Note: It seems there's a typo in the "Special characters" set definition. The third character, "8. #\", appears to be a combination of characters rather than a single character.
To know more about string, refer to the link below:
https://brainly.com/question/30214499#
#SPJ11
FIFTY POINTS!! find the surface area of the composite figure
Answer:
218 cm²
Step-by-step explanation:
The lateral surface area (LSA) is the area of the sides excluding the top and botton part
LSA formula: 2h(l+b)
For the larger(green) cuboid, h = 4, l = 10, b =5
For the smaller(pink) cuboid, h = 6, l = 2, b =2
Total area = LSA(green) + top part of green + LSA(pink) + top of pink
LSA of green :
2h(l+b) = 2(4)(10+5)
= 8*15
= 120 -----eq(1)
Top part of green:
The area of green cuboid's top- area of pink cuboid's base
= (10*5) - (2*2)
= 50 - 4
= 46 -----eq(2)
LSA of pink:
2h(l+b) = 2(6)(2+2)
= 12*4
= 48 -----eq(3)
Top part of pink:
2*2 = 4 -----eq(3)
Total area:
eq(1) + eq(2) + eq(3) + eq(4)
= 120 + 45 + 48 + 4
= 218 cm²
Let A and B be two matrices of size 4 X 4 such that det(A) = 1. If B is a singular matrix then det(2A⁻²Bᵀ) – 1 = a 1 b 0 c 2 d None of the mentioned
d) None of the mentioned. Let's break down the given expression and evaluate it step by step:
det(2A^(-2)B^ᵀ) - 1
First, let's analyze the term 2A^(-2)B^ᵀ.
Since A is a 4x4 matrix and det(A) = 1, we know that A is invertible. Therefore, A^(-1) exists.
Using the property of determinants, we can rewrite the expression as:
det(2A^(-2)B^ᵀ) = det(2(A^(-1))^2B^ᵀ)
Now, let's focus on the term (A^(-1))^2.
Since A^(-1) is the inverse of A, we can rewrite it as A^(-1) = 1/A.
Taking the square of A^(-1), we have:
(A^(-1))^2 = (1/A)^2 = 1/A^2
Now, substituting this back into the expression:
det(2A^(-2)B^ᵀ) = det(2(1/A^2)B^ᵀ) = 2^(4) * det((1/A^2)B^ᵀ)
Since B is a singular matrix, det(B) = 0.
Now, we can evaluate the expression: det(2A^(-2)B^ᵀ) - 1 = 2^(4) * det((1/A^2)B^ᵀ) - 1 = 16 * (1/A^2) * det(B^ᵀ) - 1 = 16 * (1/A^2) * 0 - 1 = -1
Therefore, det(2A^(-2)B^ᵀ) - 1 = -1.
The correct answer is d) None of the mentioned.
Learn more about expression here
https://brainly.com/question/1859113
#SPJ11
What is the distance a car will travel in 12 minutes of it is going 50mph ?
If a car is traveling at a constant rate of 50 miles per hour, we can determine how far it will travel in 12 minutes. We know that 1 hour is equivalent to 60 minutes. Therefore, 50 miles per hour is the same as 50/60 miles per minute, or 5/6 miles per minute.
To find the distance traveled in 12 minutes, we can multiply the speed by the time:distance = speed × time
= (5/6) miles/minute × 12 minutes
= 10 milesSo, a car traveling at a constant rate of 50 miles per hour will travel a distance of 10 miles in 12 minutes.
To know more about constant visit:
https://brainly.com/question/31730278
#SPJ11
Which is better value for money?
600ml bottle of milk for 50p
Or
4.5liter bottle of milk for £3.70
Answer:
50 p Is a better deal
Step-by-step explanation:
if wrong let me know
Use an inverse matrix to solve each question or system.
[-6 0 7 1]
[-12 -6 17 9]
The inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]
Given matrix is: A = [-6 0 7 1][ -12 -6 17 9]
To find inverse matrix, we use Gauss-Jordan elimination method as follows:We append an identity matrix of same order to matrix A, perform row operations until the left side of matrix reduces to an identity matrix, then the right side will be our inverse matrix.So, [A | I] = [-6 0 7 1 | 1 0 0 0][ -12 -6 17 9 | 0 1 0 0]
Performing the following row operations, we get,
[A | I] = [1 0 0 0 | 3/2 -7/4][0 1 0 0 | 1/2 -3/4][0 0 1 0 |-1 1][0 0 0 1 |1/2]
So, the inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]
Multiplying A^-1 with A, we should get an identity matrix, i.e.,A * A^-1 = [ 1 0][ 0 1]
Therefore, the solution of the system of equations is obtained by multiplying the inverse matrix by the matrix containing the constants of the system.
Know more about matrix here,
https://brainly.com/question/28180105
#SPJ11
Find the work required to pitch a 6. 6 oz softball at 90 ft/sec. GOODS The work required to pitch a 6. 6 oz softball at 90 ft/sec is ft-lb. (Do not round until the final answer. Then round to the neares
The work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.
To find the work required to pitch a softball, we can use the formula:
Work = Force * Distance
In this case, we need to calculate the force and the distance.
Force:
The force required to pitch the softball can be calculated using Newton's second law, which states that force is equal to mass times acceleration:
Force = Mass * Acceleration
The mass of the softball is given as 6.6 oz. We need to convert it to pounds for consistency. Since 1 pound is equal to 16 ounces, the mass of the softball in pounds is:
6.6 oz * (1 lb / 16 oz) = 0.4125 lb (rounded to four decimal places)
Acceleration:
The acceleration is given as 90 ft/sec.
Distance:
The distance is also given as 90 ft.
Now we can calculate the work:
Work = Force * Distance
= (0.4125 lb) * (90 ft)
= 37.125 lb-ft (rounded to three decimal places)
Therefore, the work required to pitch a 6.6 oz softball at 90 ft/sec is approximately 37.125 ft-lb.
Learn more about softbal here:
https://brainly.com/question/15069776
#SPJ11
suppose that a and b vary inversely and that b = 5/3 when a=9. Write a function that models the inverse variation
The function that models the inverse variation between variables a and b is given by b = k/a, where k is the constant of variation.
In inverse variation, two variables are inversely proportional to each other. This can be represented by the equation b = k/a, where b and a are the variables and k is the constant of variation.
To Find the specific function that models the inverse variation between a and b, we can use the given information. When a = 9, b = 5/3.
Plugging these values into the inverse variation equation, we have:
5/3 = k/9
To solve for k, we can cross-multiply:
5 * 9 = 3 * k
45 = 3k
Dividing both sides by 3:
k = 45/3
Simplifying:
k = 15
Therefore, the function that models the inverse variation between a and b is:
b = 15/a
This equation demonstrates that as the value of a increases, the value of b decreases, and vice versa. The constant of variation, k, determines the specific relationship between the two variables.
For more such questions on inverse variation, click on:
https://brainly.com/question/13998680
#SPJ8
There are four white and six black socks in a drawer. One is pulled out at random. Find the probability that it is white. Round to the nearest whole percentage. Select one: a. 25% b. 60% c. 17% d. 40%
The probability that a randomly pulled out sock from a drawer containing four white and six black socks is white is approximately 40%.
What is the rounded percentage probability of pulling out a white sock from the drawer?To find the probability that a randomly pulled out sock from the drawer is white, we divide the number of white socks by the total number of socks. In this case, there are four white socks and a total of ten socks (four white + six black).
Probability of selecting a white sock = Number of white socks / Total number of socks
= 4 / 10
= 0.4
To express the probability as a percentage, we multiply the result by 100 and round it to the nearest whole number.
Probability of selecting a white sock = 0.4 * 100 ≈ 40%
Therefore, the probability that the randomly pulled out sock is white is approximately 40%. Hence, the correct option is d. 40%.
Learn more about Probability
brainly.com/question/31828911
#SPJ11
Do not use EXCEL One of the fast food restaurants near my neighbourhood claims that the average delivery time of its service is less than 6 minutes. Using a random sample of 12 delivery times with a sample mean of 5.69 minutes and 1.58 minutes sample standard deviation, determine if there is sufficient evidence to support this restaurant's claim of the delivery time at the 5% level of significance. (i) Formulate the hypothesis (2 Points) (ii) State your conclusion using the critical value approach with a distribution graph (4 Points) (iii) State your conclusion using the p-value approach a distribution graph
By following the critical value approach and the p-value approach, we have examined the hypothesis and reached conclusions based on the test statistic and the significance level.
(i) Formulate the hypothesis:
The hypothesis testing can be done by following the given steps:
Step 1: State the hypothesis
Step 2: Set the criteria for the decision
Step 3: Calculate the test statistic and probability of the test statistic
Step 4: Make the decision in light of steps 2 and 3
The null hypothesis H0: μ ≥ 6
The alternative hypothesis H1: μ < 6
Where μ = Population Mean
(ii) State your conclusion using the critical value approach with a distribution graph:
The critical value is determined by:
α/2 = 0.05/2 = 0.025
Degrees of freedom = n - 1 = 12 - 1 = 11
Level of significance = α = 0.05
Critical value = -t0.025, 11 = -2.201
The test statistic, t = (x - μ) / (s / √n)
Where,
x = Sample Mean = 5.69
μ = Population Mean = 6
s = Sample Standard Deviation = 1.58
n = Sample size = 12
t = (5.69 - 6) / (1.58 / √12) = -1.64
The rejection region is (-∞, -2.201)
The test statistic is outside of the rejection region, thus we reject the null hypothesis. Hence, there is sufficient evidence to support the claim that the delivery time is less than 6 minutes.
(iii) State your conclusion using the p-value approach and a distribution graph:
The p-value is given as P(t < -1.64) = 0.0642
The p-value is greater than α, thus we accept the null hypothesis. Therefore, we cannot support the restaurant's claim that the average delivery time of its service is less than 6 minutes.
Learn more about standard deviation
https://brainly.com/question/29115611
#SPJ11
Given the system of simultaneous equations 2x+4y−2z=4
2x+5y−(k+2)z=3
−x+(k−5)y+z=1
Find values of k for which the equations have a. a unique solution b. no solution c. infinite solutions and in this case find the solutions
a. The determinant of A is nonzero (-2 ≠ 0), the system of equations has a unique solution for all values of k.
b. For values of k less than 3, the system of equations has no solution.
c. There are no values of k for which the system of equations has infinite solutions.
To determine the values of k for which the given system of simultaneous equations has a unique solution, no solution, or infinite solutions, let's consider each case separately:
a. To find the values of k for which the equations have a unique solution, we need to check if the determinant of the coefficient matrix is nonzero. If the determinant is nonzero, it means that the equations can be uniquely solved.
To compute the determinant, we can write the coefficient matrix A as follows:
A = [[2, 4, -2], [2, 5, -(k+2)], [-1, k-5, 1]]
Expanding the determinant of A, we have:
det(A) = 2(5(1)-(k-5)(-2)) - 4(2(1)-(k+2)(-1)) - 2(2(k-5)-(-1)(2))
Simplifying this expression, we get:
det(A) = 10 + 2k - 10 - 4k - 4 + 2k + 4k - 10
Combining like terms, we have:
det(A) = -2
Since the determinant of A is nonzero (-2 ≠ 0), the system of equations has a unique solution for all values of k.
b. To find the values of k for which the equations have no solution, we can check if the determinant of the augmented matrix, [A|B], is nonzero, where B is the column vector on the right-hand side of the equations.
The augmented matrix is:
[A|B] = [[2, 4, -2, 4], [2, 5, -(k+2), 3], [-1, k-5, 1, 1]]
Expanding the determinant of [A|B], we have:
det([A|B]) = (2(5) - 4(2))(1) - (2(1) - (k+2)(-1))(4) + (-1(2) - (k-5)(-2))(3)
Simplifying this expression, we get:
det([A|B]) = 10 - 8 - 4k + 8 - 2k + 4 + 2 + 6k - 6
Combining like terms, we have:
det([A|B]) = -6k + 18
For the system to have no solution, the determinant of [A|B] must be nonzero. Therefore, for no solution, we must have:
-6k + 18 ≠ 0
Simplifying this inequality, we get:
-6k ≠ -18
Dividing both sides by -6 (and flipping the inequality), we have:
k < 3
Thus, for values of k less than 3, the system of equations has no solution.
c. To find the values of k for which the equations have infinite solutions, we can check if the determinant of A is zero and if the determinant of the augmented matrix, [A|B], is also zero.
From part (a), we know that the determinant of A is -2.
Therefore, to have infinite solutions, we must have:
-2 = 0
However, since -2 is not equal to zero, there are no values of k for which the system of equations has infinite solutions.
Learn more about 'solutions':
https://brainly.com/question/17145398
#SPJ11
What is the perimeter of the rectangle with vertices at 4,5) 4,-1) , -5,-1) and -5,5)
Answer:
30 units
Step-by-step explanation:
(4,5) to (4,-1) = 6
(4,-1) to (-5,-1) = 9
(-5,-1) to (-5,5) = 6
(-5,5) to (4,5) = 9
6+9+6+9=30
Joining the points (2, 16) and (8,4).
To join the points (2, 16) and (8, 4), we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.
First, let's calculate the slope (m) using the formula:
m = (y2 - y1) / (x2 - x1)
Substituting the coordinates of the two points:
m = (4 - 16) / (8 - 2)
m = -12 / 6
m = -2
Now that we have the slope, we can choose either of the two points and substitute its coordinates into the slope-intercept form to find the y-intercept (b).
Let's choose the point (2, 16):
16 = -2(2) + b
16 = -4 + b
b = 20
Now we have the slope (m = -2) and the y-intercept (b = 20), we can write the equation of the line:
y = -2x + 20
This equation represents the line passing through the points (2, 16) and (8, 4).
[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]
♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]
A is the point with coordinates (5,9)
The gradient of the line AB is 3
Work out the value of d
The value of d is sqrt(10), which is approximately 3.162.
To find the value of d, we need to determine the coordinates of point B on the line AB. We know that the gradient of the line AB is 3, which means that for every 1 unit increase in the x-coordinate, the y-coordinate increases by 3 units.
Given that point A has coordinates (5, 9), we can use the gradient to find the coordinates of point B. Since B lies on the line AB, it must have the same gradient as AB. Starting from point A, we move 1 unit in the x-direction and 3 units in the y-direction to get to point B.
Therefore, the coordinates of B can be calculated as follows:
x-coordinate of B = x-coordinate of A + 1 = 5 + 1 = 6
y-coordinate of B = y-coordinate of A + 3 = 9 + 3 = 12
So, the coordinates of point B are (6, 12).
Now, to find the value of d, we can use the distance formula between points A and B:
d = [tex]sqrt((x2 - x1)^2 + (y2 - y1)^2)[/tex]
= [tex]sqrt((6 - 5)^2 + (12 - 9)^2)[/tex]
= [tex]sqrt(1^2 + 3^2)[/tex]
= sqrt(1 + 9)
= sqrt(10)
For more such questions on value
https://brainly.com/question/843074
#SPJ8
1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]
The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.
Step 1: Find the critical points by setting the derivative equal to zero and solving for x.
() = 12 9 − 32 − 3
() = 27 − 96x² − 3x²
Setting the derivative equal to zero, we have:
27 − 96x² − 3x² = 0
-99x² + 27 = 0
x² = 27/99
x = ±√(27/99)
x ≈ ±0.183
Step 2: Evaluate the function at the critical points and endpoints.
() = 12 9 − 32 − 3
() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)
() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)
Step 3: Compare the values to determine the absolute maximum and minimum.
The absolute maximum occurs at x = 0 with a value of -3.
The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.
Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.
Learn more about interval here
https://brainly.com/question/30460486
#SPJ11
Evaluate the expression if a=2, b=6 , and c=3 .
\frac{1}{2} c(b+a)
Substituting a = 2, b = 6, and c = 3 into the expression:
1
2
(
3
)
(
6
+
2
)
2
1
(3)(6+2)
Simplifying the expression:
1
2
(
3
)
(
8
)
=
12
2
1
(3)(8)=12
Therefore, when a = 2, b = 6, and c = 3, the expression
1
2
�
(
�
+
�
)
2
1
c(b+a) evaluates to 12.
To evaluate the expression
1
2
�
(
�
+
�
)
2
1
c(b+a) when a = 2, b = 6, and c = 3, we substitute these values into the expression and perform the necessary calculations.
First, we substitute a = 2, b = 6, and c = 3 into the expression:
1
2
(
3
)
(
6
+
2
)
2
1
(3)(6+2)
Next, we simplify the expression following the order of operations (PEMDAS/BODMAS):
Within the parentheses, we have 6 + 2, which equals 8. Substituting this result into the expression, we get:
1
2
(
3
)
(
8
)
2
1
(3)(8)
Next, we multiply 3 by 8, which equals 24:
1
2
(
24
)
2
1
(24)
Finally, we multiply 1/2 by 24, resulting in 12:
12
Therefore, when a = 2, b = 6, and c = 3, the expression
1
2
�
(
�
+
�
)
2
1
c(b+a) evaluates to 12.
Learn more about expression here:
brainly.com/question/14083225
#SPJ11
Express the following as a linear combination of u =(4, 1, 6), v = (1, -1, 5) and w=(4, 2, 8). (17, 9, 17) = i u- i V+ i W
The given vector as a linear combination are
4i + j + 4k = 17 (Equation 1)i - j + 2k = 9 (Equation 2)6i + 5j + 8k = 17 (Equation 3)To express the vector (17, 9, 17) as a linear combination of u, v, and w, we need to find the coefficients (i, j, k) such that:
(i)u + (j)v + (k)w = (17, 9, 17)
Substituting the given values for u, v, and w:
(i)(4, 1, 6) + (j)(1, -1, 5) + (k)(4, 2, 8) = (17, 9, 17)
Expanding the equation component-wise:
(4i + j + 4k, i - j + 2k, 6i + 5j + 8k) = (17, 9, 17)
By equating the corresponding components, we can solve for i, j, and k:
4i + j + 4k = 17 (Equation 1)
i - j + 2k = 9 (Equation 2)
6i + 5j + 8k = 17 (Equation 3)
Know more about linear combination here:
brainly.com/question/30341410
#SPJ11
A circle has a diameter with endpoints at A (-1. -9) and B (-11, 5). The point M (-6, -2) lies on the diameter. Prove or disprove that point M is the center of the circle by answering the following questions. Round answers to the nearest tenth (one decimal place). What is the distance from A to M? What is the distance from B to M? Is M the center of the circle? Yes or no?
Answer:
AM: 8.6 units
BM: 8.6 units
M is the center
Step-by-step explanation:
Pre-SolvingWe are given that the diameter of a circle is AB, where point A is at (-1, -9) and point B is (-11, 5).
We know that point M, which is at (-6, -2) is on AB. We want to know if it is the center of the circle.
If it is the center, then it means that the distance (measure) of AM is the same as the distance (measure) of BM.
Recall that the distance formula is [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex], where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points.
SolvingLength of AMThe endpoints are point A and point M. We can label the values of the points to get:
[tex]x_1=-1\\y_1=-9\\x_2=-6\\y_2=-2[/tex]
Now, plug them into the formula.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-6--1)^2+(-2--9)^2}[/tex]
[tex]d=\sqrt{(-6+1)^2+(-2+9)^2}[/tex]
[tex]d=\sqrt{(-5)^2+(7)^2}[/tex]
[tex]d=\sqrt{25+49}[/tex]
[tex]d=\sqrt{74}[/tex] ≈ 8.6 units
Length of BMThe endpoints are point B and point M. We can label the values and get:
[tex]x_1=-11\\y_1=5\\x_2=-6\\y_2=-2[/tex]
Now, plug them into the formula.
[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]d=\sqrt{(-6--11)^2+(-2-5)^2}[/tex]
[tex]d=\sqrt{(-6+11)^2+(-2-5)^2}[/tex]
[tex]d=\sqrt{(5)^2+(-7)^2}[/tex]
[tex]d=\sqrt{25+49}[/tex]
[tex]d=\sqrt{74}[/tex] ≈ 8.6 units.
Since the length of AM an BM are the same, M is the center of the circle.
How many six-letter permutations can be formed from the first eight letters of the alphabet?
How many different signals can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time?
There are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.
There are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.
To determine the number of six-letter permutations that can be formed from the first eight letters of the alphabet, we need to calculate the number of ways to choose 6 letters out of the available 8 and then arrange them in a specific order.
The number of ways to choose 6 letters out of 8 is given by the combination formula "8 choose 6," which can be calculated as follows:
C(8, 6) = 8! / (6! * (8 - 6)!) = 8! / (6! * 2!) = (8 * 7) / (2 * 1) = 28.
Now that we have chosen 6 letters, we can arrange them in a specific order, which is a permutation. The number of ways to arrange 6 distinct letters is given by the formula "6 factorial" (6!). Thus, the number of six-letter permutations from the first eight letters of the alphabet is:
28 * 6! = 28 * 720 = 20,160.
Therefore, there are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.
Now let's move on to the second question regarding the number of different signals that can be made by hoisting flags on a ship's mast. In this case, we have 4 yellow flags, 2 green flags, and 2 red flags.
To find the number of different signals, we need to calculate the number of ways to arrange these flags. We can do this using the concept of permutations with repetitions. The formula to calculate the number of permutations with repetitions is:
n! / (n₁! * n₂! * ... * nk!),
where n is the total number of objects and n₁, n₂, ..., nk are the counts of each distinct object.
In this case, we have a total of 8 flags (4 yellow flags, 2 green flags, and 2 red flags). Applying the formula, we get:
8! / (4! * 2! * 2!) = (8 * 7 * 6 * 5) / (4 * 3 * 2 * 1) = 70.
Therefore, there are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.
Learn more about permutations
brainly.com/question/29990226
#SPJ11
If f(x) = -3x2 + 7 determine f (a+2)
f(a + 2) is represented as -3a^2 - 12a - 5.
To determine f(a + 2) when f(x) = -3x^2 + 7, we substitute (a + 2) in place of x in the given function:
f(a + 2) = -3(a + 2)^2 + 7
Expanding the equation further:
f(a + 2) = -3(a^2 + 4a + 4) + 7
Now, distribute the -3 across the terms within the parentheses:
f(a + 2) = -3a^2 - 12a - 12 + 7
Combine like terms:
f(a + 2) = -3a^2 - 12a - 5
Therefore, f(a + 2) is represented as -3a^2 - 12a - 5.
Learn more about parentheses here
https://brainly.com/question/3572440
#SPJ11
Solución de este problema matemático
The value of x, considering the similar triangles in this problem, is given as follows:
x = 2.652.
El valor de x es el seguinte:
x = 2.652.
What are similar triangles?Two triangles are defined as similar triangles when they share these two features listed as follows:
Congruent angle measures, as both triangles have the same angle measures.Proportional side lengths, which helps us find the missing side lengths.The proportional relationship for the side lengths in this triangle is given as follows:
x/3.9 = 3.4/5
Applying cross multiplication, the value of x is obtained as follows:
5x = 3.9 x 3.4
x = 3.9 x 3.4/5
x = 2.652.
More can be learned about similar triangles at brainly.com/question/14285697
#SPJ1