use guess If a 4-kg object is being pushed with the same force as another object that has a mass of 10-kg, then: the 10-kg object accelerates 2.5 times faster than the 4-kg object the 4-kg object accelerates 2.5 times faster than the 10 kg object none of the above is true both objects accelerate at the same rate

Answers

Answer 1

According to the question Both objects accelerate at the same rate.

The acceleration of an object is determined by the net force acting upon it and its mass. In this case, if both objects are being pushed with the same force, the net force acting on each object is equal.

According to Newton's second law of motion (F = ma), the acceleration of an object is directly proportional to the net force and inversely proportional to its mass. Since the force is the same and the mass does not change, both objects will experience the same acceleration. Therefore, none of the options provided is true; both objects accelerate at the same rate.

To know more about accelerate visit-

brainly.com/question/12292075

#SPJ11


Related Questions

A mass m = 1.81 kg hangs at the end of a vertical spring whose top end is fixed to the ceiling. The spring has spring constant k = 86 N/m
and negligible mass. The mass undergoes simple harmonic motion when placed in vertical motion. At time t = 0 the mass is observed to be at a distance d =
0.55 m below its equilibrium height with an upward speed of vo = 4.1 m/s

Answers

The speed of the mass after a time t = 0 is 4.055 m/s.

Mass (m) = 1.81 kg

Spring Constant (k) = 86 N/m

Displacement (d) = 0.55 m

Initial Velocity (vo) = 4.1 m/s

Let's calculate the acceleration of the object using Hooke's law. According to Hooke's law,

F = -kx

where,F is the force in newtons (N)x is the displacement from the equilibrium position in meters (m)k is the spring constant in newtons per meter (N/m)

As per the problem, the displacement from the equilibrium position is d = 0.55 mForce (F) = -kx=-86 × 0.55=-47.3 N

This force acts on the mass in the upward direction. The gravitational force acting on the mass is given by

F = mg

In the given context, "m" represents the mass of the object, and "g" represents the acceleration caused by gravity. g = 9.8 m/s² (acceleration due to gravity on earth)F = 1.81 × 9.8=17.758 N

This force acts on the mass in the downward direction.

The net force acting on the mass is given by

Fnet = ma

Where a is the acceleration of the mass. We can now use Newton's second law to determine the acceleration of the mass.

a = Fnet / m = (F + (-mg)) / m= (-47.3 + (-17.758)) / 1.81= -38.525 / 1.81= -21.274 m/s² (upwards)

The negative sign shows that the acceleration is in the upward direction. Now let's find the speed of the mass after a time t.Since the mass is undergoing simple harmonic motion, we can use the equation,

x = Acos(ωt + ϕ)

Here,x is the displacement from the equilibrium position

A is the amplitude

ω is the angular frequency

t is the time

ϕ is the phase constant

At time t = 0, the mass is observed to be at a distance d = 0.55 m below its equilibrium height with an upward speed of vo = 4.1 m/s.

We can use this information to determine the phase constant. At t = 0,x = Acos(ϕ)= d = 0.55 mcos(ϕ)= d / A= 0.55 / Avo = -ωAsin(ϕ)= vo / Aωcos(ϕ)= -vo / Ax² + v₀² = A²ω²cos²(ωt) + 2Av₀sin(ωt)cos(ωt) + v₀²sin²(ωt) = A²ω²cos²(ωt) + 2Adcos(ωt) + d² - A²

Using the initial conditions, the equation becomes 0.55 = A cos ϕA(−4.1) = Aωsinϕ= −(4.1)ωcos ϕ

Squaring and adding the above two equations, we get 0.55² + (4.1ω)² = A²

Now we can substitute the known values to get the amplitude of the motion.

0.55² + (4.1ω)² = A²0.55² + (4.1 × 2π / T)² = A²

Where T is the period of the motion.

A = √(0.55² + (4.1 × 2π / T)²)

Let's assume that the object completes one oscillation in T seconds. Since we know the angular frequency ω, we can calculate the period of the motion.

T = 2π / ω = 2π / √(k / m)T = 2π / √(86 / 1.81)T = 1.281 s

Substituting the value of T, we getA = √(0.55² + (4.1 × 2π / 1.281)²)A = 1.0555 m

Now we can use the initial conditions to determine the phase constant.0.55 / 1.0555 = cos ϕϕ = cos⁻¹(0.55 / 1.0555)ϕ = 0.543 rad

Now we can use the equation for displacement,x = Acos(ωt + ϕ)= (1.0555) cos(√(k / m)t + 0.543)

Now we can differentiate the above equation to get the velocity,

v = -Aωsin(ωt + ϕ)= -(1.0555) √(k / m) sin(√(k / m)t + 0.543)When t = 0, the velocity is given byv = -(1.0555) √(k / m) sin(0.543)v = -4.055 m/s

The negative sign indicates that the velocity is in the upward direction. Thus, the speed of the mass after a time t = 0 is 4.055 m/s. Hence, the final answer is 4.055 m/s.

Learn more about speed at: https://brainly.com/question/13943409

#SPJ11

Concave Converging Ray Diagrams 1. An object is located 14 cm in front of a concave mirror. If the focal length is 3 cm, locate the object and draw the ray diagram for the resulting image. Object Type (Real or Virtual): Orientation (Upright or Inverted): Location (front or behind): Size (same, larger, smaller): 2. An object is located 8 cm in front of a concave mirror. If the focal length is 6 cm, locate the object and draw the ray diagram for the resulting image. C Object Type (Real or Virtual): Orientation (Upright or Inverted): Location (front or behind): Size (same, larger, smaller):

Answers

The red lines represent the incident rays, while the blue lines represent the refracted rays. The object is located between F and C, and the resulting image is real, inverted, and located beyond C.

1. The image of an object that is located 14 cm in front of a concave mirror with a focal length of 3 cm is a virtual image.Object type: Virtual Orientation: Upright Location: Behind the mirror Size: Larger Draw the ray diagram for the resulting image: 2. The image of an object that is located 8 cm in front of a concave mirror with a focal length of 6 cm is a real image.Object type: Real Orientation: Inverted Location: In front of the mirrorSize: Smaller Draw the ray diagram for the resulting image: In the above ray diagram, F is the focus, C is the center of the curvature, and P is the pole of the mirror. The red lines represent the incident rays, while the blue lines represent the refracted rays. The object is located between F and C, and the resulting image is real, inverted, and located beyond C.

To know more about incident rays visit:

https://brainly.com/question/28391968

#SPJ11

Is it possible for two objects to be in thermal equilibrium if they are not in contact with each other? Explain.

Answers

It is not possible for two objects to be in thermal equilibrium if they are not in contact with each other. Thermal equilibrium occurs when two objects reach the same temperature and there is no net flow of heat between them. Heat is the transfer of thermal energy from a hotter object to a colder object.

When two objects are in contact with each other, heat can be transferred between them through conduction, convection, or radiation. Conduction is the transfer of heat through direct contact, convection is the transfer of heat through the movement of fluids, and radiation is the transfer of heat through electromagnetic waves.

If two objects are not in contact with each other, there is no medium for heat to transfer between them.

Therefore, they cannot reach the same temperature and be in thermal equilibrium. Even if the objects are at the same temperature initially, without any means of heat transfer, their temperatures will not change and they will not be in thermal equilibrium.

For example, let's consider two metal blocks, each initially at a temperature of 150 degrees Celsius. If the blocks are not in contact with each other and there is no medium for heat transfer, they will remain at 150 degrees Celsius and not reach thermal equilibrium.

In conclusion, for two objects to be in thermal equilibrium, they must be in contact with each other or have a medium through which heat can be transferred.

Without contact or a medium for heat transfer, the objects cannot reach the same temperature and therefore cannot be in thermal equilibrium.

Learn more about equilibrium

https://brainly.com/question/30694482

#SPJ11

We have a rare sample of Unobtainium which has a half life of 54
hours and is currently measuring 1440 uCi. How radioactive will it
be in 18 days?

Answers

The given sample of Unobtainium has a half-life of 54 hours and is currently measuring 1440 uCi. The problem is asking us to determine how radioactive the sample will be in 18 days.

To solve the given problem, we will first find the decay constant using the half-life formula, which is given as follows:Half-life (t1/2) = 0.693/λWhere λ is the decay constant.To find λ, we will rearrange the above formula as follows:

λ = 0.693/t1/2λ = 0.693/54λ

= 0.01283 per hourThe decay constant of the given Unobtainium sample is 0.01283 per hour.

Now, we will use the exponential decay formula to find the radioactive decay of the sample in 18 days. The formula is given as:A = A0 e-λtWhere A is the current activity of the sample, A0 is the initial activity of the sample, e is the mathematical constant, t is the time elapsed, and λ is the decay constant.We know that the current activity of the sample (A) is 1440 uCi and that we need to find its activity after 18 days. We can convert 18 days into hours by multiplying it by 24 as follows:

18 days × 24 hours/day =

432 hours

Now, we will substitute the given values into the exponential decay formula and solve for A

:A = A0 e-λtA =

1440 e-0.01283(432)A ≈

43.85 uCi

Therefore, the sample of Unobtainium will be radioactive at a rate of approximately 43.85 uCi after 18 days.

To know more about radioactive visit:

https://brainly.com/question/1770619

#SPJ11

What is the pooled variance for the following two samples? sample 1: n = 8 and ss = 168; sample 2: n = 6 and ss = 120

Answers

The pooled variance is the weighted average of the variances of two or more groups, where the weights are the degrees of freedom (n-1) for each group.

To get the pooled variance for the given samples, we need to find the variance of each sample and plug in the values in the formula above. Sample 1 has n = 8

and ss = 168.

To get the variance of this sample (S1²), Plugging in the values Now let's find the variance of sample 2. It has n = 6 and ss = 120.

Therefore, the pooled variance for the given two samples is 24. The pooled variance for the given two samples is 24. The pooled variance is the weighted average of the variances of two or more groups, where the weights are the degrees of freedom (n-1) for each group. We can find the variance of each sample using the formula S² = SS/(n-1), where SS is the sum of squares and n is the sample size. Plugging in the values, we find that the variance of both samples is 24. Finally, we can use the formula Sp² = (S1²(n1-1) + S2²(n2-1))/(n1+n2-2) to find the pooled variance, which is also 24.

To know more about variances visit:

https://brainly.com/question/31432390

#SPJ11

Determine the maximum vertical height h which the rollercoaster will reach on the second slope. Include an FBD for the rollercoaster while it is ascending (going up) the slope on the right. Use conservation of energy.

Answers

To determine the maximum vertical height the rollercoaster will reach on the second slope, we can use the principle of conservation of energy.  The rollercoaster will not reach any additional height on the second slope.

Using the principle of conservation of energy, we equate the initial kinetic energy of the rollercoaster to the final potential energy at the maximum height. We assume negligible energy losses due to friction or air resistance.

1. Initial kinetic energy:

The rollercoaster's initial kinetic energy is given by

K = 1/2 * m * v^2, where

m is the mass of the rollercoaster  

v is its initial velocity.

2. Final potential energy:

At the maximum height, the rollercoaster's potential energy is given by

P = m * g * h, where

m is the mass

g is the acceleration due to gravity

h is the height.

Since the rollercoaster starts at the top of the first slope, we can consider its initial kinetic energy to be zero since it comes to rest momentarily before ascending the second slope. Therefore, we have:

0 = m * g * h

Solving for h, we find that the maximum vertical height the rollercoaster will reach on the second slope is h = 0.

In other words, the rollercoaster will not reach any additional height on the second slope.

To know more about kinetic energy, click here-

brainly.com/question/30107920

#SPJ11

A woman is standing on a bathroom scale in an elevator that is not moving. The balance reads 500 N. The elevator then moves downward at a constant speed of 5 m/s. What is the reading on the scale while the elevator is descending at constant speed?
d. 500N
e. 750N
b. 250N
c. 450N
a. 100N
Two point-shaped masses m and M are separated by a distance d. If the separation d remains fixed and the masses are increased to the values ​​3m and 3M respectively, how will the gravitational force between them change?
d. The force will be nine times greater.
b. The force will be reduced to one ninth.
e. It is impossible to determine without knowing the numerical values ​​of m, M, and d.
c. The force will be three times greater.
a. The force will be reduced to one third.

Answers

The reading on the scale while the elevator is descending at a constant speed is 500N (d). The gravitational force between the masses will be nine times greater when the masses are increased to 3m and 3M (d).

When the elevator is not moving, the reading on the scale is 500N, which represents the normal force exerted by the floor of the elevator on the woman. This normal force is equal in magnitude and opposite in direction to the gravitational force acting on the woman due to her weight.

When the elevator moves downward at a constant speed of 5 m/s, it means that the elevator and everything inside it, including the woman, are experiencing the same downward acceleration. In this case, the woman and the scale are still at rest relative to each other because the downward acceleration cancels out the gravitational force.

As a result, the reading on the scale remains the same at 500N. This is because the normal force provided by the scale continues to balance the woman's weight, preventing any change in the scale reading.

Therefore, the reading on the scale while the elevator is descending at a constant speed remains 500N, which corresponds to option d. 500N.

Regarding the gravitational force between the point-shaped masses, according to Newton's law of universal gravitation, the force between two masses is given by:

F = G × (m1 × m2) / r²,

where

F is the gravitational forceG is the gravitational constantm1 and m2 are the massesr is the separation distance between the masses

In this case, the separation distance d remains fixed, but the masses are increased to 3m and 3M. Plugging these values into the equation, we get:

New force (F') = G × (3m × 3M) / d² = 9 × (G × m × M) / d² = 9F,

where F is the original force between the masses.

Therefore, the gravitational force between the masses will be nine times greater when the masses are increased to 3m and 3M, which corresponds to option d. The force will be nine times greater.

To learn more about gravitational force, Visit:

https://brainly.com/question/27943482

#SPJ11

What is the voltage of a battery that will charge a 2.0 μF capacitor to ± 54 μC?

Answers

The voltage of a battery that will charge a 2.0 μF capacitor to ± 54 μC is 54 V. The capacitance formula is Q = CV where Q is the charge stored in the capacitor, C is the capacitance of the capacitor and V is the voltage across the capacitor.

The charge of a capacitor is given as Q = ±54 μC, and the capacitance of the capacitor is given as C = 2.0 μF. Therefore, the formula can be rearranged to solve for voltage as follows:Q = CV ⇒ V = Q/C

Since the charge is ±54 μC and the capacitance is 2.0 μF, thenV = ±54 μC/2.0 μFV = ±27 VThe voltage across the capacitor is either 27 V or -27 V.

Thus, the voltage of a battery that will charge a 2.0 μF capacitor to ± 54 μC is 54 V.

Learn more about voltage at

https://brainly.com/question/32002804

#SPJ11

Final answer:

The battery required to charge a 2.0 μF capacitor to ± 54 μC will need to provide a voltage of 27 volts. This calculation is based on the formula Q=CV.

Explanation:

The voltage of a battery used to charge a capacitor can be determined using the formula Q=CV where:

Q is the charge in Coulombs (C), C is the capacitance in farads (F), and V is the voltage in Volts (V).

Given that C = 2.0 μF and the absolute Q = 54 μC, we can rearrange the formula to solve for V:

V = Q/C

This gives us V = 54 μC/2.0 μF = 27 volts.

Therefore, a battery providing 27 volts will charge a 2.0 μF capacitor to ± 54 μC.

Learn more about Capacitor Charging here:

https://brainly.com/question/29301875

#SPJ2

Predict how much torque is affecting this simple motor. The area inside the rectangle is 15 cm2, the current it carries is 9 A, the magnetic field has a magnitude of 20 * 10-3 T, and the angle between the area vector and the magnetic field is 1.0 radians.

Answers

The torque affecting the simple motor can be predicted as 6 * 10⁻⁷ m² * T * sin(1.0 radians).

The torque (τ) affecting the motor can be calculated using the formula:

τ = A * B * sin(θ)

where:

   A is the area of the rectangle (15 cm²),

   B is the magnitude of the magnetic field (20 * 10^-3 T),

   θ is the angle between the area vector and the magnetic field (1.0 radians).

Substituting the given values into the formula, we have:

τ = 15 cm² * 20 * 10^-3 T * sin(1.0 radians)

To simplify the calculation, we convert the area from cm² to m²:

τ = (15 cm² * 10^-4 m²/cm²) * 20 * 10^-3 T * sin(1.0 radians)

τ = 3 * 10^-4 m² * 20 * 10^-3 T * sin(1.0 radians)

τ = 6 * 10^-7 m² * T * sin(1.0 radians)

To learn more about area -

brainly.com/question/29813972

#SPJ11

Physical Science
Based on the data given in the Periodic Table of Elements in your classroom, calculate the formula mass for H2SO4 (sulfuric acid).

Answers

Formula mass of sulfuric acid (H2SO4)The chemical formula for sulfuric acid is H2SO4. The formula mass is the sum of the masses of the atoms in the molecule.

To compute the formula mass of H2SO4, we must first determine the atomic mass of each atom in the compound and then add them together.

Atomic masses for H, S, and O are 1.008, 32.06, and 16.00, respectively.

Atomic mass of H2SO4 is equal to (2 x 1.008) + 32.06 + (4 x 16.00)

= 98.08 g/mol

Therefore, the formula mass of sulfuric acid (H2SO4) is 98.08 g/mol.

To know more about Formula mass visit:

https://brainly.com/question/28647347

#SPJ11

Example 8 A planet orbits a star in a year of length 4.37 x 10's, in a nearly circular orbit of radius 2.94 x 1011 m. With respect to the star, determine (a) the angular speed of the planet, (b) the tangential speed of the planet, and (c) the magnitude of the planet's centripetal acceleration. (a) Number Units m m (b) Number Units m/s (c) Number Units m/ s2

Answers

(a) The angular speed of the planet is approximately 0.144 rad/s.

(b) The tangential speed of the planet is approximately 1.27 x 10⁴ m/s.

(c) The magnitude of the planet's centripetal acceleration is approximately 5.50 x 10⁻³ m/s².

(a) The angular speed of an object moving in a circular path is given by the equation ω = 2π/T, where ω represents the angular speed and T is the time period. In this case, the time period is given as 4.37 x 10⁶ s, so substituting the values, we have ω = 2π/(4.37 x 10⁶) ≈ 0.144 rad/s.

(b) The tangential speed of the planet can be calculated using the formula v = ωr, where v represents the tangential speed and r is the radius of the orbit. Substituting the given values, we get v = (0.144 rad/s) × (2.94 x 10¹¹ m) ≈ 1.27 x 10⁴ m/s.

(c) The centripetal acceleration of an object moving in a circular path is given by the equation a = ω²r. Substituting the values, we get a = (0.144 rad/s)² × (2.94 x 10¹¹ m) ≈ 5.50 x 10⁻³ m/s².

learn more about angular speed here:

https://brainly.com/question/30402548

#SPJ11

(a) In brief terms, provide an account of nuclear instability, making use of the Nuclear chart "Segré chart" to illustrate your answer. (a) A particular expression of the semi-empirical formula for the binding energy of a nucleus is (in MeV): B-15.5 A-16.842) - 0.72 Z+/A!) – 19(N=Z)'/A Discuss the origin of each ten

Answers

Nuclear instability refers to the tendency of certain atomic nuclei to undergo decay or disintegration due to an imbalance between the forces that hold the nucleus together and the forces that repel its constituents.

The Segré chart, also known as the nuclear chart, is a graphical representation of all known atomic nuclei, organized by their number of protons (Z) and neutrons (N). It provides a visual representation of the stability or instability of nuclei.

The semi-empirical formula for the binding energy of a nucleus provides insights into the origin of nuclear stability. The formula is given by B = (15.5A - 16.842) - 0.72Z^2/A^(1/3) - 19(N-Z)^2/A, where B represents the binding energy of the nucleus, A is the mass number, Z is the atomic number, and N is the number of neutrons.

The terms in the formula have specific origins. The first term, 15.5A - 16.842, represents the volume term and is derived from the idea that each nucleon (proton or neutron) contributes a certain amount to the binding energy.

The second term, -0.72Z^2/A^(1/3), is the Coulomb term and accounts for the electrostatic repulsion between protons. It is inversely proportional to the cube root of the mass number, indicating that larger nuclei with more nucleons experience weaker Coulomb repulsion.

The third term, -19(N-Z)^2/A, is the symmetry term and arises from the observation that nuclei with equal numbers of protons and neutrons (N = Z) tend to be more stable. The asymmetry between protons and neutrons reduces the binding energy.

In summary, nuclear instability refers to the tendency of certain atomic nuclei to decay due to an imbalance between attractive and repulsive forces. The Segré chart provides a visual representation of nuclear stability.

The semi-empirical formula for binding energy reveals the origin of stability through its terms: the volume term, Coulomb term, and symmetry term, which account for the contributions of nucleons, electrostatic repulsion, and asymmetry, respectively.

Learn more about asymmetry here

brainly.com/question/30639121

#SPJ11

Oscillations in the elevator Gravity stretches an elastic thin wire of 1 m length by 15.5 mm as 500 g mass is attached. Determine the oscillation period, if the wire is initially stretched a little more. Which length does a pendulum thread need to have, if the pendulum should have the same period? Now put the pendulum into an elevator. The elevator accelerates and is going up: The velocity increases linearly in time during the first 3 s until reaching 24 m/s. Sketch the deflections of the pendulum versus time t in the elevator frame of reference 0.5 s before the elevator starts until 0.5 s after the start. The initial deflection is 1°. How will the deflection amplitude change qualitatively? What sort of motions of the pendulum can be observed if the elevator is going down with 9.81 m/s²?

Answers

If the elevator is going down with an acceleration of 9.81 m/s² (equal to the acceleration due to gravity), the pendulum will not experience any additional pseudo-force.

To determine the oscillation period of the elastic wire, we can use Hooke's law:

F = k * x

where F is the force, k is the spring constant, and x is the displacement.

Given that the wire is stretched by 15.5 mm (or 0.0155 m) with a 500 g (or 0.5 kg) mass attached, we can calculate the force:

F = m * g = 0.5 kg * 9.81 m/s^2 = 4.905 N

We can now solve for the spring constant:

k = F / x = 4.905 N / 0.0155 m = 316.45 N/m

The oscillation period can be calculated using the formula:

T = 2π * √(m / k)

T = 2π * √(0.5 kg / 316.45 N/m) ≈ 0.999 s

If the wire is initially stretched a little more, the oscillation period will remain the same since it depends only on the mass and the spring constant.

To find the length of the pendulum thread that would have the same period, we can use the formula for the period of a simple pendulum:

T = 2π * √(L / g)

Where L is the length of the pendulum thread and g is the acceleration due to gravity (approximately 9.81 m/s²).

Rearranging the formula, we can solve for L:

L = (T / (2π))^2 * g = (0.999 s / (2π))^2 * 9.81 m/s² ≈ 0.248 m

Therefore, the pendulum thread needs to have a length of approximately 0.248 m to have the same period as the elastic wire.

If the pendulum is put into an elevator that is accelerating upwards, the deflection of the pendulum versus time will change. Initially, before the elevator starts, the deflection will be 1°. As the elevator accelerates upwards, the deflection will increase due to the pseudo-force acting on the pendulum. The deflection will follow a sinusoidal pattern, with the amplitude gradually increasing until the elevator reaches its maximum velocity. The deflection will then start decreasing as the elevator decelerates or comes to a stop.

If the elevator is going down with an acceleration of 9.81 m/s² (equal to the acceleration due to gravity), the pendulum will not experience any additional pseudo-force. In this case, the pendulum will behave as if it is in a stationary frame of reference, and the deflection will follow a simple harmonic motion with a constant amplitude, similar to the case without any acceleration.

Learn more about oscillation here:

https://brainly.com/question/12622728

#SPJ11

a stream accelerating
neutrons creates
A-electromagnetic
waves
B- an electric field
only
C-no magnetic or electric
fields
D-a magnetic field
only

Answers

When a stream of neutrons accelerates, it produces a magnetic field only. The other options are incorrect since electromagnetic waves are produced when there is a disturbance in electric and magnetic fields.

Since no electric fields are present, the option B is incorrect. In addition, there is no evidence of electromagnetic radiation which means that option A is also wrong. There is also no electrical charge to allow for the formation of an electric field. It is worth noting that an electric field is a region where an electrically charged object experiences an electric force.

As a result, option C is incorrect. Finally, a magnetic field can be produced when there is a movement of charge, like in the case of a stream of neutrons, as they are electrically neutral. When there is a movement of charge, a magnetic field is produced perpendicular to the direction of the current. As such, option D is correct. Therefore, the correct answer to the question is option D.

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

An LRC circuit consists of a 19.0- μF capacitor, a resistor, and an inductor connected in series across an ac power source of variable frequency that has a voltage amplitude of 27.0 V. You observe that when the power source frequency is adjusted to 41.5 Hz, the rms current through the circuit has its maximum value of 67.0 mA. What will be the rms current irms ​ if you change the frequency of the power source to 60.0 Hz ?

Answers

the correct option is 150.

when the frequency of the power source changes to 60.0 Hz is 0.600 A or 600 mA (approximately).

Given data,

Capacitor, C = 19.0 μF

Resistor, R = ?

Inductor, L = ?

Voltage amplitude, V = 27.0 V

Maximum value of rms current, irms = 67.0 m

A = 67.0 × 10⁻³ A

Frequency, f₁ = 41.5 Hz

Let's calculate the value of inductive reactance and capacitive reactance for f₁ using the following formulas,

XL​ = 2πfLXC = 1/2πfC

Substitute the given values in the above equations,

XL​ = 2πf₁L

⇒ L = XL​ / (2πf₁)XC = 1/2πf₁C

⇒ C = 1/ (2πf₁XC)

Now, substitute the given values in the above formulas and solve for the unknown values;

L = 11.10 mH and C = 68.45 μF

Now we can calculate the resistance of the LRC circuit using the following equation;

Z = √(R² + [XL - XC]²)

And we know that the impedance, Z, at resonance is equal to R.

So, at resonance, the above equation becomes;

R = √(R² + [XL - XC]²)R²

  = R² + [XL - XC]²0

  = [XL - XC]² - R²0

 = [2πf₁L - 1/2πf₁C]² - R²

Now, we can solve for the unknown value R.

R² = (2πf₁L - 1/2πf₁C)²

R = 6.73 Ω

When frequency, f₂ = 60.0 Hz, the new value of XL​ = 2πf₂LAnd XC = 1/2πf₂C

We have already calculated the values of L and C, let's substitute them in the above formulas;

XL​ = 16.62 Ω and XC = 44.74 Ω

Now, we can calculate the impedance, Z, for the circuit when the frequency, f₂ = 60.0 Hz

Z = √(R² + [XL - XC]²)

  = √(6.73² + [16.62 - 44.74]²)

  = 45.00 Ω

Now, we can calculate the rms current using the following formula;

irms = V / Z = 27.0 V / 45.00 Ω = 0.600 A

Irms when the frequency of the power source changes to 60.0 Hz is 0.600 A or 600 mA (approximately).

Therefore, the correct option is 150.

Learn more about irms from this link:

https://brainly.com/question/30502162

#SPJ11

. An object 1.7 cm high is held 2.5 cm from a person's cornea, and its reflected image is measured to be 0.167 cm high. Think & Prepare 1. What kind of mirror is the cornea, convex or concave?

Answers

If the image height is smaller than the object, the mirror used in the cornea is a convex mirror.

Object height (h_o) = 1.7 cm

Object distance (u) = 2.5 cm

Image height (h_i) = 0.167 cm

To find whether the mirror used is convex or concave, we need to consider the properties of the image.

When an object is placed in front of a convex mirror, the image is always with virtual and diminished. If an object is placed in front of a concave mirror, the image is always virtual or real based on the position of the mirror.

In the given scenario, the image height is smaller than the object.

Therefore we can conclude that the cornea acts as a convex mirror.

To learn more about Convex mirror

https://brainly.com/question/33230797

#SPJ4

The heating coil in an electric bea pot is made of nichrome wire with a radius of 0.400 mm. If the coil draws a current or 5.60 A when there is a 120 V potential oference across ta ende, find the following. (Take the resistivity of nicome to be 1.50 X 100m) (a) resistance of the col (in) (1) length or wire used to win the col tinm) m

Answers

The resistance of the coil is approximately 21.43 Ω, and the length of wire used to wind the coil is approximately 0.071 m.

To find the resistance of the coil, we can use the formula:

Resistance (R) = Resistivity (ρ) * Length (L) / Cross-sectional area (A)

Given the resistivity of nichrome wire as 1.50 × 10^−6 Ω·m and the radius of the wire as 0.400 mm, we can calculate the cross-sectional area (A) using the formula:

[tex]A = π * r^2[/tex]

where r is the radius of the wire.

Let's calculate the cross-sectional area first:

[tex]A = π * (0.400 mm)^2[/tex]

[tex]= π * (0.400 × 10^−3 m)^2[/tex]

[tex]≈ 5.03 × 10^−7 m^2[/tex]

Now, we can calculate the resistance (R) of the coil using the given formula:

[tex]R = ρ * L / A[/tex]

To find the length of the wire used in the coil (L), we rearrange the formula:

[tex]L = R * A / ρ[/tex]

Given that the current drawn by the coil is 5.60 A and the potential difference across the coil is 120 V, we can use Ohm's Law to find the resistance:

[tex]R = V / I[/tex]

Now, we can substitute the values into the formula for the length (L):

[tex]L = (21.43 Ω) * (5.03 × 10^−7 m^2) / (1.50 × 10^−6 Ω·m)[/tex]

Simplifying:

L ≈ 0.071 m

Therefore, the resistance of the coil is approximately 21.43 Ω, and the length of wire used to wind the coil is approximately 0.071 m.

Learn more about resistance from the given link

https://brainly.com/question/17563681

#SPJ11

2. Two closeby speakers produce sound waves. One of the speakers vibrates at 400 Hz. What would be the frequency of the other speaker, which produces 10 Hz of beats? A. 10 Hz B. 390 Hz C. 410 Hz

Answers

Summary:

The frequency of the other speaker would be 390 Hz. When two closeby speakers produce sound waves, a phenomenon known as beats can occur. Beats are the periodic variations in the intensity or loudness of sound that result from the interference of two waves with slightly different frequencies.

Explanation:

In this case, if one speaker vibrates at 400 Hz and the beats have a frequency of 10 Hz, it means that the frequency of the other speaker is slightly different. The beat frequency is the difference between the frequencies of the two speakers. So, by subtracting the beat frequency of 10 Hz from the frequency of one speaker (400 Hz), we find that the frequency of the other speaker is 390 Hz.

To understand this concept further, let's delve into the explanation. When two sound waves with slightly different frequencies interact, they undergo constructive and destructive interference, resulting in a periodic variation in the amplitude of the resulting wave. This variation is what we perceive as beats. The beat frequency is equal to the absolute difference between the frequencies of the two sound waves. In this case, the given speaker has a frequency of 400 Hz, and the beat frequency is 10 Hz. By subtracting the beat frequency from the frequency of the given speaker (400 Hz - 10 Hz), we find that the frequency of the other speaker is 390 Hz. This frequency creates the interference pattern that produces the 10 Hz beat frequency when combined with the 400 Hz wave. Therefore, the correct answer is B. 390 Hz.

Learn more about Periodic Variations here brainly.com/question/15295474

#SPJ11

Consider the nuclear fusion reaction 12​H+12​H−>13​H+11​H Each fusion event releases approximately 4.03MeV of energy. How much total energy, in joules, would be released if all the deuterium atoms (12​H) in a typical 0.290 kg glass of water were to undergo this fusion reaction? Assume that approximately 0.0135% of all the hydrogen atoms in the water are deuterium. energy released: Incorrect A typical human body metabolizes energy from food at a rate of about 104.5 W, on average. How long, in days, would it take a human to metabolize the amount of energy released? time to metabolize the amount of energy released: days

Answers

To calculate the total energy released in the fusion reaction and the time it would take for a human to metabolize that energy, we need to determine the number of deuterium atoms in the given mass of water and then use the conversion factors to calculate the energy and time.

Given:

Mass of water (m) = 0.290 kg

Energy released per fusion event (E) = 4.03 MeV

Percentage of deuterium atoms in water = 0.0135%

Average human metabolic rate (P) = 104.5 W

Calculate the number of deuterium atoms in the mass of water:

Number of deuterium atoms (N) = (0.0135/100) * (6.022 × 10^23) * (0.290 kg / (2.014 g/mol))

N ≈ 1.051 × 10^19 atoms

Calculate the total energy released:

Total energy released (E_total) = N * E * (1.602 × 10^-13 J/MeV)

E_total ≈ 1.051 × 10^19 * 4.03 * (1.602 × 10^-13) J

E_total ≈ 6.78 × 10^5 J

Calculate the time to metabolize the energy:

Time (t) = E_total / P

t ≈ 6.78 × 10^5 J / 104.5 W

t ≈ 6492 s

Convert seconds to days:

t ≈ 6492 s / (24 * 60 * 60 s/day)

t ≈ 0.0752 days

The total energy released if all the deuterium atoms in a typical 0.290 kg glass of water undergo fusion is approximately 6.78 × 10^5 J.

It would take approximately 0.0752 days for a human to metabolize that amount of energy.

To learn more about fusion reaction click here.

brainly.com/question/29093460

#SPJ11

A ball of mass 0.606 kg moving east (+z direction) with a speed of 3.84 m/s collides head-on with a 0.303 kg ball at rest Assume that the collision is perfectly elastic Part A What is be the speed of the 0.606-kg ball after the collision?

Answers

The speed of the 0.606-kg ball after the collision is 2.56 m/s in the opposite direction.

Mass of the first ball (m₁) = 0.606 kg

Mass of the second ball (m₂) = 0.303 kg

Initial speed of the first ball (u₁) = 3.84 m/s

Initial speed of the second ball (u₂) = 0 m/s

The collision is said to be perfectly elastic. Therefore, kinetic energy is conserved.

Let's calculate the initial momentum and the final momentum of the balls using the principle of conservation of momentum.Initial momentum, P = m₁u₁ + m₂u₂

After the collision, the balls move in opposite directions. Let the velocity of the first ball be v₁ and that of the second ball be v₂. Then the final momentum, P' = m₁v₁ - m₂v₂

According to the law of conservation of momentum:

P = P' => m₁u₁ + m₂u₂ = m₁v₁ - m₂v₂

Therefore,

v₁ = [(m₁ - m₂)/(m₁ + m₂)]u₁ + [2m₂/(m₁ + m₂)]u₂v₂ = [2m₁/(m₁ + m₂)]u₁ + [(m₂ - m₁)/(m₁ + m₂)]u₂

Substituting the given values, we get:

v₁ = [(0.606 - 0.303)/(0.606 + 0.303)] × 3.84 + [2 × 0.303/(0.606 + 0.303)] × 0v₁ = 2.56 m/s

v₂ = [2 × 0.606/(0.606 + 0.303)] × 3.84 + [(0.303 - 0.606)/(0.606 + 0.303)] × 0v₂ = 1.28 m/s

Therefore, the speed of the 0.606-kg ball after the collision is 2.56 m/s in the opposite direction.

Learn more about speed at: https://brainly.com/question/13943409

#SPJ11

The position of an object is time is described by this equation x=414-71° +21 - 81 +11 a Write an equation of the objects velocity as a function of time. b Write an equation of the objects acceleration as a function of time.

Answers

(a) The equation for the object's velocity as a function of time is v(t) = -71t + 21. (b) Since the given position equation does not include a term for acceleration, the acceleration is constant and its equation is a(t) = 0.

(a) The position equation x(t) = 414 - 71t + 21 - 81 + 11 describes the object's position as a function of time. To find the equation of the object's velocity, we differentiate the position equation with respect to time.

The constant term 414 and the other constants do not affect the differentiation, so they disappear. The derivative of -71t + 21 - 81 + 11 with respect to t is -71, which represents the velocity of the object. Therefore, the equation of the object's velocity as a function of time is v(t) = -71t + 21.

(b) To find the equation of the object's acceleration, we differentiate the velocity equation v(t) = -71t + 21 with respect to time. The derivative of -71t with respect to t is -71, which represents the constant acceleration of the object.

Since there are no other terms involving t in the velocity equation, the acceleration is constant and does not vary with time. Therefore, the equation of the object's acceleration as a function of time is a(t) = 0, indicating that the acceleration is zero or there is no acceleration present.

Learn more about velocity here; brainly.com/question/30559316

#SPJ11

An alien pilot of an intergalactic spaceship is traveling at 0.87c relative to a certain galaxy, in a direction parallel to its short axis. The alien pilot determines the length of the short axis of the galaxy to be 3.0 × 10^17 km. What would the length of this axis be as measured by an observer living on a planet within the galaxy?

Answers

The length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be approximately 4.1 × 10^17 km.

The length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be longer than the length measured by the alien pilot due to the effects of length contraction. The formula for calculating the contracted length is,

L = L0 × √(1 - v²/c²)

where:

L = contracted length

L0 =  proper length (the length of the object when at rest)

v = relative speed between the observer and the object

c = speed of light

Given data:

L = 3.0 × 10¹⁷ km

v = 0.87c

Substuting the L and v values in the formula we get:

L = L0 × √(1 - v² / c²)

L0 = L / √(1 - v²/c² )

= (3.0 × 10¹⁷ km) / √(1 - (0.87c)²/c²)

= (3.0 × 10¹⁷km) /√(1 - 0.87²)

= 4.1 × 10¹⁷ km

Therefore, the length of the short axis of the galaxy as measured by an observer living on a planet within the galaxy would be approximately 4.1 × 10^17 km.

To learn more about length contraction:

https://brainly.com/question/17407131

#SPJ4

16. Deuterium has a mass of 2.014102 u. Calculate it mass defect. Use these values to solve the problem: mass of hydrogen = 1.007825 u mass of neutron = 1.008665 u 1 u = 931.49 MeV A. -0.5063005 B. -0.002388 C. -1.011053 D. -2.018878 17. The integer (n) that appears in the equation for hydrogen's energy and electron orbital radius is called the A. energy of an electron in its orbit B. electron orbital radius C. principal quantum number D. mass of the electron has the same mass as an electron, but has the opposite 18. A(n). charge. A. proton B. positron C. quark D. lepton 19. Which one is an insulator? A. lead B. silver C. copper D. plastic

Answers

The correct options for question 16 is B. -0.002388, 17 is C. principal quantum number, question 18 is B. positron, question 19 is D. plastic.

16. To calculate the mass defect of deuterium, we need to determine the total mass of its constituent particles and compare it to the actual mass of deuterium.

The mass of deuterium is given as 2.014102 u.

The mass of hydrogen is 1.007825 u, and the mass of a neutron is 1.008665 u.

To calculate the total mass of the constituent particles, we sum the masses of one hydrogen atom and one neutron:

Total mass = Mass of hydrogen + Mass of neutron = 1.007825 u + 1.008665 u = 2.01649 u

Now, we can calculate the mass defect by subtracting the actual mass of deuterium from the total mass of the constituent particles:

Mass defect = Total mass - Actual mass of deuterium = 2.01649 u - 2.014102 u = 0.002388 u

The mass defect of deuterium is 0.002388 u.

Therefore, the correct option to question 16 is B. -0.002388.

17. The integer (n) that appears in the equation for hydrogen's energy and electron orbital radius is called the principal quantum number.

The principal quantum number is a fundamental concept in quantum mechanics and is denoted by the symbol "n." It determines the energy level and size of an electron's orbital in an atom. The larger the value of "n," the higher the energy level and the larger the orbital radius.

So, the correct option to question 17 is C. principal quantum number.

18. An antiparticle of a proton, which has the same mass as an electron but has the opposite charge, is called a positron.

Therefore, the correct option to question 18 is B. positron.

19. Among the given options, plastic is an insulator. Insulators are materials that do not easily conduct electricity. They have high electrical resistance, which means they prevent the flow of electric current.

On the other hand, lead, silver, and copper are all conductors of electricity.

Therefore, the correct option to question 19 is D. plastic.

Learn more about quantum number from the link

https://brainly.com/question/2292596

#SPJ11

A uniform 10kg, 2m, horizontal tree branch is attached to a tree on the left side. At the far right end, a vine is wrapped around the branch and is pulling on it at an angle of 20° above the positive z-axis. Two birds are perched on the branch: a .02kg bird. Im from the left end of the branch and a .05kg bird .3m from the right end of the branch. The birds and branch are completely motionless. (a) What's the tension in the vine? (b) What are the z and y components of the support force exerted by the tree on the branch?

Answers

(a) The tension in the vine is equal to the weight of the branch plus the weights of the birds on the branch. (b) The z-component of the support force exerted by the tree on the branch is equal to the tension in the vine, while the y-component is the sum of the weights of the branch and the birds.

(a) The tension in the vine can be determined by considering the equilibrium of forces acting on the branch. Since the birds and the branch are motionless, the net force in the vertical direction must be zero. First, let's find the vertical components of the weights of the birds:

Weight of the first bird = m1 * g = 0.02 kg * 9.8 m/s^2 = 0.196 N

Weight of the second bird = m2 * g = 0.05 kg * 9.8 m/s^2 = 0.49 N

The total vertical force acting on the branch is the sum of the weights of the birds and the tension in the vine:

Total vertical force = Weight of first bird + Weight of second bird + Tension in the vine

Since the branch is in equilibrium, the total vertical force must be zero:

0.196 N + 0.49 N + Tension in the vine = 0

Solving for the tension in the vine:

Tension in the vine = -(0.196 N + 0.49 N) = -0.686 N

Therefore, the tension in the vine is approximately 0.686 N.

(b) The support force exerted by the tree on the branch has both z and y components.

The z-component of the support force can be determined by considering the equilibrium of torques about the left end of the branch. Since the branch and birds are motionless, the net torque about the left end must be zero.

The torque due to the tension in the vine is given by:Torque due to tension = Tension in the vine * Distance from the left end of the branch to the point of application of tension

Since the branch is in equilibrium, the torque due to the tension must be balanced by the torque due to the support force exerted by the tree. Therefore:

Torque due to support force = -Torque due to tension

The y-component of the support force can be found by considering the vertical equilibrium of forces. Since the branch and birds are motionless, the net force in the vertical direction must be zero.

The z and y components of the support force exerted by the tree on the branch can be determined by solving these equations simultaneously.

Given the values and distances provided, the specific magnitudes of the z and y components of the support force cannot be determined without additional information or equations of equilibrium.

To learn more about tension in the vine, Click here:

https://brainly.com/question/13339690

#SPJ11

Three 5.5 resistors are connected in series with a 20.0 V battery, Find the following. (a) the equivalent resistance of the circuit (b) the current in each resistor (c) Repeat for the case in which all three resistors are connected in parallel across the battery equivalent resistance current in each resistor

Answers

(a) The equivalent resistance of the series circuit is 16.5 Ω.

(b) The current flowing through each resistor in the series circuit is approximately 1.212 A.

(c) The equivalent resistance of the parallel circuit is approximately 1.833 Ω.

   The current flowing through each resistor in the parallel circuit is approximately 3.636 A.

(a) To find the equivalent resistance (R_eq) of resistors connected in series, we simply sum up the individual resistances.

R_eq = R1 + R2 + R3

Given that all three resistors are 5.5 Ω, we can substitute the values:

R_eq = 5.5 Ω + 5.5 Ω + 5.5 Ω

R_eq = 16.5 Ω

Therefore, the equivalent resistance of the circuit is 16.5 Ω.

(b) In a series circuit, the current (I) remains the same throughout. We can use Ohm's law to find the current flowing through each resistor.

I = V / R

Given the battery voltage (V) is 20.0 V and the equivalent resistance (R_eq) is 16.5 Ω, we can calculate the current:

I = 20.0 V / 16.5 Ω

I ≈ 1.212 A

Therefore, the current flowing through each resistor in the series circuit is approximately 1.212 A.

(c) To find the equivalent resistance (R_eq) of resistors connected in parallel, we use the formula:

1 / R_eq = 1 / R1 + 1 / R2 + 1 / R3

Substituting the values for R1, R2, and R3 as 5.5 Ω:

1 / R_eq = 1 / 5.5 Ω + 1 / 5.5 Ω + 1 / 5.5 Ω

1 / R_eq = 3 / 5.5 Ω

R_eq = 5.5 Ω / 3

R_eq ≈ 1.833 Ω

Therefore, the equivalent resistance of the circuit when the resistors are connected in parallel is approximately 1.833 Ω.

In a parallel circuit, the voltage (V) remains the same across all resistors. We can use Ohm's law to find the current (I) flowing through each resistor:

I = V / R

Given the battery voltage (V) is 20.0 V and the resistance (R) is 5.5 Ω for each resistor, we can calculate the current:

I = 20.0 V / 5.5 Ω

I ≈ 3.636 A

Therefore, the current flowing through each resistor in the parallel circuit is approximately 3.636 A.

Read more on equivalent resistance here: https://brainly.com/question/30901006

#SPJ11

A parallel-plate capacitor with empty space between its plates is fully charged by a battery. If a dielectric (with dielectric constant equal to 2) is then placed between the plates while the battery remains connected, which one of the following statements will be true? O The capacitance will decrease, and the stored electrical potential energy will increase. O The capacitance will increase, and the stored electrical potential energy will decrease. O The capacitance will increase, and the stored electrical potential energy will increase. O The capacitance will decrease, and the stored electrical potential energy will decrease.

Answers

When a dielectric is placed between the plates of a capacitor while the battery remains connected, capacitance increases, and stored electrical potential energy decreases. The correct option is- The capacitance will increase, and the stored electrical potential energy will decrease.

A capacitor is an electronic component that stores electrical energy, absorbs electrical energy, and filters noise. It consists of two conductive plates separated by an insulator.

A capacitor is charged when it is connected to a power source. The potential difference between the plates causes one plate to become positively charged and the other to become negatively charged.

A capacitor stores electric charge and the stored energy is proportional to the amount of charge stored and the potential difference between the plates.

The capacity of the capacitor is proportional to the plate area and inversely proportional to the plate distance. Hence, the introduction of a dielectric between the plates of a capacitor with empty space increases the capacitance.

The capacitance increases in direct proportion to the dielectric constant of the material inserted between the plates of the capacitor.

So, the correct option is - The capacitance will increase, and the stored electrical potential energy will decrease.

Learn more about capacitors here:

https://brainly.com/question/30529897

#SPJ11

iPhones use a maximum of 2.4 A of current at 5 volts. If you charge your phone for 1.5 hours, calculate the value of charge during this time.

Answers

When charging your phone for 1.5 hours with a maximum current of 2.4 A, the value of charge transferred to the phone is 12,960 Coulombs.

Calculating the value of charge when charging your phone for 1.5 hours, we can use the formula:

Charge = Current × Time

Current (I) = 2.4 A

Time (t) = 1.5 hours

First, we need to convert the time from hours to seconds:

1.5 hours = 1.5 × 3600 seconds = 5400 seconds

Now we can calculate the charge:

Charge = 2.4 A × 5400 s = 12,960 Coulombs

Therefore, when charging your phone for 1.5 hours, the value of charge transferred to the phone is 12,960 Coulombs.

Learn more about ”maximum current ” here:

brainly.com/question/30030208

#SPJ11

A 10.9-V battery, 5.09-resistor, and a 3.5-H inductor are connected in series. After the current in the circuit has reached Is maximum valor, calculate the following (a) the power being supplied by the battery w (b) the power being delivered to the resistor w (c) the power being delivered to the Inductor w (d) the energy stored in the magnetic ned of the inductor

Answers

It can be seen that the circuit is a series circuit, hence the current passing through the circuit is same in the entire circuit. Let the current in the circuit be I. The voltage drop across the resistor is given by IR.

Hence the time derivative of current is zero, i.e., di/dt = 0.Substituting this in the above equation, we get V = I max R. This gives the value of I max = 10.9/5.09The value of I max is 2.14 A.

Power supplied by the battery; The power supplied by the battery is given by;

P = VI

Where

V = 10.9 V and

I = 2.14 A

Substituting these values, we get;

P = 23.3 W

Power delivered to the resistor; The power delivered to the resistor is given by;

P = I²R

Where

I = 2.14 A and

R = 5.09 ohm

Substituting these values, we get;

P = 24.6 W

Power delivered to the inductor; The power delivered to the inductor is given by;

P = I²L(di/dt)

I = 2.14 A,

L = 3.5 H and

di/dt = 0

Substituting these values, we get; P = 0

Energy stored in the magnetic field of the inductor; The energy stored in the magnetic field of the inductor is given by;

W = (1/2)LI²

Where

I = 2.14 A and

L = 3.5 H

Substituting these values, we get; W = 16.46 J

To know more about circuit visit:

https://brainly.com/question/15449650

#SPJ11

A proton moving in a uniform magnetic field with V1 = 1.18 × 106 m/s experiences force F₁ = 1.39 × 10-16 N. A second proton with v₂ = 2.21 ×106 m/s experiences → F2: -16% N in the same field. 3.62 x 10 == What is the magnitude of B? Express your answer with the appropriate units. ► View Available Hint(s) 0 μA ? B = Value T Submit X Incorrect; Try Again Part B What is the direction of B? Give your answer as an angle measured ccw from the +x-axis. Express your answer in degrees. Previous Answers

Answers

1. The magnitude of the magnetic field is 0.38 T.

2. The direction of the magnetic field is 30 degrees counterclockwise from the +x-axis.

We can calculate the magnitude of the magnetic field using the following equation:

F = qvB sin(theta)

Where:

F is the force on the proton (1.39 × 10-16 N)

q is the charge of the proton (1.602 × 10-19 C)

v is the velocity of the proton (1.18 × 106 m/s)

B is the magnitude of the magnetic field (T)

theta is the angle between the velocity of the proton and the magnetic field (degrees)

Plugging in these values, we get:

1.39 × 10-16 N = 1.602 × 10-19 C * 1.18 × 106 m/s * B * sin(theta)

B = (1.39 × 10-16 N) / (1.602 × 10-19 C * 1.18 × 106 m/s) / sin(theta)

= 0.38 T

The direction of the magnetic field can be found using the right-hand rule. Imagine that your right hand is palm facing you, with your fingers pointing in the direction of the proton's velocity.

Your thumb will point in the direction of the magnetic field. In this case, the magnetic field is 30 degrees counterclockwise from the +x-axis.

To learn more about magnetic field click here: brainly.com/question/28285405

#SPJ11

A full water tank in the shape of an inverted right circular cone is 14 m across the top and 7 m high. If the surface of the water in
the tank is 2 m below the top of the tank, how much work is required to pump all the water over the top of the tank? (The density
of water is 1000 kg/m, use neceleration due to gravity g = 9.8 N/kg.)

Answers

To pump all the water over the top of the tank, we need to find the volume of the water first and then use that to find the work required. The given information is as follows: Shape of the tank: Inverted right circular cone, Diameter of the top of the cone (across): 14 m, Height of the cone: 7 m, Depth of the water from the top: 2 m, Density of water: 1000 kg/m³, Acceleration due to gravity: g = 9.8 N/kg.

Formula to calculate volume of an inverted right circular cone:$$V = \frac{1}{3}πr^2h$$. Here, radius of the top of the cone, r = 14/2 = 7 m, Height of the cone, h = 7 m, Depth of the water from the top = 2 m, Height of the water, H = 7 - 2 = 5 m. So, the volume of the water in the tank is:$$V_{water} = \frac{1}{3}πr^2H$$Putting the given values,$$V_{water} = \frac{1}{3} × π × 7^2 × 5$$$$V_{water} = \frac{245}{3} π m^3$$.

To find the mass of the water, we use the formula:$$Density = \frac{mass}{volume}$$$$mass = Density × volume$$Putting the given values,$$mass = 1000 × \frac{245}{3} π$$$$mass ≈ 2.56 × 10^5 kg$$.

The work done to pump the water over the top of the tank is equal to the potential energy of the water. The formula for potential energy is:$$Potential Energy = mgh$$Here, m = mass of the water, g = acceleration due to gravity and h = height of the water above the ground. So, putting the given values,$$Potential Energy = mgh$$, $$Potential Energy = 2.56 × 10^5 × 9.8 × 5$$$$Potential Energy ≈ 1.26 × 10^7 J$$.

Therefore, the work required to pump all the water over the top of the tank is approximately equal to 1.26 × 10⁷ J.

Let's learn more about work:

https://brainly.com/question/25573309

#SPJ11

Other Questions
You have been asked to develop a program of sensory stimulation and motor skill development for infants who are confined long-term in crowded shelters due to a severe hurricane and its aftermath. What kinds of experiences would you create to support sensory and motor skill development? Decision Trees: Perform an internet or other search of Real World Applications of Decision Trees (making sure you give a brief description and the source (web link, citation, etc.) of your information) and find 3 examples of decision trees. In your description in addition to generally describing the model, make sure you specify what the main objective is for the decision tree and how the math works. For example, for all the problems in our chapter the table provides potential future returns, with the probability of each, and chooses the one with the highest expected return. (You will find that most real world on-line examples are not focusing on expected return.) An ice dancer with her arms stretched out starts into a spin with an angular velocity of 2.2 rad/s. Her moment of inertia with her arms stretched out is 2.74kg m? What is the difference in her rotational kinetic energy when she pulls in her arms to make her moment of inertia 1.54 kg m2? Can you explain this in excel?A company has two central manufacturing facilities, in Michigan and Texas. Michigans capacity is 45,000 units, while Texass capacity is 20,000 units. Both facilities send their products to regional distribution centers in Utah, Kentucky, and South Carolina, that each have a capacity of 22,000. The distribution centers are the only locations that can send products directly to supply houses in Arizona, California, Washington, Florida, and Massachusetts, where 12,000 units, 15,000 units, 9,000 units, 16,000 units, and 11,000 units of product have been ordered, respectively. The costs to send each product from Michigan to Utah, Kentucky, and South Carolina are $7, $2, and $5, respectively. The costs to send each product from Texas to Utah, Kentucky, and South Carolina are $5, $6, and $8, respectively. To ship each product from Utah to Arizona, California, Washington, Florida, and Massachusetts, it will cost $2, $2, $4, $7, and $9, respectively. From Kentucky, it costs $6, $8, $8, $4 and $5 to ship to Arizona, California, Washington, Florida, and Massachusetts, for each product respectively. From South Carolina, it will cost $8, $9, $10, $2 and $5 to ship to Arizona, California, Washington, Florida, and Massachusetts, for each product respectively.Solve the linear program using Solver and write the strategy. Run a sensitivity analysis and identify the constraints that are binding. What is the change in the objective function value if Capacity at Utah, Kentucky and South Carolina increased to 25,000 each, and demand in Washington increased by 1000 and demand in Florida decreased by 2000? Connect Today to How effective do you think the United Nations would be today if the United States withdrew as a member nation? A uniform, solid cylinder of radius 7.00 cm and mass 5.00 kg starts from rest at the top of an inclined plane that is 2.00 m long and tilted at an angle of 21.0 with the horizontal. The cylinder rolls without slipping down the ramp. What is the cylinder's speed v at the bottom of the ramp? v= m/s A circuit with equivalent resistance of 100 is connected to a 10V battery. Measuring the current with an ammeter, it is found to be1 A.Select one:TrueFalse Based on this map what was one effect of the Indian removal act of 1830 Your boss has asked you to make sure that vcenter is only accessible by department sanctioned vsphere administrators. how can that be accomplished? "The nurse assesses the dressing of a client who has justreturned from post-anesthesia and finds that the dressing is wetwith a moderate amount of bright red bloody drainage. What actionshould the nurse do? A 1.2-kg tumor is being irradiated by a radioactive source. The tumor receives an absorbed dose of 12 Gy in a time of 940 s. Each disintegration of the radioactive source produces a particle that enters the tumor and delivers an energy of 0.43 MeV. What is the activity AN/At (in Bq) of the radioactive source? A firm has an issue of $1,000 par value bonds with a 6 percent annual coupon interest rate outstanding. The issue pays interest annually and has 8 years remaining to its maturity date. If bonds of similar risk are currently earning 4 percent annually, calculate the market value that the firm's bond will sell for today. Which of the following is true about the cerebellum?a. It is part of the immune systemb. It contains the midbrainc. Its near the front of the braind. It has a role in posture You fire a cannon horizontally off a 50 meter tall wall. The cannon ball lands 1000 m away. What was the initial velocity? CH4 is burned at an actual AFR of 14.3 kg fuel/kg air. What percent excess air or deficient air is this AFR? Express your answer in percent, positive if excess air or negative if deficient air. 1990s Internet Stock Boom According to an article, 11.9% of Internet stocks that entered the market in 1999 ended up trading below their initial offering prices. If you were an investor who purchased five Internet stocks at their initial offering prices, what was the probability that at least three of them would end up trading at or above their initial offering price? (Round your answer to four decimal places.)P(X 3) = Ed has a long forward at price $100. Bob has a short forward on a different asset but the same expiration date, and F(0,T)=$110. Both assets have the same spot price S(T) at expiration. Ed's profit is $20. What is Bob's profit? 9. What torque must be made on a disc of 20cm radius and 20Kg ofmass to create aangular acceleration of 4rad/s^2? A company manufactures mountain bikes. The research department produced the marginal cost function C'(x) = 500 going from a production level of 450 bikes per month to 900 bikes per month. Set up a definite integral and evaluate it. X 0x 900, where C'(x) is in dollars and x is the number of bikes produced per month. Compute the increase in cost Given the supply function 0.02x - 1) p = S(x) = 6 (e 0.02x find the average price (in dollars) over the supply interval [17,23]. The average price is $ (Type an integer or decimal rounded to two decimal places as needed.) A6 24% coupon bearing bond pays interest semi-annually and has a maturity of 30 years. If the annual yield to maturity is 5.88%, what is the current price of this bond?Oa. 951.44Ob.951.69O 1,050 20Od. 1,050.46Oe. 1,125 24Of. 1,125.44