Use the method of variation of parameters to find a particular solution of the differential equation 4y" - 4y' + y = 80e¹/2 that does not involve any terms from the homogeneous solution. Y(t) = e. 40 t² ež. X

Answers

Answer 1

1. Homogeneous solution is [tex]\rm y_h(t) = c_1e^{(1/2t)} + c_2te^{(1/2t)[/tex].

2. Particular solution: [tex]\rm y_p(t) = 80e^{(1/2t)[/tex].

3. General solution: [tex]\rm y(t) = y_h(t) + y_p(t) = c_1e^{(1/2t)} + c_2te^{(1/2t)} + 80e^{(1/2t)[/tex].

1. Find the homogeneous solution:

The characteristic equation for the homogeneous equation is given by [tex]$4r^2 - 4r + 1 = 0$[/tex]. Solving this equation, we find that the roots are [tex]$r = \frac{1}{2}$[/tex] (double root).

Therefore, the homogeneous solution is [tex]$ \rm y_h(t) = c_1e^{\frac{1}{2}t} + c_2te^{\frac{1}{2}t}$[/tex], where [tex]$c_1$[/tex] and [tex]$c_2$[/tex] are constants.

2. Find the particular solution:

Assume the particular solution has the form [tex]$ \rm y_p(t) = u(t)e^{\frac{1}{2}t}$[/tex], where u(t) is a function to be determined. Differentiate [tex]$y_p(t)$[/tex] to find [tex]$y_p'$[/tex] and [tex]$y_p''$[/tex]:

[tex]$ \rm y_p' = u'e^{\frac{1}{2}t} + \frac{1}{2}ue^{\frac{1}{2}t}$[/tex]

[tex]$ \rm y_p'' = u''e^{\frac{1}{2}t} + u'e^{\frac{1}{2}t} + \frac{1}{4}ue^{\frac{1}{2}t}$[/tex]

Substitute these expressions into the differential equation [tex]$ \rm 4(y_p'') - 4(y_p') + y_p = 80e^{\frac{1}{2}}$[/tex]:

[tex]$ \rm 4(u''e^{\frac{1}{2}t} + u'e^{\frac{1}{2}t} + \frac{1}{4}ue^{\frac{1}{2}t}) - 4(u'e^{\frac{1}{2}t} + \frac{1}{2}ue^{\frac{1}{2}t}) + u(t)e^{\frac{1}{2}t} = 80e^{\frac{1}{2}}$[/tex]

Simplifying the equation:

[tex]$ \rm 4u''e^{\frac{1}{2}t} + u(t)e^{\frac{1}{2}t} = 80e^{\frac{1}{2}}$[/tex]

Divide through by [tex]$e^{\frac{1}{2}t}$[/tex]:

[tex]$4u'' + u = 80$[/tex]

3. Solve for u(t):

To solve for u(t), we assume a solution of the form u(t) = A, where A is a constant. Substitute this solution into the equation:

[tex]$4(0) + A = 80$[/tex]

[tex]$A = 80$[/tex]

Therefore, [tex]$u(t) = 80$[/tex].

4. Find the particular solution [tex]$y_p(t)$[/tex]:

Substitute [tex]$u(t) = 80$[/tex] back into [tex]$y_p(t) = u(t)e^{\frac{1}{2}t}$[/tex]:

[tex]$y_p(t) = 80e^{\frac{1}{2}t}$[/tex]

Therefore, a particular solution of the differential equation [tex]$4y'' - 4y' + y = 80e^{\frac{1}{2}}$[/tex] that does not involve any terms from the homogeneous solution is [tex]$y_p(t) = 80e^{\frac{1}{2}t}$[/tex].

Learn more about  homogeneous solution

https://brainly.com/question/14441492

#SPJ11


Related Questions

Consider the following deffinitions for sets of charactets: - Dights ={0,1,2,3,4,5,6,7,8,9} - Special characters ={4,8,8. #\} Compute the number of pakswords that sat isfy the given constraints. (i) Strings of length 7 . Characters can be special claracters, digits, or letters, with no repeated charscters. (ii) Strings of length 6. Characters can be special claracters, digits, or letterss, with no repeated claracters. The first character ean not be a special character.

Answers

For strings of length 7 with no repeated characters, there are 1,814,400 possible passwords. For strings of length 6 with no repeated characters and the first character not being a special character, there are 30,240 possible passwords.

To compute the number of passwords that satisfy the given constraints, let's analyze each case separately:

(i) Strings of length 7 with no repeated characters:

In this case, the first character can be any character except a special character. The remaining six characters can be chosen from the set of digits, special characters, or letters, with no repetition.

1. First character: Any character except a special character, so there are 10 choices.

2. Remaining characters: 10 choices for the first position, 9 choices for the second position, 8 choices for the third position, and so on until 5 choices for the sixth position.

Therefore, the total number of passwords that satisfy the constraints for strings of length 7 is:

10 * 10 * 9 * 8 * 7 * 6 * 5 = 1,814,400 passwords.

(ii) Strings of length 6 with no repeated characters and the first character not being a special character:

In this case, the first character cannot be a special character, so there are 10 choices for the first character (digits or letters). The remaining five characters can be chosen from the set of digits, special characters, or letters, with no repetition.

1. First character: Any digit (0-9) or letter (a-z, A-Z), so there are 10 choices.

2. Remaining characters: 10 choices for the second position, 9 choices for the third position, 8 choices for the fourth position, and so on until 6 choices for the sixth position.

Therefore, the total number of passwords that satisfy the constraints for strings of length 6 is:

10 * 10 * 9 * 8 * 7 * 6 = 30,240 passwords.

Note: It seems there's a typo in the "Special characters" set definition. The third character, "8. #\", appears to be a combination of characters rather than a single character.

To know more about string, refer to the link below:

https://brainly.com/question/30214499#

#SPJ11

A box contains 12 distinct colored balls (for instance, we could label them as 1, 2, ..., 12 to distinguish them). Three of them are red, four are yellow, and five are green. Three balls are selected at random from the box, with replacement. Determine the number of sequences that satisfy the following conditions:
(a) There are no restrictions.
(b) The first ball is red, the second is yellow, and the third is green.
(c) The first ball is red, and the second and third balls are green.
(d) Exactly two balls are yellow.
(e) All three balls are green.
(f) All three balls are the same color.
(g) At least one of the three balls is red.

Answers

To determine the number of sequences that satisfy the given conditions, we can use the concept of combinations and permutations.

(a) There are no restrictions:

Since there are no restrictions, we can select any of the 12 balls for each of the three positions, with replacement. Therefore, the number of sequences is 12^3 = 1728.

(b) The first ball is red, the second is yellow, and the third is green:

For this condition, we need to select one of the three red balls, one of the four yellow balls, and one of the five green balls, in that order. The number of sequences is 3 * 4 * 5 = 60.

(c) The first ball is red, and the second and third balls are green:

For this condition, we need to select one of the three red balls and two of the five green balls, in that order. The number of sequences is 3 * 5C2 = 3 * (5 * 4) / (2 * 1) = 30.

(d) Exactly two balls are yellow:

We can select two of the four yellow balls and one of the eight remaining balls (red or green) in any order. The number of sequences is 4C2 * 8 = (4 * 3) / (2 * 1) * 8 = 48.

(e) All three balls are green:

Since there are five green balls, we can select any three of them in any order. The number of sequences is 5C3 = (5 * 4) / (2 * 1) = 10.

(f) All three balls are the same color:

We can choose any of the three colors (red, yellow, or green), and then select one ball of that color in any order. The number of sequences is 3 * 1 = 3.

(g) At least one of the three balls is red:

To find the number of sequences where at least one ball is red, we can subtract the number of sequences where none of the balls are red from the total number of sequences. The number of sequences with no red balls is 8^3 = 512. Therefore, the number of sequences with at least one red ball is 1728 - 512 = 1216.

In summary:

(a) 1728 sequences

(b) 60 sequences

(c) 30 sequences

(d) 48 sequences

(e) 10 sequences

(f) 3 sequences

(g) 1216 sequences

Learn more about sequences

https://brainly.com/question/30262438

#SPJ11

Suppose that $2500 is placed in a savings account at an annual rate of 2.6%, compounded quarterly. Assuming that no withdrawals are made, how long will it take for the account to grow to $35007 Do not round any intermediate computations, and round your answer to the nearest hundreoth. If necessary, refer to the list of financial formular-

Answers

Answer:

time = 101.84 years

Step-by-step explanation:

The formula for compound interest is given by:

A(t) = P(1 + r/n)^(nt), where

A(t) is the amount in the account after t years (i.e., 35007 in this problem),P is principal (i.e., the deposit, which is $2500 in this problem),r is the interest rate (percentage becomes a decimal in the formula so 2.6% becomes 0.026),n is the number of compounding periods per year (i.e., 4 for money compounded quarterly since there are 4 quarters in a year),and t is the time in years.

Thus, we can plug in 35007 for A(t), 2500 for P, 0.026 for r, and 4 for n in the compound interest formula to find t, the time in years (rounded to the nearest hundredth) that it will take for the savings account to reach 35007:

Step 1:  Plug in values for A(t), P, r, and n.  Then simplify:

35007 = 2500(1 + 0.026/4)^(4t)

35007 = 2500(1.0065)^(4t)

Step 2:  Divide both sides by 2500:

(35007 = 2500(1.0065)^4t)) / 2500

14.0028 = (1.0065)^(4t)

Step 3:  Take the log of both sides:

log (14.0028) = log (1.0065^(4t))

Step 4:  Apply the power rule of logs and bring down 4t on the right-hand side of the equation:

log (14.0028) = 4t * log (1.0065)

Step 4:  Divide both sides by log 1.0065:

(log (14.0028) = 4t * (1.0065)) / log (1.0065)

log (14.0028) / log (1.0065) = 4t

Step 5; Multiply both sides by 1/4 (same as dividing both sides by 4) to solve for t.  Then round to the nearest hundredth to find the final answer:

1/4 * (log (14.0028) / log (1.0065) = 4t)

101.8394474 = t

101.84 = t

Thus, it will take about 101.84 years for the money in the savings account to reach $35007

How many six-letter permutations can be formed from the first eight letters of the alphabet?
How many different signals can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time?

Answers

There are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.

There are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.

To determine the number of six-letter permutations that can be formed from the first eight letters of the alphabet, we need to calculate the number of ways to choose 6 letters out of the available 8 and then arrange them in a specific order.

The number of ways to choose 6 letters out of 8 is given by the combination formula "8 choose 6," which can be calculated as follows:

C(8, 6) = 8! / (6! * (8 - 6)!) = 8! / (6! * 2!) = (8 * 7) / (2 * 1) = 28.

Now that we have chosen 6 letters, we can arrange them in a specific order, which is a permutation. The number of ways to arrange 6 distinct letters is given by the formula "6 factorial" (6!). Thus, the number of six-letter permutations from the first eight letters of the alphabet is:

28 * 6! = 28 * 720 = 20,160.

Therefore, there are 20,160 different six-letter permutations that can be formed from the first eight letters of the alphabet.

Now let's move on to the second question regarding the number of different signals that can be made by hoisting flags on a ship's mast. In this case, we have 4 yellow flags, 2 green flags, and 2 red flags.

To find the number of different signals, we need to calculate the number of ways to arrange these flags. We can do this using the concept of permutations with repetitions. The formula to calculate the number of permutations with repetitions is:

n! / (n₁! * n₂! * ... * nk!),

where n is the total number of objects and n₁, n₂, ..., nk are the counts of each distinct object.

In this case, we have a total of 8 flags (4 yellow flags, 2 green flags, and 2 red flags). Applying the formula, we get:

8! / (4! * 2! * 2!) = (8 * 7 * 6 * 5) / (4 * 3 * 2 * 1) = 70.

Therefore, there are 70 different signals that can be made by hoisting four yellow flags, two green flags, and two red flags on a ship's mast at the same time.

Learn more about permutations

brainly.com/question/29990226

#SPJ11

Which of the following expressions is equivalent to (10n - 8) - (4n + 3) Explain why you choose the answer. SHOW ALL STEPS:

A. 6n - 11

B. 6n + 5

C. 14n + 5

Answers

Answer: A. 6n-11

Step-by-step explanation:

First, ignore the parenthesis because it is addition and subtraction so they are commutative. 10n-4n = 6n and -8-3 is the same as -8+-3 which is -11. Combining the answer gives 6n-11.

4. Determine a scalar equation for the plane through the points M(1, 2, 3) and N(3,2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0. (Thinking - 2)

Answers

The normal vector of the desired plane is (6, 0, -12), and a scalar equation for the plane is 6x - 12z + k = 0, where k is a constant that can be determined by substituting the coordinates of one of the given points, such as M(1, 2, 3).

A scalar equation for the plane through points M(1, 2, 3) and N(3, 2, -1) that is perpendicular to the plane with equation 3x + 2y + 6z + 1 = 0 is:

3x + 2y + 6z + k = 0,

where k is a constant to be determined.

To find a plane perpendicular to the given plane, we can use the fact that the normal vector of the desired plane will be parallel to the normal vector of the given plane.

The given plane has a normal vector of (3, 2, 6) since its equation is 3x + 2y + 6z + 1 = 0.

To determine the normal vector of the desired plane, we can calculate the vector between the two given points: MN = N - M = (3 - 1, 2 - 2, -1 - 3) = (2, 0, -4).

Now, we need to find a scalar multiple of (2, 0, -4) that is parallel to (3, 2, 6). By inspection, we can see that if we multiply (2, 0, -4) by 3, we get (6, 0, -12), which is parallel to (3, 2, 6).

to learn more about scalar equation click here:

brainly.com/question/33063973

#SPJ11



Determine whether the events are independent or dependent. Explain. Jeremy took the SAT on Saturday and scored 1350. The following week he took the ACT and scored 23 .

Answers

The events of Jeremy's SAT score and his ACT score are independent.

Two events are considered independent if the outcome of one event does not affect the outcome of the other. In this case, Jeremy's SAT score of 1350 and his ACT score of 23 are independent events because the scores he achieved on the SAT and ACT are separate and unrelated assessments of his academic abilities.

The SAT and ACT are two different standardized tests used for college admissions in the United States. Each test has its own scoring system and measures different aspects of a student's knowledge and skills. The fact that Jeremy scored 1350 on the SAT does not provide any information or influence his subsequent performance on the ACT. Similarly, his ACT score of 23 does not provide any information about his SAT score.

Since the SAT and ACT are distinct tests and their scores are not dependent on each other, the events of Jeremy's SAT score and ACT score are considered independent.

To know more about independent events, refer here:

https://brainly.com/question/32716243#

#SPJ11

Use the formula for future value, A=P(1+rt), and elementary algebra to find the missing quantity. A=$2,160; r=5%; 1= 4 years

Answers

Answer:

Step-by-step explanation:

To find the missing quantity in the formula for future value, A = P(1 + rt), where A = $2,160, r = 5%, and t = 4 years, we can rearrange the formula to solve for P (the initial principal or present value).

The formula becomes:

A = P(1 + rt)

Substituting the given values:

$2,160 = P(1 + 0.05 * 4)

Simplifying:

$2,160 = P(1 + 0.20)

$2,160 = P(1.20)

To isolate P, divide both sides of the equation by 1.20:

$2,160 / 1.20 = P

P ≈ $1,800

Therefore, the missing quantity, P, is approximately $1,800.

(r) At the start of the week a bookshop had fiction and non-fiction books in the ratio 2: 5. By the end of the week, 20% of each type of book were sold and 2240 books (in total) were unsold. How many of each type were there at the start?

Answers

Using the common factor we found that at the start of the week, there were 800 fiction books and 2000 non-fiction books

Let's assume that at the start of the week, the number of fiction books is 2x, and the number of non-fiction books is 5x, where x is a common factor.

According to the given information, at the end of the week, 20% of each type of book was sold. This means that 80% of each type of book remains unsold.

The number of fiction books unsold is 0.8 * 2x = 1.6x, and the number of non-fiction books unsold is 0.8 * 5x = 4x.

We are also given that the total number of unsold books is 2240. Therefore, we can set up the following equation:

1.6x + 4x = 2240

Combining like terms, we get:

5.6x = 2240

Dividing both sides by 5.6, we find:

x = 400

Now we can substitute the value of x back into the original ratios to find the number of each type of book at the start:

Number of fiction books = 2x = 2 * 400 = 800

Number of non-fiction books = 5x = 5 * 400 = 2000

Therefore, at the start of the week, there were 800 fiction books and 2000 non-fiction books

Learn more about: common factor

https://brainly.com/question/15483206

#SPJ11

Following are the numbers of hospitals in each of the 50 U. S. States plus the District of Columbia that won Patient Safety Excellence Awards. 1 22 1 9 7 9 0 2 5 2 9 3 6 14 1 2 9 0 5

5 2 3 10 12 6 1 11 0 9 9 5 6 3 2 12 20 12 1 6

12 8 20 3 8 3 11 0 11 3 (a) Construct a dotplot for these data

Answers

To construct a dot plot for the given data, follow these steps in RStudio:Make sure to have the ggplot2 package installed and loaded in order to create the dot plot.

Create a vector containing the data:

data <- c(1, 22, 1, 9, 7, 9, 0, 2, 5, 2, 9, 3, 6, 14, 1, 2, 9, 0, 5, 5, 2, 3, 10, 12, 6, 1, 11, 0, 9, 9, 5, 6, 3, 2, 12, 20, 12, 1, 6, 12, 8, 20, 3, 8, 3, 11, 0, 11, 3)

Install and load the ggplot2 package: install.packages("ggplot2")

library(ggplot2)

Create the dot plot:

dotplot <- ggplot(data = data, aes(x = data)) + geom_dotplot(binaxis = "y", stackdir = "center", dotsize = 0.5) + labs(x = "Number of Patient Safety Excellence Awards", y = "Frequency")

Display the dot plot: print(dotplot)

This will create a dot plot with the x-axis representing the number of Patient Safety Excellence Awards and the y-axis representing the frequency of each number in the data. The dots will be stacked in the center and have a size of 0.5. Note: Make sure to have the ggplot2 package installed and loaded in order to create the dot plot.

Learn more about installed here

https://brainly.com/question/27829381

#SPJ11

A single fair four-sided die is rolled. Find the probability of getting a 2 or 1. What is the total number of possible outcomes?

Answers

The probability of getting a 2 or 1 when rolling a single fair four-sided die is 2/4 or 1/2. There are 4 possible outcomes in total.

When rolling a fair four-sided die, each face has an equal probability of landing face up. Since we are interested in the probability of getting a 2 or 1, we need to determine how many favorable outcomes there are.

In this case, there are two favorable outcomes: rolling a 1 or rolling a 2. Since the die has four sides in total, the probability of each favorable outcome is 1/4.

To calculate the probability of getting a 2 or 1, we add the individual probabilities together:

Probability = Probability of rolling a 2 + Probability of rolling a 1 = 1/4 + 1/4 = 2/4 = 1/2

Therefore, the probability of getting a 2 or 1 is 1/2.

As for the total number of possible outcomes, it is equal to the number of sides on the die, which in this case is 4.

Learn more about probability

brainly.com/question/31828911

#SPJ11

TIME REMAINING
01:34:01
Parallelogram R S T U is shown. Angle S is 70 degrees.

What are the missing angle measures in parallelogram RSTU?

m∠R = 70°, m∠T = 110°, m∠U = 110°
m∠R = 110°, m∠T = 110°, m∠U = 70°
m∠R = 110°, m∠T = 70°, m∠U = 110°
m∠R = 70°, m∠T = 110°, m∠U = 70°

Answers

The missing angle measures in parallelogram RSTU are:

m∠R = 110°, m∠T = 110°, m∠U = 70°

How to find the missing angle measures

The opposite angles of the parallelogram are the same.

From the diagram:

∠S = ∠U and ∠R = ∠T

Given:

∠S = 70°Since ∠S = ∠U, hence ∠U = 70°

Since the sum of angles in a quadrilateral is 360 degrees, hence:

[tex]\angle\text{R}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]

Since ∠R = ∠T, then:

[tex]\angle\text{Y}+\angle\text{S}+\angle\text{T}+\angle\text{U} = 360[/tex]

[tex]2\angle\text{T} + 70+70 = 360[/tex]

[tex]2\angle\text{T} =360-140[/tex]

[tex]2\angle\text{T} = 220[/tex]

[tex]\angle\text{T} = \dfrac{220}{2}[/tex]

[tex]\bold{\angle T = 110^\circ}[/tex]

Since ∠T = ∠R, then ∠R = 110°

Hence, m∠R = 110°, m∠T = 110°, m∠U = 70°. Option B is correct.

To solve more questions on angles, refer:

https://brainly.com/question/30377304

Express the following as a linear combination of u =(4, 1, 6), v = (1, -1, 5) and w=(4, 2, 8). (17, 9, 17) = i u- i V+ i W

Answers

The given vector as a linear combination are

4i + j + 4k = 17 (Equation 1)i - j + 2k = 9 (Equation 2)6i + 5j + 8k = 17 (Equation 3)

To express the vector (17, 9, 17) as a linear combination of u, v, and w, we need to find the coefficients (i, j, k) such that:

(i)u + (j)v + (k)w = (17, 9, 17)

Substituting the given values for u, v, and w:

(i)(4, 1, 6) + (j)(1, -1, 5) + (k)(4, 2, 8) = (17, 9, 17)

Expanding the equation component-wise:

(4i + j + 4k, i - j + 2k, 6i + 5j + 8k) = (17, 9, 17)

By equating the corresponding components, we can solve for i, j, and k:

4i + j + 4k = 17 (Equation 1)

i - j + 2k = 9 (Equation 2)

6i + 5j + 8k = 17 (Equation 3)

Know more about linear combination here:

brainly.com/question/30341410

#SPJ11

Find the line of intersection between the lines: <3,−1,2>+t<1,1,−1> and <−8,2,0>+t<−3,2,−7>. (3) (10.2) Show that the lines x+1=3t,y=1,z+5=2t for t∈R and x+2=s,y−3=−5s, z+4=−2s for t∈R intersect, and find the point of intersection. (10.3) Find the point of intersection between the planes: −5x+y−2z=3 and 2x−3y+5z=−7. (3)

Answers

Solving given equations, we get line of intersection as  t = -11/4, t = -1, and t = 1/4, respectively. The point of intersection between the given lines is (-8, 2, 0). The point of intersection between the two planes is (2, 2, 86/65).

(10.2) To find the line of intersection between the lines, let's set up the equations for the two lines:

Line 1: r1 = <3, -1, 2> + t<1, 1, -1>

Line 2: r2 = <-8, 2, 0> + t<-3, 2, -7>

Now, we equate the two lines to find the point of intersection:

<3, -1, 2> + t<1, 1, -1> = <-8, 2, 0> + t<-3, 2, -7>

By comparing the corresponding components, we get:

3 + t = -8 - 3t   [x-component]

-1 + t = 2 + 2t   [y-component]

2 - t = 0 - 7t    [z-component]

Simplifying these equations, we find:

4t = -11   [from the x-component equation]

-3t = 3     [from the y-component equation]

8t = 2      [from the z-component equation]

Solving these equations, we get t = -11/4, t = -1, and t = 1/4, respectively.

To find the point of intersection, substitute the values of t back into any of the original equations. Taking the y-component equation as an example, we have:

-1 + t = 2 + 2t

Substituting t = -1, we find y = 2.

Therefore, the point of intersection between the given lines is (-8, 2, 0).

(10.3) Let's solve for the point of intersection between the two given planes:

Plane 1: -5x + y - 2z = 3

Plane 2: 2x - 3y + 5z = -7

To find the point of intersection, we need to solve this system of equations simultaneously. We can use the method of substitution or elimination to find the solution.

Let's use the method of elimination:

Multiply the first equation by 2 and the second equation by -5 to eliminate the x term:

-10x + 2y - 4z = 6

-10x + 15y - 25z = 35

Now, subtract the second equation from the first equation:

0x - 13y + 21z = -29

To simplify the equation, divide through by -13:

y - (21/13)z = 29/13

Now, let's solve for y in terms of z:

y = (21/13)z + 29/13

We still need another equation to find the values of z and y. Let's use the y-component equation from the second plane:

y - 3 = -5s

Substituting y = (21/13)z + 29/13, we have:

(21/13)z + 29/13 - 3 = -5s

Simplifying, we get:

(21/13)z - (34/13) = -5s

Now, we can equate the z-components of the two equations:

(21/13)z - (34/13) = 2z + 4

Simplifying further, we have:

(21/13)z - 2z = (34/13) + 4

(5/13)z = (34/13) + 4

(5/13)z = (34 + 52)/13

(5/13)z =

86/13

Solving for z, we find z = 86/65.

Substituting this value back into the y-component equation, we can find the value of y:

y = (21/13)(86/65) + 29/13

Simplifying, we have: y = 2

Therefore, the point of intersection between the two planes is (2, 2, 86/65).

To know more about Intersection, visit

https://brainly.com/question/30915785

#SPJ11

Help me i'm stuck 4 math

Answers

Answer:

5a. V = (1/3)π(8²)(15) = 320π in.³

5b. V = about 1,005.3 in.³

Joining the points (2, 16) and (8,4).​

Answers

To join the points (2, 16) and (8, 4), we can use the slope-intercept form of a linear equation, which is y = mx + b, where m is the slope and b is the y-intercept.

First, let's calculate the slope (m) using the formula:

m = (y2 - y1) / (x2 - x1)

Substituting the coordinates of the two points:

m = (4 - 16) / (8 - 2)

m = -12 / 6

m = -2

Now that we have the slope, we can choose either of the two points and substitute its coordinates into the slope-intercept form to find the y-intercept (b).

Let's choose the point (2, 16):

16 = -2(2) + b

16 = -4 + b

b = 20

Now we have the slope (m = -2) and the y-intercept (b = 20), we can write the equation of the line:

y = -2x + 20

This equation represents the line passing through the points (2, 16) and (8, 4).

[tex]\huge{\mathfrak{\colorbox{black}{\textcolor{lime}{I\:hope\:this\:helps\:!\:\:}}}}[/tex]

♥️ [tex]\large{\underline{\textcolor{red}{\mathcal{SUMIT\:\:ROY\:\:(:\:\:}}}}[/tex]

PLS ANSWER QUICKLY ASAP




There is screenshot I need help
uwu

Answers

Answer:

What are you trying to find???

Step-by-step explanation:

If it is median, then it is the line in the middle of the box, which is on 19.

Consider the integral I=∫(xlog e u ​ (x))dx

Answers

Answer:  x to the power of x+c

Step-by-step explanation:

Let I =∫xx (logex)dx

Set A contains all integers from 50 to 100, inclusive, and Set B contains all integers from 69 to 13 8, exclusive. How many integers are included in both Set A and Set B

Answers

There are 32 integers included in both Set A and Set B.

To find the number of integers included in both Set A and Set B, we need to determine the overlapping range of values between the two sets. Set A contains all integers from 50 to 100 (inclusive), while Set B contains all integers from 69 to 138 (exclusive).

To calculate the number of integers included in both sets, we need to identify the common range between the two sets. The common range is the intersection of the ranges represented by Set A and Set B.

The common range can be found by determining the maximum starting point and the minimum ending point between the two sets. In this case, the maximum starting point is 69 (from Set B) and the minimum ending point is 100 (from Set A).

Therefore, the common range of integers included in both Set A and Set B is from 69 to 100 (inclusive). To find the number of integers in this range, we subtract the starting point from the ending point and add 1 (since both endpoints are inclusive).

Number of integers included in both Set A and Set B = (100 - 69) + 1 = 32.

Therefore, there are 32 integers included in both Set A and Set B.

Learn more about integers here:

brainly.com/question/33503847

#SPJ11

Find the volume of the hemisphere with a radius of 9 mm. Leave the answer in terms of pie

Answers

Hello !

Answer:

[tex]\Large \boxed{\sf V_{\sf hemisphere}=486\pi\ mm^3}[/tex]

Step-by-step explanation:

The volume of a sphere is given by [tex]\sf V_{\sf sphere}=\frac{4}{3} \pi r^3[/tex] where r is the radius.

Moreover, the volume of a hemisphere is half the volume of a sphere, so :

[tex]\sf V_{\sf hemisphere}=\dfrac{1}{2} V_{sphere}\\\\\sf V_{\sf hemisphere}=\dfrac{2}{3} \pi r^3[/tex]

Given :

r = 9 mm

Let's replace r with its value in the previous formula :

[tex]\sf V_{\sf hemisphere}=\frac{2}{3} \times\pi \times 9^3\\\sf V_{\sf hemisphere}=\frac{2}{3} \times 729\times\pi\\\boxed{\sf V_{\sf hemisphere}=486\pi\ mm^3}[/tex]

Have a nice day ;)

A circle has a diameter with endpoints at A (-1. -9) and B (-11, 5). The point M (-6, -2) lies on the diameter. Prove or disprove that point M is the center of the circle by answering the following questions. Round answers to the nearest tenth (one decimal place). What is the distance from A to M? What is the distance from B to M? Is M the center of the circle? Yes or no?​

Answers

Answer:

AM: 8.6 units

BM: 8.6 units

M is the center

Step-by-step explanation:

Pre-Solving

We are given that the diameter of a circle is AB, where point A is at (-1, -9) and point B is (-11, 5).

We know that point M, which is at (-6, -2) is on AB. We want to know if it is the center of the circle.

If it is the center, then it means that the distance (measure) of AM is the same as the distance (measure) of BM.

Recall that the distance formula is [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex], where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are points.

SolvingLength of AM

The endpoints are point A and point M. We can label the values of the points to get:

[tex]x_1=-1\\y_1=-9\\x_2=-6\\y_2=-2[/tex]

Now, plug them into the formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(-6--1)^2+(-2--9)^2}[/tex]

[tex]d=\sqrt{(-6+1)^2+(-2+9)^2}[/tex]

[tex]d=\sqrt{(-5)^2+(7)^2}[/tex]

[tex]d=\sqrt{25+49}[/tex]

[tex]d=\sqrt{74}[/tex] ≈ 8.6 units

Length of BM

The endpoints are point B and point M. We can label the values and get:

[tex]x_1=-11\\y_1=5\\x_2=-6\\y_2=-2[/tex]

Now, plug them into the formula.

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

[tex]d=\sqrt{(-6--11)^2+(-2-5)^2}[/tex]

[tex]d=\sqrt{(-6+11)^2+(-2-5)^2}[/tex]

[tex]d=\sqrt{(5)^2+(-7)^2}[/tex]

[tex]d=\sqrt{25+49}[/tex]

[tex]d=\sqrt{74}[/tex] ≈ 8.6 units.

Since the length of AM an BM are the same, M is the center of the circle.

The seqence an = 1 (n+4)! (4n+ 1)! is neither decreasing nor increasing and unbounded 2 decreasing and bounded 3 decreasing and unbounded increasing and unbounded 5 increasing and bounded --/5

Answers

The given sequence an = 1 (n+4)! (4n+ 1)! is decreasing and bounded. Option 2 is the correct answer.

Determining the pattern of sequence

To determine whether the sequence

[tex]an = 1/(n+4)!(4n+1)![/tex]

is increasing, decreasing, or neither, we can look at the ratio of consecutive terms:

Thus,

[tex]a(n+1)/an = [1/(n+5)!(4n+5)!] / [1/(n+4)!(4n+1)!] \\

= [(n+4)!(4n+1)!] / [(n+5)!(4n+5)!] \\

= (4n+1)/(4n+5)[/tex]

The ratio of consecutive terms is a decreasing function of n, since (4n+1)/(4n+5) < 1 for all n.

Hence, the sequence is decreasing.

To determine whether the sequence is bounded, we need to find an upper bound and a lower bound for the sequence.

Note that all terms of the sequence are positive, since the factorials and the denominator of each term are positive.

We can use the inequality

[tex](4n+1)! < (4n+1)^{4n+1/2}[/tex]

to obtain an upper bound for the sequence:

[tex]an < 1/(n+4)!(4n+1)! \\

< 1/[(n+4)/(4n+1)^{4n+1/2}] \\

< 1/[(1/4)(n^{1/2})][/tex]

Therefore, the sequence is bounded above by

[tex]4n^{1/2}.[/tex]

Therefore, the sequence is decreasing and bounded.

Learn more on bounded sequence on https://brainly.com/question/32952153

#aSPJ4

1. Find the absolute maximum and absolute minimum over the indicated interval, and indicate the x-values at which they occur: () = 12 9 − 32 − 3 over [0, 3]

Answers

The absolute maximum and absolute minimum of the function () = 12 9 − 32 − 3 over the interval [0, 3], we need to evaluate the function at critical points and endpoints. The absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Step 1: Find the critical points by setting the derivative equal to zero and solving for x.

() = 12 9 − 32 − 3

() = 27 − 96x² − 3x²

Setting the derivative equal to zero, we have:

27 − 96x² − 3x² = 0

-99x² + 27 = 0

x² = 27/99

x = ±√(27/99)

x ≈ ±0.183

Step 2: Evaluate the function at the critical points and endpoints.

() = 12 9 − 32 − 3

() = 12(0)² − 9(0) − 32(0) − 3 = -3 (endpoint)

() ≈ 12(0.183)² − 9(0.183) − 32(0.183) − 3 ≈ -3.73 (critical point)

Step 3: Compare the values to determine the absolute maximum and minimum.

The absolute maximum occurs at x = 0 with a value of -3.

The absolute minimum occurs at x ≈ 0.183 with a value of approximately -3.73.

Therefore, the absolute maximum is -3 at x = 0, and the absolute minimum is approximately -3.73 at x ≈ 0.183.

Learn more about interval here

https://brainly.com/question/30460486

#SPJ11

help me pls!! (screenshot) ​

Answers

Answer: f(-6) = 44

Step-by-step explanation:

You replace every x with -6

2(-6) squared +  5(-6) - -6/3

36 x 2 -30 + 2

72 - 30 + 2

42 + 2

44

Find the Fourier series of the periodic function f(t)=31², -1≤1≤l. Find out whether the following functions are odd, even or neither: (1) 2x5-5x³ +7 (ii) x³ + x4 Find the Fourier series for f(x) = x on -L ≤ x ≤ L.

Answers

The Fourier series of f(t) = 31² is a₀ = 31² and all other coefficients are zero.

For (i)[tex]2x^5[/tex] - 5x³ + 7: even, (ii) x³ + x⁴: odd.

The Fourier series of f(x) = x is Σ(bₙsin(nπx/L)), where b₁ = 4L/π.

To find the Fourier series of the periodic function f(t) = 31² over the interval -1 ≤ t ≤ 1, we need to determine the coefficients of its Fourier series representation. Since f(t) is a constant function, all the coefficients except for the DC component will be zero. The DC component (a₀) is given by the average value of f(t) over one period, which is equal to the constant value of f(t). In this case, a₀ = 31².

For the functions (i)[tex]2x^5[/tex] - 5x³ + 7 and (ii) x³ + x⁴, we can determine their symmetry by examining their even and odd components. A function is even if f(-x) = f(x) and odd if f(-x) = -f(x).

(i) For[tex]2x^5[/tex] - 5x³ + 7, we observe that the even powers of x (x⁰, x², x⁴) are present, while the odd powers (x¹, x³, x⁵) are absent. Thus, the function is even.

(ii) For x³ + x⁴, both even and odd powers of x are present. By testing f(-x), we find that f(-x) = -x³ + x⁴ = -(x³ - x⁴) = -f(x). Hence, the function is odd.

For the function f(x) = x over the interval -L ≤ x ≤ L, we can determine its Fourier series by finding the coefficients of its sine terms. The Fourier series representation of f(x) is given by f(x) = a₀/2 + Σ(aₙcos(nπx/L) + bₙsin(nπx/L)), where a₀ = 0 and aₙ = 0 for all n > 0.

Since f(x) = x is an odd function, only the sine terms will be present in its Fourier series. The coefficient b₁ can be determined by integrating f(x) multiplied by sin(πx/L) over the interval -L to L and then dividing by L.

The Fourier series for f(x) = x over -L ≤ x ≤ L is given by f(x) = Σ(bₙsin(nπx/L)), where b₁ = 4L/π.

Learn more about Fourier series

brainly.com/question/31046635

#SPJ11



Use an inverse matrix to solve each question or system.


[-6 0 7 1]

[-12 -6 17 9]

Answers

The inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]

Given matrix is: A = [-6 0 7 1][ -12 -6 17 9]

To find inverse matrix, we use Gauss-Jordan elimination method as follows:We append an identity matrix of same order to matrix A, perform row operations until the left side of matrix reduces to an identity matrix, then the right side will be our inverse matrix.So, [A | I] = [-6 0 7 1 | 1 0 0 0][ -12 -6 17 9 | 0 1 0 0]

Performing the following row operations, we get,

[A | I] = [1 0 0 0 | 3/2 -7/4][0 1 0 0 | 1/2 -3/4][0 0 1 0 |-1 1][0 0 0 1 |1/2]

So, the inverse of the given matrix is: A^-1 = [ 3/2 -7/4][ 1/2 -3/4][ -1 1][1/2]

Multiplying A^-1 with A, we should get an identity matrix, i.e.,A * A^-1 = [ 1 0][ 0 1]

Therefore, the solution of the system of equations is obtained by multiplying the inverse matrix by the matrix containing the constants of the system.

Know more about matrix  here,

https://brainly.com/question/28180105

#SPJ11



Solve each proportion.

2.3/4 = x/3.7

Answers

The value of x in the proportion 2.3/4 = x/3.7 is approximately 2.152.

To solve the proportion 2.3/4 = x/3.7, we can use cross multiplication. Cross multiplying means multiplying the numerator of the first fraction with the denominator of the second fraction and vice versa.

In this case, we have (2.3 * 3.7) = (4 * x), which simplifies to 8.51 = 4x. To isolate x, we divide both sides of the equation by 4, resulting in x ≈ 2.152.

Therefore, the value of x in the given proportion is approximately 2.152.

Learn more about Proportion

brainly.com/question/33460130

#SPJ11

Statements
1. ZABC is rt. 2
2. DB bisects ZABCS
3. B
4. m/ABD = m/CBD
5. m/ABD + mzCBD = 90°
6. m/CBD + m/CBD = 90°
7. D
8. m/CBD = 45°
Reasons
1. A
2. given
3. def. of rt. <
4. def. of bis.
5. C
6. subs. prop.
7. add.
8. div. prop.
Identify the missing parts in the proof.
Given: ZABC is a right angle.
DB bisects ZABC.
Prove: m/CBD = 45°
A:
B:
C
D:
>
>
7

Answers

A: ZABC is a right angle. (Given)

B: DB bisects ZABC. (Given)

C: m/ABD = m/CBD. (Definition of angle bisector)

D: m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)

By substitution property, m/CBD + m/CBD = 90° should be m/ABD + m/CBD = 90°.

A: Given: ZABC is a right angle.

B: Given: DB bisects ZABC.

C: To prove: m/CBD = 45°

D: Proof:

ZABC is a right angle. (Given)

DB bisects ZABC. (Given)

m/ABD = m/CBD. (Definition of angle bisector)

m/ABD + m/CBD = 90°. (Sum of angles in a right triangle)

Substitute m/CBD with m/ABD in equation (4).

m/ABD + m/ABD = 90°.

2 [tex]\times[/tex] m/ABD = 90°. (Simplify equation (5))

Divide both sides of equation (6) by 2.

m/ABD = 45°.

Therefore, m/CBD = 45°. (Substitute m/ABD with 45°)

Thus, we have proved that m/CBD is equal to 45° based on the given statements and the reasoning provided.

Please note that in step 5, the substitution of m/CBD with m/ABD is valid because DB bisects ZABC. By definition, an angle bisector divides an angle into two congruent angles.

Therefore, m/ABD and m/CBD are equal.

For similar question on substitution property.

https://brainly.com/question/29058226  

#SPJ8

dz (16P) Use the chain rule to find dt for: Z= = xexy, x = 3t², y

Answers

dt = 6t * exy + (3t²) * exy * (dy/dt)

To find dt using the chain rule, we'll start by differentiating Z with respect to t.

Given: Z = xexy, x = 3t², and y is a variable.

First, let's express Z in terms of t.

Substitute the value of x into Z:
Z = (3t²) * exy

Now, we can apply the chain rule.

1. Differentiate Z with respect to t:
dZ/dt = d/dt [(3t²) * exy]

2. Apply the product rule to differentiate (3t²) * exy:
dZ/dt = (d/dt [3t²]) * exy + (3t²) * d/dt [exy]

3. Differentiate 3t² with respect to t:
d/dt [3t²] = 6t

4. Differentiate exy with respect to t:
d/dt [exy] = exy * (dy/dt)

5. Substitute the values back into the equation:
dZ/dt = 6t * exy + (3t²) * exy * (dy/dt)

Finally, we have expressed the derivative of Z with respect to t, which is dt. So, dt is equal to:
dt = 6t * exy + (3t²) * exy * (dy/dt)

To know more about  "chain rule"

https://brainly.com/question/30895266

#SPJ11

Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. log 5x = log(2x + 9) Question 7 Solve the logarithmic equation. Type just the number in the answer. If more than one answer, separate the numbers with a comma. Be sure to reject any value that is not in the domain of the original logarithmic expressions. -6 log3(x-3) = -24

Answers

The solution to the first logarithmic equation is x = 3. The solution to the second logarithmic equation is x = 84.

For the first logarithmic equation, we have: log(5x) = log(2x + 9)

By setting the logarithms equal, we can eliminate the logarithms:5x = 2x + 9 and now we solve for x:

5x - 2x = 9

3x = 9

x = 3

Therefore, the solution to the first logarithmic equation is x = 3.

For the second logarithmic equation, we have: -6 log3(x - 3) = -24

Dividing both sides by -6, we get: log3(x - 3) = 4

By converting the logarithmic equation to exponential form, we have:

3^4 = x - 3

81 = x - 3

x = 84

Therefore, the solution to the second logarithmic equation is x = 84.

Learn more about logarithmic here:

https://brainly.com/question/29197804

#SPJ11

Other Questions
Dylan's mom told him that she would replace each one of his dimes with a quarter. If he uses all of his coins, determine if Dylan would then have enough money to buy a game priced at $20.98 if he must also pay an 8% sales tax. You read online about an airline sale for discounted flights to South America. But they emphasize that the sale will end in only 3 days. This offer takes advantage of the rule of compliance. O pressure O commitment/consistency scarcity speedy reciprocity that's not all For a continuous data distribution, 10 - 20 with frequency3,2030with frequency 5, 30-40 with frequency 7and 40-50 with frequency 1 , the value of quartile deviation is Select one: a. 2 b.6.85C.6.32d. 10 For a continuous data distribution, 10-20 with frequency3,2030with frequency5,3040with frequency 7and 40-50 with frequency 1 , the value ofQ1is Select one: a.10.5b. 22 c. 26 d. 24 what is the relationship between the folowing paragraph and the queation what is the relationship between music and mood? in you personal opinionThis article outlines some ways of using music with oncology patients, and describes how the role of a music therapist can be deeply personal. Music therapy with dying patients involves working within the therapist's own mind, heart, and body as well as with the patients and often their families. Music making can help patients, families, and the therapist to cope with the loss and frustration that can be innate to oncology. Making a connection through the music is often a primary yet vague goal in music therapy. This article cites several examples of exactly how this happens and how connecting can indeed be therapeutic. Introduction I consult for the Integrative Medicine Department at a large suburban hospital and work primarily with oncology patients. Many of these patients are in their final stages of cancer and will die in the hospital. Often I am present during their Inst hours. My work with these persons is quite intimate. This is true not only for the patients and their families, but also for the staff, and especially for myself. I am honored to have the opportunity to enter into others' lives at such delicate junctures, and I treasure the lessons I have learned in my work with this population. The particular stories that I will share in this article stem from questions I ask myself such as: Who is the patient? What is my purpose? What music is needed? What is my relationship to this music? How will this music make a connection? The Therapist's Presence As I enter each room I always knock, even if the door is wide open, to alert the patient to my entrance and to give a sense of privacy within the room. More often than not, my patients are unable to speak and are in private rooms. They are generally hooked up to many lines and tubes and the patients can go in and out of consciousness. At times, family members are present and are sitting next to the bed. I introduce myself directly to the patient, regardless of the state s/he is in. I make eye contact only with the patient initially and say, "Hello, I'm Dr. Zabin, the Music Therapist. Would you like some music this afternoon?" If there is no response, I turn to speak to those present and reintroduce myself adding. "Do you think she would like hearing some live music?" More often than not, my presence is welcomed and greatly appreciated because at this point there is little that can be formulated into words. I then ask where I should sit or stand and gently close the door as explain this will ensure our privacy and help avoid interruptions. I then give the option of guitar or flute and begin unpacking the instrument of choice. As I do so, I ask general questions in order to obtain a musical biography. I ask the patient "What kind of music do you like?" If the patient is unable to speak, I ask the family member "What kind of music does s/he enjoy" I follow up these answers, related to genres of music, with questions such as "Where was that music heard?" "How does it feel to hear those songs?", and perhaps "Who else shared that music with you?" As these preferences are expressed, I learn a great deal about the patient. For example, I am often privy to difficult decisions, familial conflicts, and interpersonal alliances that the patient or family member can discuss readily through the mere talking about favorite songs. I have yet to encounter someone who has no music that s/he is attached to. Often a short discussion ensues allowing me glimpses into life outside of the hospital thus establishing important personal musical connections. The Music I know how haunting a particular piece of music can feel, how memories can flood back upon hearing the mere introduction to a song, and how my own mood can shift radically upon hearing certain rhythms. 1 recall songs I heard and sang as a young child that spoke to me of my emotional isolation. The music of my past certainly influences the music in my everyday work. I am drawn to music that tells stories and speaks directly of personal struggles.... (a) A wire that is 1.50 m long at 20.0C is found to increase in length by 1.90 cm when warmed t 420.0'C. Compute its average coefficient of linear expansion for this temperature range. (b) The wire i stretched just taut (zero tension) at 420.0*C. Find the stress in the wire if it is cooled to 20.0C withou being allowed to contract. Young's modulus for the wire is 2.0 x 10^11 Pa. PLEASE HELP Suppose that the functions fand g are defined for all real numbers x as follows.f(x) = 5xg(x)=4x-4Write the expressions for (g.f)(x) and (g-f)(x) and evaluate (g+f)(2).(gf)(x) = (g-f)(x) = (g+r) (2)= Discuss the issue of social mobility, or in other words, who is more likely to get "ahead" in America, who is more likely to become poor, and who is most likely to become wealthy. Define and explain how different life chances and the split labor market affect social mobility. An RLC series circuit has a 3 Q resistor, a 354 mH inductor, and a 17.7 uF capacitor. If this is connected to a 178 Volt power supply, what will the rms current be at 362 Hz? Express your answer in mA Apply the supply-side anddemand-side theories to genderequality (especially for woman) in the workforce. The peritubular capillaries secrete water, glucose, amino acids and ions True False Match each plot element to its definition After looking at the projections of the HomeNet project, you decide that they are not realistic. It is unlikely that sales will be constant over the four-year life of the project. Furthermore, other companies are likely to offer competing products, so the assumption that the sales price will remain constant is also likely to be optimistic. Finally, as production ramps up, you anticipate lower per unit production costs resulting from economies of scale. Therefore, you decide to redo the projections under the following assumptions: Sales of 50,000 units in year 1 increasing by 52,000 units per year over the life of the project, a year 1 sales price of $ 260 /unit, decreasing by 11 % annually and a year 1 cost of $ 120 /unit decreasing by 21% annually. In addition, new tax laws allow you to depreciate the equipment, costing $ 7.5 million over three rather than five years using straight-line depreciation.a. Keeping the underlying assumptions in Table 1 ( ) that research and development expenditures total $ 15 million in year 0 and selling, general, and administrative expenses are $ 2.8 million per year, recalculate unlevered net income. (That is, reproduce Table 1 under the new assumptions given above. Note that we are ignoring cannibalization and lost rent.)b. Recalculate unlevered net income assuming, in addition, that each year 20 % of sales comes from customers who would have purchased an existing Cisco router for $ 100 /unit and that this router costs $ 60 /unit to manufacture. Comment on why the Soviet Union provided support to the MPLAIn Angola in 1975 In 200 Words, List and explain the four major housing needs ofthe elderly. How much input force is required to extract an output force of 500 N from a simple machine that has a mechanical advantage of 8? Terminal Grain Corporation brought an action against Glen Freeman, a farmer, to recover damages for breach of an oral contract to deliver grain. According to Termin Grain, Freeman orally agreed to two sales of wheat to Terminal Grain of four thousand bushels each at $6.21 a bushel and $6.41 a bushel, respectively. Dwayne Maher, merchandising manager of Terminal Grain, sent two written confirmations of the agreements to Freeman. Freeman never made any written objections to the confirmations. After the first trans- action had occurred, the price of wheat rose to between $6.75 and $6.80 per bushel, and Freeman refused to deliver the remaining four thousand bushels at the agreed-upon price. Freeman denies entering into any agreement to sell the sec- ond four thousand bushels of wheat to Terminal Grain but admits that he received the two written confirmations sent by Maher. a. What arguments support considering Freeman to be a merchant who is bound by the written confirmations? b. What arguments support considering Freeman not to be a merchant seller and thus not bound by the written confirmations? c. What is the appropriate decision? Assume an isolated volume V that does not exchange temperature with the environment. The volume is divided, by a heat-insulating diaphragm, into two equal parts containing the same number of particles of different real gases. On one side of the diaphragm the temperature of the gas is T1, while the temperature of the gas on the other side is T2. At time t0 = 0 we remove the diaphragm. Thermal equilibrium occurs. The final temperature of the mixture will be T = (T1 + T2) / 2; explain A student measured the mass of a meter stick to be 150 gm. The student then placed a knife edge on 30-cm mark of the stick. If the student placed a 500-gm weight on 5-cm mark and a 300-gm weight on somewhere on the meter stick, the meter stick then was balanced. Where (cm mark) did the student place the 300- gram weight? provide an exposition of the main philosophical framework of Mills Utilitarianism; b) Elaborate two arguments of your own against any two aspects of Mills account c) Mill argues that it is better to be Socrates unhappy than swine pleased. What does he mean by this claim? 1. A 4-year-old child weighing 17.5 kg is to receive Fluconazole for systemic candida infection. The available adult dose is 150 mg. The safe dose range is 6 - 12 mg/kg/day not to exceed 600 mg/day. The Fluconazole is to be given IV bolus for day 1 and orally qday for 3 days. It is available in the following dosage form strength: injection solution 2 mg/mL and oral suspension 40 mg/mL. a) Compare how much the child is going to receive per dose using the Young's and Clark's rules and the dose range for the child? (2 marks) b) Based on your calculations in a) above, which of the rules give a safe dose for the child and why? (2 marks) c) What volume of the medication will be administered on day one if the doctor orders a dose of 120 mg? d) What volume of the medication will be administered on day 2 for the doctor's order?