The third quartile for a uniform distribution between 0 and 2 is 1.75.
In a uniform distribution, the probability density function (PDF) is constant within the range of values. Since the density curve represents a uniform distribution between 0 and 2, the area under the curve is evenly distributed.
As the third quartile marks the 75th percentile, it divides the distribution into three equal parts, with 75% of the data falling below this value. In this case, the third quartile corresponds to a value of 1.75, indicating that 75% of the data lies below that point on the density curve for the uniform distribution between 0 and 2.
Know more about uniform distribution here:
https://brainly.com/question/30639872
#SPJ11
P(x) = b*(1 - x/5)
b = ?
What does the value of the constant (b) need to
be?
If P(x) is a probability density function, then the value of the constant b needs to be 2/3.
To determine the value of the constant (b), we need additional information or context regarding the function P(x).
If we know that P(x) is a probability density function, then b would be the normalization constant required to ensure that the total area under the curve equals 1. In this case, we would solve the following equation for b:
∫[0,5] b*(1 - x/5) dx = 1
Integrating the function with respect to x yields:
b*(x - x^2/10)|[0,5] = 1
b*(5 - 25/10) - 0 = 1
b*(3/2) = 1
b = 2/3
Therefore, if P(x) is a probability density function, then the value of the constant b needs to be 2/3.
Learn more about functions from
https://brainly.com/question/11624077
#SPJ11
est the series below for convergence using the Ratio Test. ∑ n=0
[infinity]
(2n+1)!
(−1) n
3 2n+1
The limit of the ratio test simplifies to lim n→[infinity]
∣f(n)∣ where f(n)= The limit is: (enter oo for infinity if needed) Based on this, the series σ [infinity]
The series ∑(n=0 to infinity) (2n+1)!*(-1)^(n)/(3^(2n+1)) is tested for convergence using the Ratio Test. The limit of the ratio test is calculated as the absolute value of the function f(n) simplifies. Based on the limit, the convergence of the series is determined.
To apply the Ratio Test, we evaluate the limit as n approaches infinity of the absolute value of the ratio between the (n+1)th term and the nth term of the series. In this case, the (n+1)th term is given by (2(n+1)+1)!*(-1)^(n+1)/(3^(2(n+1)+1)) and the nth term is given by (2n+1)!*(-1)^(n)/(3^(2n+1)). Taking the absolute value of the ratio, we have ∣f(n+1)/f(n)∣ = ∣[(2(n+1)+1)!*(-1)^(n+1)/(3^(2(n+1)+1))]/[(2n+1)!*(-1)^(n)/(3^(2n+1))]∣. Simplifying, we obtain ∣f(n+1)/f(n)∣ = (2n+3)/(3(2n+1)).
Taking the limit as n approaches infinity, we find lim n→∞ ∣f(n+1)/f(n)∣ = lim n→∞ (2n+3)/(3(2n+1)). Dividing the terms by the highest power of n, we get lim n→∞ (2+(3/n))/(3(1+(1/n))). Evaluating the limit, we find lim n→∞ (2+(3/n))/(3(1+(1/n))) = 2/3.
Since the limit of the ratio is less than 1, the series converges by the Ratio Test.
Learn more about Ratio Test here: https://brainly.com/question/32809435
#SPJ11
Suppose that \( f(x, y)=e^{-3 x^{2}-3 y^{2}-2 y} \) Then the maximum value of \( f \) is
The maximum value of \( f \) is **1**. the maximum value of \(f\) is approximately 0.0498, which can be rounded to 1.
To find the maximum value of \( f(x, y) = e^{-3x^2 - 3y^2 - 2y} \), we need to analyze the function and determine its behavior.
The exponent in the function, \(-3x^2 - 3y^2 - 2y\), is always negative because both \(x^2\) and \(y^2\) are non-negative. The negative sign indicates that the exponent decreases as \(x\) and \(y\) increase.
Since \(e^t\) is an increasing function for any real number \(t\), the function \(f(x, y) = e^{-3x^2 - 3y^2 - 2y}\) is maximized when the exponent \(-3x^2 - 3y^2 - 2y\) is minimized.
To minimize the exponent, we want to find the maximum possible values for \(x\) and \(y\). Since \(x^2\) and \(y^2\) are non-negative, the smallest possible value for the exponent occurs when \(x = 0\) and \(y = -1\). Substituting these values into the exponent, we get:
\(-3(0)^2 - 3(-1)^2 - 2(-1) = -3\)
So the minimum value of the exponent is \(-3\).
Now, we can substitute the minimum value of the exponent into the function to find the maximum value of \(f(x, y)\):
\(f(x, y) = e^{-3} = \frac{1}{e^3}\)
Approximately, the value of \(\frac{1}{e^3}\) is 0.0498.
Therefore, the maximum value of \(f\) is approximately 0.0498, which can be rounded to 1.
Learn more about approximately here
https://brainly.com/question/27894163
#SPJ11
Find \( \Delta y \) and \( f(x) \Delta x \) for the given function. 6) \( y=f(x)=x^{2}-x, x=6 \), and \( \Delta x=0.05 \)
Δy is approximately 30.4525 and f(x)Δx is 1.5 for the given function when x = 6 and Δx = 0.05. To find Δy and f(x)Δx for the given function, we substitute the values of x and Δx into the function and perform the calculations.
Given: y = f(x) = x^2 - x, x = 6, and Δx = 0.05
First, let's find Δy:
Δy = f(x + Δx) - f(x)
= [ (x + Δx)^2 - (x + Δx) ] - [ x^2 - x ]
= [ (6 + 0.05)^2 - (6 + 0.05) ] - [ 6^2 - 6 ]
= [ (6.05)^2 - 6.05 ] - [ 36 - 6 ]
= [ 36.5025 - 6.05 ] - [ 30 ]
= 30.4525
Next, let's find f(x)Δx:
f(x)Δx = (x^2 - x) * Δx
= (6^2 - 6) * 0.05
= (36 - 6) * 0.05
= 30 * 0.05
= 1.5
Therefore, Δy is approximately 30.4525 and f(x)Δx is 1.5 for the given function when x = 6 and Δx = 0.05.
Learn more about Delta here : brainly.com/question/32411041
#SPJ11
. Determine the standard equation of the ellipse using the stated information.
Foci at (8,−1) and (−2,−1); length of the major axis is twelve units
The equation of the ellipse in standard form is _____.
b. Determine the standard equation of the ellipse using the stated information.
Vertices at (−5,12) and (−5,2); length of the minor axis is 8 units.
The standard form of the equation of this ellipse is _____.
c. Determine the standard equation of the ellipse using the stated information.
Center at (−4,1); vertex at (−4,10); focus at (−4,9)
The equation of the ellipse in standard form is ____.
a. The standard equation of the ellipse with foci at (8, -1) and (-2, -1), and a length of the major axis of 12 units is: ((x - 5)² / 6²) + ((y + 1)² / b²) = 1.
b. The standard equation of the ellipse with vertices at (-5, 12) and (-5, 2), and a length of the minor axis of 8 units is: ((x + 5)² / a²) + ((y - 7)² / 4²) = 1.
c. The standard equation of the ellipse with a center at (-4, 1), a vertex at (-4, 10), and a focus at (-4, 9) is: ((x + 4)² / b²) + ((y - 1)² / 9²) = 1.
a. To determine the standard equation of the ellipse with foci at (8, -1) and (-2, -1), and a length of the major axis of 12 units, we can start by finding the distance between the foci, which is equal to the length of the major axis.
Distance between the foci = 12 units
The distance between two points (x₁, y₁) and (x₂, y₂) is given by the formula:
√((x₂ - x₁)² + (y₂ - y₁)²)
Using this formula, we can calculate the distance between the foci:
√((8 - (-2))² + (-1 - (-1))²) = √(10²) = 10 units
Since the distance between the foci is equal to the length of the major axis, we can conclude that the major axis of the ellipse lies along the x-axis.
The center of the ellipse is the midpoint between the foci, which is (5, -1).
The equation of an ellipse with a center at (h, k), a major axis of length 2a along the x-axis, and a minor axis of length 2b along the y-axis is:
((x - h)² / a²) + ((y - k)² / b²) = 1
In this case, the center is (5, -1) and the major axis is 12 units, so a = 12/2 = 6.
Therefore, the equation of the ellipse in standard form is:
((x - 5)² / 6²) + ((y + 1)² / b²) = 1
b. To determine the standard equation of the ellipse with vertices at (-5, 12) and (-5, 2), and a length of the minor axis of 8 units, we can start by finding the distance between the vertices, which is equal to the length of the minor axis.
Distance between the vertices = 8 units
The distance between two points (x₁, y₁) and (x₂, y₂) is given by the formula:
√((x₂ - x₁)² + (y₂ - y₁)²)
Using this formula, we can calculate the distance between the vertices:
√((-5 - (-5))² + (12 - 2)²) = √(0² + 10²) = 10 units
Since the distance between the vertices is equal to the length of the minor axis, we can conclude that the minor axis of the ellipse lies along the y-axis.
The center of the ellipse is the midpoint between the vertices, which is (-5, 7).
The equation of an ellipse with a center at (h, k), a major axis of length 2a along the x-axis, and a minor axis of length 2b along the y-axis is:
((x - h)² / a²) + ((y - k)² / b²) = 1
In this case, the center is (-5, 7) and the minor axis is 8 units, so b = 8/2 = 4.
Therefore, the equation of the ellipse in standard form is:
((x + 5)² / a²) + ((y - 7)² / 4²) = 1
c. To determine the standard equation of the ellipse with a center at (-4, 1), a vertex at (-4, 10), and a focus at (-4, 9), we can observe that the major axis of the ellipse is vertical, along the y-axis.
The distance between the center and the vertex gives us the value of a, which is the distance from the center to either focus.
a = 10 - 1 = 9 units
The distance between the center and the focus gives us the value of c, which is the distance from the center to either focus.
c = 9 - 1 = 8 units
The equation of an ellipse with a center at (h, k), a major axis of length 2a along the y-axis, and a distance c from the center to either focus is:
((x - h)² / b²) + ((y - k)² / a²) = 1
In this case, the center is (-4, 1), so h = -4 and k = 1.
Therefore, the equation of the ellipse in standard form is:
((x + 4)² / b²) + ((y - 1)² / 9²) = 1
To learn more about standard equation of the ellipse visit : https://brainly.com/question/29187531
#SPJ11
A factory produces cans costing $240,000 per month and costs $0.05 per can, where C is the total cost and x is the quantity produced. c(x)=0.05x+240000 Express, using functional notation, what quantity makes the total cost $300,000 ? 1,200,000C(x)=300,000⊙C(x)=1,200,000∘C(300,000)∘C(300,000)=255,000∘C(1,200,000) What is the value returned from that function (what is x )?
The value returned from the function C(1,200,000) is $300,000. This means that producing 1,200,000 cans will result in a total cost of $300,000.
To find the quantity that makes the total cost $300,000, we can set the total cost function equal to $300,000 and solve for x:
C(x) = 0.05x + 240,000
$300,000 = 0.05x + 240,000
$60,000 = 0.05x
x = $60,000 / 0.05
x = 1,200,000
Therefore, the quantity that makes the total cost $300,000 is 1,200,000 cans.
To find the value returned from the function C(1,200,000), we can substitute x = 1,200,000 into the total cost function:
C(1,200,000) = 0.05(1,200,000) + 240,000
C(1,200,000) = 60,000 + 240,000
C(1,200,000) = $300,000
Therefore, the value returned from the function C(1,200,000) is $300,000. This means that producing 1,200,000 cans will result in a total cost of $300,000.
Learn more about " cost function" : https://brainly.com/question/2292799
#SPJ11
a sample is selected from a population, and a treatment is administered to the sample. if there is a 3-point difference between the sample mean and the original population mean, which set of sample characteristics has the greatest likelihood of rejecting the null hypothesis? a. s 2
Both of these factors increase the power of the statistical test and make it easier to detect a difference between the sample mean and the population mean.
The question is asking which set of sample characteristics has the greatest likelihood of rejecting the null hypothesis,
given that there is a 3-point difference between the sample mean and the original population mean.
The answer choices are not mentioned, so I cannot provide a specific answer.
However, generally speaking, a larger sample size (n) and a smaller standard deviation (s) would increase the likelihood of rejecting the null hypothesis.
This is because a larger sample size provides more information about the population, while a smaller standard deviation indicates less variability in the data.
Both of these factors increase the power of the statistical test and make it easier to detect a difference between the sample mean and the population mean.
Learn more about statistical test
brainly.com/question/32118948
#SPJ11
Let C be the field of complex numbers and R the subfield of real numbers. Then C is a vector space over R with usual addition and multiplication for complex numbers. Let ω=− 2
1
+i 2
3
. Define the R-linear map f:C⟶C,z⟼ω 404
z. (a) The linear map f is an anti-clockwise rotation about an angle Alyssa believes {1,i} is the best choice of basis for C. Billie suspects {1,ω} is the best choice of basis for C. (b) Find the matrix A of f with respect to Alyssa's basis {1,i} in both domain and codomian: A= (c) Find the matrix B of f with respect to Billie's basis {1,ω} in both domain and codomian: B=
The matrix B of f with respect to Billie's basis {1, ω} in both domain and codomain isB=[−53−i4353+i43−53+i43−53−i43].
Therefore, the answers are:(a) {1, ω}(b) A=[−23+i2123+i21−23−i2123+i21](c) B=[−53−i4353+i43−53+i43−53−i43].
Given, C is the field of complex numbers and R is the subfield of real numbers. Then C is a vector space over R with usual addition and multiplication for complex numbers. Let, ω = − 21 + i23 . The R-linear map f:C⟶C, z⟼ω404z. We are asked to determine the best choice of basis for C. And find the matrix A of f with respect to Alyssa's basis {1,i} in both domain and codomain and also find the matrix B of f with respect to Billie's basis {1,ω} in both domain and codomain.
(a) To determine the best choice of basis for C, we must find the basis for C. It is clear that {1, i} is not the best choice of basis for C. Since, C is a vector space over R and the multiplication of complex numbers is distributive over addition of real numbers. Thus, any basis of C must have dimension 2 as a vector space over R. Since ω is a complex number and is not a real number. Thus, 1 and ω forms a basis for C as a vector space over R.The best choice of basis for C is {1, ω}.
(b) To find the matrix A of f with respect to Alyssa's basis {1, i} in both domain and codomain, we need to find the images of the basis vectors of {1, i} under the action of f. Let α = f(1) and β = f(i). Then,α = f(1) = ω404(1) = −21+i23404(1) = −21+i23β = f(i) = ω404(i) = −21+i23404(i) = −21+i23i = 23+i21The matrix A of f with respect to Alyssa's basis {1, i} in both domain and codomain isA=[f(1)f(i)−f(i)f(1)] =[αβ−βα]=[−21+i23404(23+i21)−(23+i21)−21+i23404]= [−23+i2123+i21−23−i2123+i21]=[−23+i2123+i21−23−i2123+i21]
(c) To find the matrix B of f with respect to Billie's basis {1, ω} in both domain and codomain, we need to find the images of the basis vectors of {1, ω} under the action of f. Let γ = f(1) and δ = f(ω). Then,γ = f(1) = ω404(1) = −21+i23404(1) = −21+i23δ = f(ω) = ω404(ω) = −21+i23404(ω) = −21+i23(−21+i23) = 53− i43 The matrix B of f with respect to Billie's basis {1, ω} in both domain and codomain isB=[f(1)f(ω)−f(ω)f(1)] =[γδ−δγ]=[−21+i23404(53−i43)−(53−i43)−21+i23404]= [−53−i4353+i43−53+i43−53−i43]
To know more about domain and codomain visit:
brainly.com/question/33061537
#SPJ11
Assume that X is a Poisson random variable with μ 4, Calculate the following probabilities. (Do not round intermediate calculations. Round your final answers to 4 decimal places.) a. P(X 4) b. P(X 2) c. P(X S 1)
a. P(X > 4) is approximately 0.3713. b. P(X = 2) is approximately 0.1465. c. P(X < 1) is approximately 0.9817.
a. To calculate P(X > 4) for a Poisson random variable with a mean of μ = 4, we can use the cumulative distribution function (CDF) of the Poisson distribution.
P(X > 4) = 1 - P(X ≤ 4)
The probability mass function (PMF) of a Poisson random variable is given by:
P(X = k) = (e^(-μ) * μ^k) / k!
Using this formula, we can calculate the probabilities.
P(X = 0) = (e^(-4) * 4^0) / 0! = e^(-4) ≈ 0.0183
P(X = 1) = (e^(-4) * 4^1) / 1! = 4e^(-4) ≈ 0.0733
P(X = 2) = (e^(-4) * 4^2) / 2! = 8e^(-4) ≈ 0.1465
P(X = 3) = (e^(-4) * 4^3) / 3! = 32e^(-4) ≈ 0.1953
P(X = 4) = (e^(-4) * 4^4) / 4! = 64e^(-4) / 24 ≈ 0.1953
Now, let's calculate P(X > 4):
P(X > 4) = 1 - (P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4))
= 1 - (0.0183 + 0.0733 + 0.1465 + 0.1953 + 0.1953)
≈ 0.3713
Therefore, P(X > 4) is approximately 0.3713.
b. To calculate P(X = 2), we can use the PMF of the Poisson distribution with μ = 4.
P(X = 2) = (e^(-4) * 4^2) / 2!
= 8e^(-4) / 2
≈ 0.1465
Therefore, P(X = 2) is approximately 0.1465.
c. To calculate P(X < 1), we can use the complement rule and calculate P(X ≥ 1).
P(X ≥ 1) = 1 - P(X < 1) = 1 - P(X = 0)
Using the PMF of the Poisson distribution:
P(X = 0) = (e^(-4) * 4^0) / 0!
= e^(-4)
≈ 0.0183
Therefore, P(X < 1) = 1 - P(X = 0) = 1 - 0.0183 ≈ 0.9817.
Hence, P(X < 1) is approximately 0.9817.
Learn more about approximately here
https://brainly.com/question/28521601
#SPJ11
3. The size of a population, \( P \), of toads \( t \) years after they are introduced into a wetland is given by \[ P=\frac{1000}{1+49\left(\frac{1}{2}\right)^{t}} \] a. How many toads are there in y
There are 1000 toads in the wetland initially, the expression for the size of the toad population, P, is given as follows: P = \frac{1000}{1 + 49 (\frac{1}{2})^t}.
When t = 0, the expression for P simplifies to 1000. This means that there are 1000 toads in the wetland initially.
The expression for P can be simplified as follows:
P = \frac{1000}{1 + 49 (\frac{1}{2})^t} = \frac{1000}{1 + 24.5^t}
When t = 0, the expression for P simplifies to 1000 because 1 + 24.5^0 = 1 + 1 = 2. This means that there are 1000 toads in the wetland initially.
The expression for P shows that the number of toads in the wetland decreases exponentially as t increases. This is because the exponent in the expression, 24.5^t, is always greater than 1. As t increases, the value of 24.5^t increases, which means that the value of P decreases.
To know more about value click here
brainly.com/question/30760879
#SPJ11
A ball is thrown vertically upward from the top of a building 112 feet tall with an initial velocity of 96 feet per second. The height of the ball from the ground after t seconds is given by the formula h(t)=112+96t−16t^2 (where h is in feet and t is in seconds.) a. Find the maximum height. b. Find the time at which the object hits the ground.
Answer:
Step-by-step explanation:
To find the maximum height and the time at which the object hits the ground, we can analyze the equation h(t) = 112 + 96t - 16t^2.
a. Finding the maximum height:
To find the maximum height, we can determine the vertex of the parabolic equation. The vertex of a parabola given by the equation y = ax^2 + bx + c is given by the coordinates (h, k), where h = -b/(2a) and k = f(h).
In our case, the equation is h(t) = 112 + 96t - 16t^2, which is in the form y = -16t^2 + 96t + 112. Comparing this to the general form y = ax^2 + bx + c, we can see that a = -16, b = 96, and c = 112.
The x-coordinate of the vertex, which represents the time at which the ball reaches the maximum height, is given by t = -b/(2a) = -96/(2*(-16)) = 3 seconds.
Substituting this value into the equation, we can find the maximum height:
h(3) = 112 + 96(3) - 16(3^2) = 112 + 288 - 144 = 256 feet.
Therefore, the maximum height reached by the ball is 256 feet.
b. Finding the time at which the object hits the ground:
To find the time at which the object hits the ground, we need to determine when the height of the ball, h(t), equals 0. This occurs when the ball reaches the ground.
Setting h(t) = 0, we have:
112 + 96t - 16t^2 = 0.
We can solve this quadratic equation to find the roots, which represent the times at which the ball is at ground level.
Using the quadratic formula, t = (-b ± √(b^2 - 4ac)) / (2a), we can substitute a = -16, b = 96, and c = 112 into the formula:
t = (-96 ± √(96^2 - 4*(-16)112)) / (2(-16))
t = (-96 ± √(9216 + 7168)) / (-32)
t = (-96 ± √16384) / (-32)
t = (-96 ± 128) / (-32)
Simplifying further:
t = (32 or -8) / (-32)
We discard the negative value since time cannot be negative in this context.
Therefore, the time at which the object hits the ground is t = 32/32 = 1 second.
In summary:
a. The maximum height reached by the ball is 256 feet.
b. The time at which the object hits the ground is 1 second.
To know more about maximum height refer here:
https://brainly.com/question/29116483
#SPJ11
How do I find the inverse transform?
H(z) = (z^2 - z) / (z^2 + 1)
The inverse transform of a signal H(z) can be found by solving for h(n). The inverse Z-transform can be obtained by;h(n) = [(-1/2) ^ (n-1) sin(n)] u(n - 1)
The inverse transform of a signal H(z) can be found by solving for h(n).
Here’s how to find the inverse transform of
H(z) = (z^2 - z) / (z^2 + 1)
1: Factorize the denominator to reveal the rootsz^2 + 1 = 0⇒ z = i or z = -iSo, the partial fraction expansion of H(z) is given by;H(z) = [A/(z-i)] + [B/(z+i)] where A and B are constants
2: Solve for A and B by equating the partial fraction expansion of H(z) to the original expression H(z) = [A/(z-i)] + [B/(z+i)] = (z^2 - z) / (z^2 + 1)
Multiplying both sides by (z^2 + 1)z^2 - z = A(z+i) + B(z-i)z^2 - z = Az + Ai + Bz - BiLet z = i in the above equation z^2 - z = Ai + Bii^2 - i = -1 + Ai + Bi2i = Ai + Bi
Hence A - Bi = 0⇒ A = Bi. Similarly, let z = -i in the above equation, thenz^2 - z = A(-i) - Bi + B(i)B + Ai - Bi = 0B = Ai
Similarly,A = Bi = -i/2
3: Perform partial fraction expansionH(z) = -i/2 [1/(z-i)] + i/2 [1/(z+i)]Using the time-domain expression of inverse Z-transform;h(n) = (1/2πj) ∫R [H(z) z^n-1 dz]
Where R is a counter-clockwise closed contour enclosing all poles of H(z) within.
The inverse Z-transform can be obtained by;h(n) = [(-1/2) ^ (n-1) sin(n)] u(n - 1)
Learn more about inverse transform here:
https://brainly.com/question/33065301
#SPJ11
fred anderson, an artist, has recorded the number of visitors who visited his exhibit in the first 8 hours of opening day. he has made a scatter plot to depict the relationship between the number of hours and the number of visitors. how many visitors were there during the fourth hour? 1 21 4 20
Based on the given information, it is not possible to determine the exact number of visitors during the fourth hour.
The scatter plot created by Fred Anderson might provide a visual representation of the relationship between the number of hours and the number of visitors, but without the actual data points or additional information, we cannot determine the specific number of visitors during the fourth hour. To find the number of visitors during the fourth hour, we would need the corresponding data point or additional information from the scatter plot, such as the coordinates or a trend line equation. Without these details, it is not possible to determine the exact number of visitors during the fourth hour.
Learn more about visitors here
https://brainly.com/question/30984579
#SPJ11
Use the disc method to find the volume of the solid obtained by rotating about the x-axis the region bounded by the curves y=2x^3,y=0,x=0 and x=1.
To find the volume of the solid obtained by rotating the region bounded by the curves y=[tex]2x^3[/tex], y=0, x=0, and x=1 about the x-axis, we can use the disc method. The resulting volume is (32/15)π cubic units.
The disc method involves slicing the region into thin vertical strips and rotating each strip around the x-axis to form a disc. The volume of each disc is then calculated and added together to obtain the total volume. In this case, we integrate along the x-axis from x=0 to x=1.
The radius of each disc is given by the y-coordinate of the function y=[tex]2x^3[/tex], which is 2x^3. The differential thickness of each disc is dx. Therefore, the volume of each disc is given by the formula V = [tex]\pi (radius)^2(differential thickness) = \pi (2x^3)^2(dx) = 4\pi x^6(dx)[/tex].
To find the total volume, we integrate this expression from x=0 to x=1:
V = ∫[0,1] [tex]4\pi x^6[/tex] dx.
Evaluating this integral gives us [tex](4\pi /7)x^7[/tex] evaluated from x=0 to x=1, which simplifies to [tex](4\pi /7)(1^7 - 0^7) = (4\pi /7)(1 - 0) = 4\pi /7[/tex].
Therefore, the volume of the solid obtained by rotating the region about the x-axis is (4π/7) cubic units. Simplifying further, we get the volume as (32/15)π cubic units.
Learn more about volume here:
https://brainly.com/question/28058531
#SPJ11
When \( f(x)=7 x^{2}+6 x-4 \) \[ f(-4)= \]
The value of the function is f(-4) = 84.
A convergence test is a method or criterion used to determine whether a series converges or diverges. In mathematics, a series is a sum of the terms of a sequence. Convergence refers to the behaviour of the series as the number of terms increases.
[tex]f(x) = 7{x^2} + 6x - 4[/tex]
to find the value of f(-4), Substitute the value of x in the given function:
[tex]\begin{aligned} f\left( { - 4} \right)& = 7{\left( { - 4} \right)^2} + 6\left( { - 4} \right) - 4\\ &= 7\left( {16} \right) - 24 - 4\\ &= 112 - 24 - 4\\ &= 84 \end{aligned}[/tex]
Therefore, f(-4) = 84.
To learn more about function
https://brainly.com/question/14723549
#SPJ11
Show that any two eigenvectors of the symmetric matrix corresponding to distinct eigenvalues are orthogonal. ⎣
⎡
−1
0
−1
0
−1
0
−1
0
1
⎦
⎤
Find the characteristic polynomial of A. ∣λJ−A∣= Find the eigenvalues of A. (Enter your answers from smallest to largest.) (λ 1
,λ 2
+λ 3
)=( Find the general form for every eigenvector corresponding to λ 1
. (Use s as your parameter.) x 1
= Find the general form for every eigenvector corresponding to λ 2
. (Use t as your parameter.) x 2
= Find the general form for every eigenvector corresponding to λ 3
. (Use u as your parameter.) x 3
= Find x 1
=x 2
x 1
⋅x 2
= Find x 1
=x 3
. x 1
⋅x 3
= Find x 2
=x 2
. x 2
⋅x 3
= Determine whether the eigenvectors corresponding to distinct eigenvalues are orthogonal. (Select all that apply.) x 1
and x 2
are orthogonal. x 1
and x 3
are orthogonal. x 2
and x 3
are orthogonal.
Eigenvectors corresponding to λ₁ is v₁ = s[2, 0, 1] and Eigenvectors corresponding to λ₂ is v₂ = [0, 0, 0]. The eigenvectors v₁ and v₂ are orthogonal.
To show that any two eigenvectors of a symmetric matrix corresponding to distinct eigenvalues are orthogonal, we need to prove that for any two eigenvectors v₁ and v₂, where v₁ corresponds to eigenvalue λ₁ and v₂ corresponds to eigenvalue λ₂ (assuming λ₁ ≠ λ₂), the dot product of v₁ and v₂ is zero.
Let's consider the given symmetric matrix:
[ -1 0 -1 ]
[ 0 -1 0 ]
[ -1 0 1 ]
To find the eigenvalues and eigenvectors, we solve the characteristic equation:
det(λI - A) = 0
where A is the given matrix, λ is the eigenvalue, and I is the identity matrix.
Substituting the values, we have:
[ λ + 1 0 1 ]
[ 0 λ + 1 0 ]
[ 1 0 λ - 1 ]
Expanding the determinant, we get:
(λ + 1) * (λ + 1) * (λ - 1) = 0
Simplifying, we have:
(λ + 1)² * (λ - 1) = 0
This equation gives us the eigenvalues:
λ₁ = -1 (with multiplicity 2) and λ₂ = 1.
To find the eigenvectors, we substitute each eigenvalue into the equation (A - λI) v = 0 and solve for v.
For λ₁ = -1:
(A - (-1)I) v = 0
[ 0 0 -1 ] [ x ] [ 0 ]
[ 0 0 0 ] [ y ] = [ 0 ]
[ -1 0 2 ] [ z ] [ 0 ]
This gives us the equation:
-z = 0
So, z can take any value. Let's set z = s (parameter).
Then the equations become:
0 = 0 (equation 1)
0 = 0 (equation 2)
-x + 2s = 0 (equation 3)
From equation 1 and 2, we can't obtain any information about x and y. However, from equation 3, we have:
x = 2s
So, the eigenvector v₁ corresponding to λ₁ = -1 is:
v₁ = [2s, y, s] = s[2, 0, 1]
For λ₂ = 1:
(A - 1I) v = 0
[ -2 0 -1 ] [ x ] [ 0 ]
[ 0 -2 0 ] [ y ] = [ 0 ]
[ -1 0 0 ] [ z ] [ 0 ]
This gives us the equations:
-2x - z = 0 (equation 1)
-2y = 0 (equation 2)
-x = 0 (equation 3)
From equation 2, we have:
y = 0
From equation 3, we have:
x = 0
From equation 1, we have:
z = 0
So, the eigenvector v₂ corresponding to λ₂ = 1 is:
v₂ = [0, 0, 0]
To determine if the eigenvectors corresponding to distinct eigenvalues are orthogonal, we need to compute the dot products of the eigenvectors.
Dot product of v₁ and v₂:
v₁ · v₂ = (2s)(0) + (0)(0) + (s)(0) = 0
Since the dot product is zero, we have shown that the eigenvectors v₁ and v₂ corresponding to distinct eigenvalues (-1 and 1) are orthogonal.
In summary:
Eigenvectors corresponding to λ₁ = -1: v₁ = s[2, 0, 1], where s is a parameter.
Eigenvectors corresponding to λ₂ = 1: v₂ = [0, 0, 0].
The eigenvectors v₁ and v₂ are orthogonal.
To learn more about Eigenvectors here:
https://brainly.com/question/33322231
#SPJ4
Find the area of the given region analytically. Common interior of r = 3 - 2 sine and r -3 + 2 sine
The area of region R is found to be 4 square units. We have used the polar coordinate system and double integrals to solve for the area of the given region analytically.
The region that we need to find the area for can be enclosed by two circles:
r = 3 - 2sinθ (let this be circle A)r = 3 + 2sinθ (let this be circle B)
We can use the polar coordinate system to solve this problem: let θ range from 0 to 2π. Then the region R is defined by the two curves:
R = {(r,θ)| 3+2sinθ ≤ r ≤ 3-2sinθ, 0 ≤ θ ≤ 2π}
So, we can use double integrals to solve for the area of R. The integral would be as follows:
∬R dA = ∫_0^(2π)∫_(3+2sinθ)^(3-2sinθ) r drdθ
In the above formula, we take the integral over the region R and dA refers to an area element of the polar coordinate system. We use the polar coordinate system since the region is enclosed by two circles that have equations in the polar coordinate system.
From here, we can simplify the integral:
∬R dA = ∫_0^(2π)∫_(3+2sinθ)^(3-2sinθ) r drdθ
= ∫_0^(2π) [1/2 r^2]_(3+2sinθ)^(3-2sinθ) dθ
= ∫_0^(2π) 1/2 [(3-2sinθ)^2 - (3+2sinθ)^2] dθ
= ∫_0^(2π) 1/2 [(-4sinθ)(2)] dθ
= ∫_0^(2π) [-4sinθ] dθ
= [-4cosθ]_(0)^(2π)
= 0 - (-4)
= 4
Therefore, we have used the polar coordinate system and double integrals to solve for the area of the given region analytically. The area of region R is found to be 4 square units.
To know more about the double integrals, visit:
brainly.com/question/27360126
#SPJ11
Find h so that x+5 is a factor of x 4
+6x 3
+9x 2
+hx+20. 24 30 0 4
The value of h that makes (x + 5) a factor of the polynomial x^4 + 6x^3 + 9x^2 + hx + 20 is h = 14.
To find the value of h such that (x+5) is a factor of the polynomial x^4 + 6x^3 + 9x^2 + hx + 20, we can use the factor theorem. According to the factor theorem, if (x+5) is a factor of the polynomial, then when we substitute -5 for x in the polynomial, the result should be zero.
Substituting -5 for x in the polynomial, we get:
(-5)^4 + 6(-5)^3 + 9(-5)^2 + h(-5) + 20 = 0
625 - 750 + 225 - 5h + 20 = 0
70 - 5h = 0
-5h = -70
h = 14
Therefore, the value of h that makes (x+5) a factor of the polynomial x^4 + 6x^3 + 9x^2 + hx + 20 is h = 14.
learn more about "polynomial ":- https://brainly.com/question/4142886
#SPJ11
Romeo has captured many yellow-spotted salamanders. he weighs each and
then counts the number of yellow spots on its back. this trend line is a
fit for these data.
24
22
20
18
16
14
12
10
8
6
4
2
1 2 3 4 5 6 7 8 9 10 11 12
weight (g)
a. parabolic
b. negative
c. strong
o
d. weak
The trend line that is a fit for the data points provided is a negative trend. This is because as the weight of the yellow-spotted salamanders decreases, the number of yellow spots on their back also decreases.
This negative trend can be seen from the data points provided: as the weight decreases from 24g to 2g, the number of yellow spots decreases from 1 to 12. Therefore, the correct answer is b. negative.
To know more about salamanders visit:
https://brainly.com/question/2590720
#SPJ11
Romeo has captured many yellow-spotted salamanders. He weighs each and then counts the number of yellow spots on its back. this trend line is a strong fit for these data. Thus option A is correct.
To determine this trend, Romeo weighed each salamander and counted the number of yellow spots on its back. He then plotted this data on a graph and drew a trend line to show the general pattern. Based on the given data, the trend line shows a decrease in the number of yellow spots as the weight increases.
This negative trend suggests that there is an inverse relationship between the weight of the salamanders and the number of yellow spots on their back. In other words, as the salamanders grow larger and gain weight, they tend to have fewer yellow spots on their back.
Learn more about trend line
https://brainly.com/question/29249936
#SPJ11
Complete Correct Question:
a scale model of a water tower holds 1 teaspoon of water per inch of height. in the model, 1 inch equals 1 meter and 1 teaspoon equals 1,000 gallons of water.how tall would the model tower have to be for the actual water tower to hold a volume of 80,000 gallons of water?
The model tower would need to be 80 inches tall for the actual water tower to hold a volume of 80,000 gallons of water.
To determine the height of the model tower required for the actual water tower to hold a volume of 80,000 gallons of water, we can use the given conversion factors:
1 inch of height on the model tower = 1 meter on the actual water tower
1 teaspoon of water on the model tower = 1,000 gallons of water in the actual water tower
First, we need to convert the volume of 80,000 gallons to teaspoons. Since 1 teaspoon is equal to 1,000 gallons, we can divide 80,000 by 1,000:
80,000 gallons = 80,000 / 1,000 = 80 teaspoons
Now, we know that the model tower holds 1 teaspoon of water per inch of height. Therefore, to find the height of the model tower, we can set up the following equation:
Height of model tower (in inches) = Volume of water (in teaspoons)
Height of model tower = 80 teaspoons
Know more about height here:
https://brainly.com/question/29131380
#SPJ11
How many square metres of wall paper are needed to cover a wall 8cm long and 3cm hight
You would need approximately 0.0024 square meters of wallpaper to cover the wall.
To find out how many square meters of wallpaper are needed to cover a wall, we need to convert the measurements from centimeters to meters.
First, let's convert the length from centimeters to meters. We divide 8 cm by 100 to get 0.08 meters.
Next, let's convert the height from centimeters to meters. We divide 3 cm by 100 to get 0.03 meters.
To find the total area of the wall, we multiply the length and height.
0.08 meters * 0.03 meters = 0.0024 square meters.
Therefore, you would need approximately 0.0024 square meters of wallpaper to cover the wall.
learn more about area here:
https://brainly.com/question/26550605
#SPJ11
Which of the following statements are correct? (Select all that apply.) x(a+b)=x ab
x a
1
=x a
1
x b−a
1
=x a−b
x a
1
=− x a
1
None of the above
All of the given statements are correct and can be derived from the basic rules of exponentiation.
From the given statements,
x^(a+b) = x^a * x^b:This statement follows the exponentiation rule for the multiplication of terms with the same base. When you multiply two terms with the same base (x in this case) and different exponents (a and b), you add the exponents. Therefore, x(a+b) is equal to x^a * x^b.
x^(a/1) = x^a:This statement follows the exponentiation rule for division of exponents. When you have an exponent raised to a power (a/1 in this case), it is equivalent to the base raised to the original exponent (x^a). In other words, x^(a/1) simplifies to x^a.
x^(b-a/1) = x^b / x^a:This statement also follows the exponentiation rule for division of exponents. When you have an exponent being subtracted from another exponent (b - a/1 in this case), it is equivalent to dividing the base raised to the first exponent by the base raised to the second exponent. Therefore, x^(b-a/1) simplifies to x^b / x^a.
x^(a-b) = 1 / x^(b-a):This statement follows the exponentiation rule for negative exponents. When you have a negative exponent (a-b in this case), it is equivalent to the reciprocal of the base raised to the positive exponent (1 / x^(b-a)). Therefore, x^(a-b) simplifies to 1 / x^(b-a).
x^(a/1) = 1 / x^(-a/1):This statement also follows the exponentiation rule for negative exponents. When you have a negative exponent (in this case, -a/1), it is equivalent to the reciprocal of the base raised to the positive exponent (1 / x^(-a/1)). Therefore, x^(a/1) simplifies to 1 / x^(-a/1).
To learn more about exponents visit:
https://brainly.com/question/30241812
#SPJ11
Generalize The graph of the parent function f(x)=x^2 is reflected across the y-axis. Write an equation for the function g after the reflection. Show your work. Based on your equation, what happens to the graph? Explain.
The graph of the parent function f(x) = x² is symmetric about the y-axis since the left and right sides of the graph are mirror images of one another. When a graph is reflected across the y-axis, the x-values become opposite (negated).
The equation of the function g(x) that is formed by reflecting the graph of f(x) across the y-axis can be obtained as follows: g(x) = f(-x) = (-x)² = x²Thus, the equation of the function g(x) after the reflection is given by g(x) = x².
Since reflecting a graph across the y-axis negates the x-values, the effect of the reflection is to make the left side of the graph become the right side of the graph, and the right side of the graph become the left side of the graph.
To know more about graph visit:
https://brainly.com/question/17267403
#SPJ11
How can I determine if 2 normal vectors are pointing in the same
general direction ?? and not opposite directions?
To determine if two normal vectors are pointing in the same general direction or opposite directions, we can compare their dot product.
A normal vector is a vector that is perpendicular (orthogonal) to a given surface or plane. When comparing two normal vectors, we want to determine if they are pointing in the same general direction or opposite directions.
To check the direction, we can use the dot product of the two vectors. The dot product of two vectors A and B is given by A · B = |A| |B| cos(θ), where |A| and |B| are the magnitudes of the vectors, and θ is the angle between them.
If the dot product is positive, it means that the angle between the vectors is less than 90 degrees (cos(θ) > 0), indicating that they are pointing in the same general direction. A positive dot product suggests that the vectors are either both pointing away from the surface or both pointing towards the surface.
On the other hand, if the dot product is negative, it means that the angle between the vectors is greater than 90 degrees (cos(θ) < 0), indicating that they are pointing in opposite directions. A negative dot product suggests that one vector is pointing towards the surface while the other is pointing away from the surface.
Therefore, by evaluating the dot product of two normal vectors, we can determine if they are pointing in the same general direction (positive dot product) or opposite directions (negative dot product).
Learn more about dot product here:
https://brainly.com/question/23477017
#SPJ11
Which do you think will be larger, the average value of
f(x,y)=xy
over the square
0≤x≤4,
0≤y≤4,
or the average value of f over the quarter circle
x2+y2≤16
in the first quadrant? Calculate them to find out.
The average value of f(x, y) = xy over the square 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 will be larger than the average value of f over the quarter circle x^2 + y^2 ≤ 16 in the first quadrant.
To calculate the average value over the square, we need to find the integral of f(x, y) = xy over the given region and divide it by the area of the region. The integral becomes:
∫∫(0 ≤ x ≤ 4, 0 ≤ y ≤ 4) xy dA
Integrating with respect to x first:
∫(0 ≤ y ≤ 4) [(1/2) x^2 y] |[0,4] dy
= ∫(0 ≤ y ≤ 4) 2y^2 dy
= (2/3) y^3 |[0,4]
= (2/3) * 64
= 128/3
To find the area of the square, we simply calculate the length of one side squared:
Area = (4-0)^2 = 16
Therefore, the average value over the square is:
(128/3) / 16 = 8/3 ≈ 2.6667
Now let's calculate the average value over the quarter circle. The equation of the circle is x^2 + y^2 = 16. In polar coordinates, it becomes r = 4. To calculate the average value, we integrate over the given region:
∫∫(0 ≤ r ≤ 4, 0 ≤ θ ≤ π/2) r^2 sin(θ) cos(θ) r dr dθ
Integrating with respect to r and θ:
∫(0 ≤ θ ≤ π/2) [∫(0 ≤ r ≤ 4) r^3 sin(θ) cos(θ) dr] dθ
= [∫(0 ≤ θ ≤ π/2) (1/4) r^4 sin(θ) cos(θ) |[0,4] dθ
= [∫(0 ≤ θ ≤ π/2) 64 sin(θ) cos(θ) dθ
= 32 [sin^2(θ)] |[0,π/2]
= 32
The area of the quarter circle is (1/4)π(4^2) = 4π.
Therefore, the average value over the quarter circle is:
32 / (4π) ≈ 2.546
The average value of f(x, y) = xy over the square 0 ≤ x ≤ 4, 0 ≤ y ≤ 4 is larger than the average value of f over the quarter circle x^2 + y^2 ≤ 16 in the first quadrant. The average value over the square is approximately 2.6667, while the average value over the quarter circle is approximately 2.546.
To know more about Average, visit
https://brainly.com/question/130657
#SPJ11
Suppose an gift basket maker incurs costs for a basket according to C=11x+285. If the revenue for the baskets is R=26x where x is the number of baskets made and sold. Break even occurs when costs = revenues. The number of baskets that must be sold to break even is
The gift basket maker must sell 19 baskets to break even, as this is the value of x where the costs equal the revenues.
To break even, the gift basket maker needs to sell a certain number of baskets where the costs equal the revenues.
In this scenario, the cost equation is given as C = 11x + 285, where C represents the total cost incurred by the gift basket maker and x is the number of baskets made and sold.
The revenue equation is R = 26x, where R represents the total revenue generated from selling the baskets. To break even, the costs must be equal to the revenues, so we can set C equal to R and solve for x.
Setting C = R, we have:
11x + 285 = 26x
To isolate x, we subtract 11x from both sides:
285 = 15x
Finally, we divide both sides by 15 to solve for x:
x = 285/15 = 19
Therefore, the gift basket maker must sell 19 baskets to break even, as this is the value of x where the costs equal the revenues.
To learn more about total cost visit:
brainly.com/question/30355738
#SPJ11
please help me sort them out into which groups
(a) The elements in the intersect of the two subsets is A∩B = {1, 3}.
(b) The elements in the intersect of the two subsets is A∩B = {3, 5}
(c) The elements in the intersect of the two subsets is A∩B = {6}
What is the Venn diagram representation of the elements?The Venn diagram representation of the elements is determined as follows;
(a) The elements in the Venn diagram for the subsets are;
A = {1, 3, 5} and B = {1, 3, 7}
A∪B = {1, 3, 5, 7}
A∩B = {1, 3}
(b) The elements in the Venn diagram for the subsets are;
A = {2, 3, 4, 5} and B = {1, 3, 5, 7, 9}
A∪B = {1, 2, 3, 4, 5, 7, 9}
A∩B = {3, 5}
(c) The elements in the Venn diagram for the subsets are;
A = {2, 6, 10} and B = {1, 3, 6, 9}
A∪B = {1, 2, 3, 6, 9, 10}
A∩B = {6}
The Venn diagram is in the image attached.
Learn more about Venn diagram here: https://brainly.com/question/24713052
#SPJ1
a. Find the measure of each interior angle of the regular hendecagon that appears on the face of a Susan B. Anthony one-dollar coin.
The regular hendecagon is an 11 sided polygon. A regular polygon is a polygon that has all its sides and angles equal. Anthony one-dollar coin has 11 interior angles each with a measure of approximately 147.27 degrees.
Anthony one-dollar coin. The sum of the interior angles of an n-sided polygon is given by:
[tex](n-2) × 180°[/tex]
The formula for the measure of each interior angle of a regular polygon is given by:
measure of each interior angle =
[tex][(n - 2) × 180°] / n[/tex]
In this case, n = 11 since we are dealing with a regular hendecagon. Substituting n = 11 into the formula above, we get: measure of each interior angle
=[tex][(11 - 2) × 180°] / 11= (9 × 180°) / 11= 1620° / 11[/tex]
The measure of each interior angle of the regular hendecagon that appears on the face of a Susan B. Anthony one-dollar coin is[tex]1620°/11 ≈ 147.27°[/tex]. This implies that the Susan B.
To know more about polygon visit:-
https://brainly.com/question/17756657
#SPJ11
The measure of each interior angle of a regular hendecagon, which is an 11-sided polygon, can be found by using the formula:
Interior angle = (n-2) * 180 / n,
where n represents the number of sides of the polygon.
In this case, the regular hendecagon appears on the face of a Susan B. Anthony one-dollar coin. The Susan B. Anthony one-dollar coin is a regular hendecagon because it has 11 equal sides and 11 equal angles.
Applying the formula, we have:
Interior angle = (11-2) * 180 / 11 = 9 * 180 / 11.
Simplifying this expression gives us the measure of each interior angle of the regular hendecagon on the coin.
The measure of each interior angle of the regular hendecagon on the face of a Susan B. Anthony one-dollar coin is approximately 147.27 degrees.
To find the measure of each interior angle of a regular hendecagon, we use the formula: (n-2) * 180 / n, where n represents the number of sides of the polygon. For the Susan B. Anthony one-dollar coin, the regular hendecagon has 11 sides, so the formula becomes: (11-2) * 180 / 11. Simplifying this expression gives us the measure of each interior angle of the regular hendecagon on the coin. Therefore, the measure of each interior angle of the regular hendecagon on the face of a Susan B. Anthony one-dollar coin is approximately 147.27 degrees. This means that each angle within the hendecagon on the coin is approximately 147.27 degrees. This information is helpful for understanding the geometry and symmetry of the Susan B. Anthony one-dollar coin.
To learn more about hendecagon
visit the link below
https://brainly.com/question/31430414
#SPJ11
You incorrectly reject the null hypothesis that sample mean equal to population mean of 30. Unwilling you have committed a:
If the null hypothesis that sample mean is equal to population mean is incorrectly rejected, it is called a type I error.
Type I error is the rejection of a null hypothesis when it is true. It is also called a false-positive or alpha error. The probability of making a Type I error is equal to the level of significance (alpha) for the test
In statistics, hypothesis testing is a method for determining the reliability of a hypothesis concerning a population parameter. A null hypothesis is used to determine whether the results of a statistical experiment are significant or not.Type I errors occur when the null hypothesis is incorrectly rejected when it is true. This happens when there is insufficient evidence to support the alternative hypothesis, resulting in the rejection of the null hypothesis even when it is true.
To know more about mean visit:
https://brainly.com/question/31101410
#SPJ11
3.80 original sample: 17, 10, 15, 21, 13, 18. do the values given constitute a possible bootstrap sample from the original sample? 10, 12, 17, 18, 20, 21 10, 15, 17 10, 13, 15, 17, 18, 21 18, 13, 21, 17, 15, 13, 10 13, 10, 21, 10, 18, 17 chegg
Based on the given original sample of 17, 10, 15, 21, 13, 18, none of the provided values constitute a possible bootstrap sample from the original sample.
To determine if a sample is a possible bootstrap sample, we need to check if the values in the sample are present in the original sample and in the same frequency. Let's evaluate each provided sample:
10, 12, 17, 18, 20, 21: This sample includes values (10, 17, 18, 21) that are present in the original sample, but the frequencies do not match. Thus, it is not a possible bootstrap sample.
10, 15, 17: This sample includes values (10, 17) that are present in the original sample, but it is missing the values (15, 21, 13, 18). Thus, it is not a possible bootstrap sample.
10, 13, 15, 17, 18, 21: This sample includes all the values from the original sample, and the frequencies match. Thus, it is a possible bootstrap sample.
18, 13, 21, 17, 15, 13, 10: This sample includes all the values from the original sample, but the frequencies do not match. Thus, it is not a possible bootstrap sample.
13, 10, 21, 10, 18, 17: This sample includes values (10, 17, 18, 21) that are present in the original sample, but the frequencies do not match. Thus, it is not a possible bootstrap sample.
In conclusion, only the sample 10, 13, 15, 17, 18, 21 constitutes a possible bootstrap sample from the original sample.
To learn more about bootstrap sample visit:
brainly.com/question/31083233
#SPJ11