Answer:
Both charges must have the same charge, Qt/2.
Explanation:
Let the two charges have charge Q1 and Q2, respectively.
Use Coulombs's Law to find an expression for the force between the two charges.
[tex]F = k_e\frac{Q_1Q_2}{r^2}[/tex], where
Ke is Coulomb's contant and
r is the distance between the charges.
We know from the question that
Q1 + Q2 = Qt
So,
Q2 = Qt - Q1
[tex]F = k_e\frac{Q_1(Q_t - Q_1)}{r^2}[/tex]
Simplify to obtain,
[tex]F = \frac{k_e}{r^2} (Q_tQ_1 - Q_1^2)[/tex]
In order to find the value of Q1 for which F is the maximum, we will use the optimization technique of calculus.
Differentiate F with respect to Q1,
[tex]\frac{dF}{dQ_1} = \frac{k_e}{r^2} (Q_t - 2Q_1)[/tex]
Equate the differential to 0, to obtain the value of Q1 for which F is the maximum.
[tex]\frac{k_e}{r^2} (Q_t - 2Q_1) = 0\\Q_t - 2Q_1 = 0\\2Q_1 = Q_t\\Q1 = \frac{Q_t}{2}[/tex]
It follows that
[tex]Q_2 = \frac{Q_t}{2}[/tex].
A block is pushed so that it moves up a ramp at constant speed. Identify from choices (a)-(e) below the appropriate description for the work done by the specified force while the block moves from point A to point B. (a) is zero. (b) is less than zero. (c) is greater than zero. (d) could be positive or negative depending on the choice of coordinate systems. (e) cannot be determined.
Answer:
*The work of the Normal (N) y Wy are zero answer a
*The work of the applied force (F1) is positive answer c
*The work of the friction force (fr) is negative, answer b
*The work of the Wy isnegative, answer d
Explanation:
In this exercise it is asked to identify the type of work, unfortunately the diagram cannot be seen, but in the attached we can see the diagram of a body moving upward on an inclined plane, the existing forces are shown.
As the body moves at constant speed the accelerations are zero. Let's look for the job that is defined
W = F. d
W = F d cos θ
where the dot represents the dot product and the bold letters are vectors.
* The work of the Normal (N) and the y component of the weight (Wy) are zero because they are perpendicular to the motion
answer a
* The work of the applied force (F1) is positive because it is in the same direction of motion
W = F1 Δx
answer c
* The work of the friction force (fr) is negative because the force in the displacement have opposite directions
W = -fr Δx
answer b
* the work the x component of the weight (Wx) in this case is negative
answer d
Emma is working in a shoe test lab measuring the coefficient of friction for tennis shoes on a variety of surfaces. The shoes are pushed against the surface with a force of 400 N, and a sample of the surface material is then pulled out from under the shoe by a machine. The machine pulls with a force of 300 N before the material begins to slide. When the material is sliding, the machine has to pull with a force of only 200 N to keep the material moving.
a. What is the coefficient of static friction between the shoe and the material?
b. What is the coefficient of dynamic friction between the shoe and the material?
c. Draw a Free Body Diagram for the above.
Answer:
Explanation:
Force of friction = μ N , where μ is coefficient of friction , N is normal force on the body .
a )
Given,
Normal force N = 400 N
Force of friction = 300 N
μ = coefficient of static friction = ?
Putting the values ,
300 = 400 μ
μ = .75
b )
Normal force N = 400 N
Force of friction = 200 N
μ = coefficient of kinetic friction = ?
Putting the values ,
200 = 400 μ
μ = .50
c ) see attached file .
A particle with a charge of -4.3 μC and a mass of 4.4 x 10-6 kg is released from rest at point A and accelerates toward point B, arriving there with a speed of 80 m/s. The only force acting on the particle is the electric force. What is the potential difference VB - VA between A and B? If VB is greater than VA, then give the answer as a positive number. If VB is less than VA, then give the answer as a negative number.
Answer:
ΔV = - 3274 V
Explanation:
For this exercise we can use conservation of energy
starting point.
Em₀ = U = q ΔV
final point
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
q ΔV = ½ m v²
ΔV = [tex]\frac{m \ v^2 }{q}[/tex]
let's calculate
ΔV = [tex]\frac{4.4 \ 10^{-6} \ 80^2 }{ 2 \ 4.3 10^{-6} }[/tex]
ΔV = 3274.4 1 V
since the charge q is negative, the potential at point B must be less than the potential at point A, so the answers
ΔV = - 3274 V
A sports car of mass m has the same kinetic energy as an SUV with a mass 3m as each is driven along the same road. Which vehicle, if either, has the larger momentum and what is the difference in their momenta, if any
Answer:
Explanation:
Kinetic energy ( KE ) = 1/2 m v²
= m²v² / 2 m = p² / 2m where p is momentum
KE = p² / 2m
p² = 2m KE
KE is constant
p is proportional to mass
So car having higher mass will have higher momentum .
p₁ = √ ( 2 m x KE )
p₂ = √ ( 6 m x KE )
p₂ - p₁ = √ ( 6 m x KE ) - √ ( 2 m x KE )
= √KE m ( √6 - √2 )
Kinetic energy ( K.E )
[tex]= \frac{1}{2} m v^2\\\\= \frac{m^2 v^2}{2 m} \\\\= \frac{p^2}{2m}[/tex]
where p is momentum
[tex]K.E =\frac{p^2}{2m}\\\\p^2 = 2m. KE[/tex]
KE is constant
p is proportional to mass
So car having higher mass will have higher momentum .
[tex]p_1 =\sqrt{(2m*K.E)}\\\\p_2 = \sqrt{(6m*K.E)} \\\\p_2 - p_1 = \sqrt{(6m*K.E)} -\sqrt{(2M*K.E} \\\\p_2 - p_1 = \sqrt{K.E m(\sqrt{6}-\sqrt{2}) }[/tex]
The difference is shown above.
Learn more:
brainly.com/question/20658056
Marlon is studying a crab population. He has a large batch of crabs that were captured in the ocean. He places a plastic tag on a leg of each crab and releases the entire batch back into the ocean. The tags
include a phone number that can be called it the crabs are caught. For each crab, Marion records the location he released the crab and the location that it was recaptured. What can Marion measure with
this data
А
the speed the crabs traveled
B
the velocity the crabs traveled
the acceleration of the crabs
D
the displacement of the crabs
Arrange the objects in order from greatst to least of potential energy assume that gravity is constant
Answer:
Water > Box of books > Stone > Ball
Explanation:
We'll begin by calculating the potential energy of each object. This can be obtained as follow:
For stone:
Mass (m) = 15 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 3 m
Potential energy (PE) =?
PE = mgh
PE = 15 × 10 × 3
PE = 450 J
For water:
Mass (m) = 10 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 9 m
Potential energy (PE) =?
PE = mgh
PE = 10 × 10 × 9
PE = 900 J
For ball:
Mass (m) = 1 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 20 m
Potential energy (PE) =?
PE = mgh
PE = 1 × 10 × 20
PE = 200 J
For box of books:
Mass (m) = 25 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 2 m
Potential energy (PE) =?
PE = mgh
PE = 25 × 10 × 2
PE = 500 J
Summary:
Object >>>>>>>> Potential energy
Stone >>>>>>>>> 450 J
Water >>>>>>>>> 900 J
Ball >>>>>>>>>>> 200 J
Box of books >>> 500 J
Arranging from greatest to least, we have:
Object >>>>>>>> Potential energy
Water >>>>>>>>> 900 J
Box of books >>> 500 J
Stone >>>>>>>>> 450 J
Ball >>>>>>>>>>> 200 J
Water > Box of books > Stone > Ball
___is found in fruits and honey. *
1.Maltose
2.Sucrose
3.Fructose
4.Galactose
Answer:
3. Fructose
Explanation:
Fructose is a sugar found naturally in fruits, fruit juices, some vegetables and honey.
it is number 3 (Fructose)
A student swings a 0.5kg rubber ball attached to a string over her head in a horizontal, circular
path. The string is 1.5 meters long and in 60 seconds the ball makes 120 complete circles.
What is the velocity of the ball?
What is the ball’s centripetal acceleration?
What is the ball's centripetal force?
Answer:
The balls velocity is 1 divided by 3
The velocity of the ball is 18.85 m/s.
The ball’s centripetal acceleration is 236.87 m/s².
The ball's centripetal force is 118.44 Newton.
What is centripetal acceleration?Centripetal acceleration is a characteristic of an object's motion along a circular path. Centripetal acceleration applies to any item travelling in a circle with an acceleration vector pointing in the direction of the circle's center.
Given parameters:
length of the string: l = 1.5 meters.
Time interval = 60 seconds.
Total number of complete rotation = 120.
Hence, the velocity of the ball = 120×2π×1.5/60 m/s
= 18.85 m/s.
The ball’s centripetal acceleration = (velocity)²/ radius
= (18.85)²/1.5 m/s²
= 236.87 m/s²
The ball's centripetal force = mass × centripetal acceleration
= 0.5 × 236.87 Newton
= 118.44 Newton
Learn centripetal acceleration here:
https://brainly.com/question/14465119
#SPJ2
A ship sets out to sail to a point 141 km due north. An unexpected storm blows the ship to a point 102 km due east of its starting point. (a) How far and (b) in what direction (as an angle from due east, where north of east is a positive angle) must it now sail to reach its original destination
Answer:
Explanation:
The point of destination is 141 north and 102 km east . Vectorially it is represented by unit vector as follows .
D = 102 i + 141 j
magnitude of D = √ ( 102² + 141² )
= √ ( 10404 + 19881)
= √ 30285
= 174 km
To go back to original position , ship should move on the following vector
D = -102 i - 141 j
Tan Ф = 141 / 102 = 1.38
Ф = 54⁰ , direction will be south of west . From north east , angle will be
180 + 54 = 234⁰
What is the momentum of a 100-kilogram fullback carrying a football on a play at a velocity of 3.5 m/sec.
Answer:
100 Kg * 3.5 m/sec = 350 Kg-m/s
Explanation:
Momentum= F= Δ(mv) with m= mass, v= velocity, and Δ the change in mass and velocity
In this problem you are given all the factors you need to solve the equation you simply just plug in your mass (1,000 Kg) and Velocity (3.5m/s) and multiply them by each other to get your answer
Why is cloning done before an investigation begins??
Answer:Purpose of Cloning
A forensic image of a hard drive captures everything on the hard drive, from the physical beginning to the physical end. ... Hard drives are susceptible to failure. Having two clones gives an investigator one to examine and one to fall back on.Therapeutic cloning involves creating a cloned embryo for the sole purpose of producing embryonic stem cells with the same DNA as the donor cell. These stem cells can be used in experiments aimed at understanding disease and developing new treatments for disease.
Explanation:
hope this helps have a nice night lo❤️❤️❤️l
Cloning
Cloning is defined as a technique used by scientists to make exact genetic copies of living things. Genes, cells, tissues, and even whole animals can all be cloned.
Purpose of CloningEverything on the hard drive is captured by the forensic image. Hard drives can be a failure. If possible, the original drive should be preserved in a safe place and only brought out to reimage if needed. Ideally, all examinations are done on a clone as opposed to the original.
One of the cloning types is Therapeutic cloning which involves creating a cloned embryo for the sole purpose of producing embryonic stem cells with the same DNA as the donor cell. These stem cells can be used in experiments aimed at understanding disease and developing new treatments for disease.
To know more about cloning, follow the link given below.
https://brainly.com/question/25737082.
a ball has a mass of 140g if it thrown with a velocity of 450m/s what is its kenetic energy?
Kinetic energy = mv²
Therfore kinetic energy =14175 joule
A 20-turn coil of area 0.32 m2 is placed in a uniform magnetic field of 0.055 T so that the perpendicular to the plane of the coil makes an angle of 30∘ with respect to the magnetic field.
The flux through the coil is
Answer:
1.5 * 10^-2 Tm^2
Explanation:
Electric Flux = B.A cos(theta)
B = 0.055 T
A = 0.32 m^2
theta = 30
Electric Flux = (0.055 T).(0.32 m^2).Cos(30) = 0.0152 = 1.5 * 10^-2 Tm^2
What is moral duty?Please tell me the answer of this question.
Explanation:
Moral duties are the duties performed by the people on the basis of humanity and moral values. The following are some of the moral duties :
Respecting elders and loving juniorsHelped the needy , poor and helpless peopleHaving friendly behavior with othersRespecting everyone as human beingBeing obedient and respectful to parents , elderly people and teachers.Living ideal and respectful lifeHope I helped ! ♡
Have a wonderful day / night ! ツ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁
pls help ;-; this is the question btw
The answer is "Infrared"
Hope this helps
Answer:
x-rays
Explanation:
What is the frequency of highly energetic ul-
traviolet radiation that has a wavelength of
124 nm?
The speed of light is 3 x 108 m/s.
Answer in units of Hz.
Frequency = (speed) / (wavelength)
Frequency = (3 x 10⁸ m/s) / (124 x 10⁻⁹ m)
Frequency = 2.42 x 10¹⁵ Hz
Michelle and Isabella are ice skating together. Michelle has a mass of 80 kg and Isabella has a mass of 50 kg. Both are at rest and and Isabella pushes of Michelle causing Isabella to move away at a speed of 4.0 m/s. Determine Michelle's speed.
Answer:
2.5 m/s
Explanation:
We assume the skates are positioned so that the motion is essentially frictionless.
Conservation of momentum tells you Michelle's velocity (v) must satisfy ...
∑mv = 0
(80 kg)(v) + (50 kg)(4 m/s) = 0
v = -(50 kg)(4 m/s)/(80 kg) = -2.5 m/s
Michelle's speed is 2.5 m/s in the direction opposite Isabella's.
Answer:
2.5 m/s
Explanation:
Later in the game, the quarterback throws a pass to the wide receiver with a defender in hot pursuit. If the pass does not arrive to the wide receiver in two seconds, the pass will be intercepted. If the receiver is 30 yards away and the pass is thrown at a 10 degree angle from the ground, how fast must the ball be thrown to reach the receiver
Answer:
Explanation:
In projectile motion , formula for range is as follows
R = u² sin 2 α / g , where u is initial velocity of throw , α is angle of throw
Given R , range = 30 yards , α = 10°
30 = u² sin 20 / 9.8
u² x .342 = 294
u² = 859.65
u = 29.32 m / s
What aspect of solar radiation causes Cleveland to have more solar radiation than Miami in June and July
Answer:
miami because it is closer to the equator26. cleveland because of its location 27. The top of the atmosphere absorbs and reflects the radiation before it can reach the surface.Explanation:
In the month of June and July, Cleveland will have solar radiation more than that of Miami.
The figure attached below clearly shows the solar radiation of the atmosphere at Miami and Cleveland throughout the year.On June solstice, the noon altitude of the sun is [tex]88^\circ[/tex] at Miami's latitude and [tex]72^\circ[/tex] at Cleveland's latitude.The number of daylight hours is [tex]13.8[/tex] hours at Miami's altitude and the number of daylight hours is [tex]15.1[/tex] hours at Cleveland's altitude.Learn More :
https://brainly.com/question/23550661
what do you call these sound waves whose frequency is above 20000 hertz
Answer:
Untrasound
Explanation:
Your welcome :)
How does the length of the pendulum affect the amount of potential energy it starts with? (A longer string will have a greater change in height for the same angle)
Answer:
This is somewhat of a confusing question.
Zero potential energy is usually used to refers to the zero potential energy of objects at infinity. Thus, bringing an object from infinity requires negative work because work is done by the object. One could also choose the pivot point of the pendulum as zero potential. Then any objects above the pivot point would be at a positive potential, and objects below the pivot point would have a negative potential (the object does work moving to a point of lower potential).
Basically, work done "on" an object requires positive potential energy input while work done "by" the object requires negative energy input.
Those are the basic considerations in solving potential energy problems.
Which electrons are transferred in an ionic bond?
Answer:
electrons are completely transferred from one atom to another. In the process of either losing or gaining negatively charged electrons, the reacting atoms form ions. The oppositely charged ions are attracted to each other by electrostatic forces, which are the basis of the ionic bond.
Explanation:
Basketball player Darrell Griffith is on record as
attaining a standing vertical jump of 1.2 m (4 ft).
(This means that he moved upward by 1.2 m after
his feet left the floor.) Griffith weighed 890 N (200
lb). g=9.8 m/s2
1- What is his speed as he leaves the floor?
2- if the time of the part of the jump before his feet left the floor was 0.300s, what was the magnitude of his average acceleration while he was pushing against the floor?
Explanation:
1.
We use the equation
h = [tex]\frac{gt^2}{2}[/tex], where
h is the height traveled,
g is the acceleration due to gravity and
t is the time taken to reach height h.
We can now calculate t to be
[tex]\sqrt{\frac{2*1.2 m}{9.81 m/s^2} }[/tex]
= 0.495 s
Let v be the initial velocity of the player.
The player deaccelarates from v m/s to 0 m/s in 0.495 s at the rate of 9.81 m/s^2.
v = 9.81 m/s^2 x 0.495 s = 4.85 m/s
2.
The player takes 0.3 s to increase his velocity from 0 m/s to 4.85 m/s. So his average accelaration is
4.85 m/s / 0.3 s = 16.2 m/s^2
The other name of eureka can
Answer:
I found it!
Explanation:
Answer:
Explanation:
displacement vessels
The can is filled to the top with water and the object placed in it. The volume of the object is equal to the volume of the water that is forced through the spout. Eureka cans are named after a scientist called Archimedes who first recorded this idea. They are sometimes also called displacement vessels.
acceleration greater than 1,000 m/s2 lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.63 m above the floor. If the floor is hardwood, the child's head is brought to rest in approximately 1.8 mm. If the floor is carpeted, this stopping distance is increased to about 1.3 cm. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate. hardwood floor magnitude m/s2 hardwood floor duration ms carpeted floor magnitude m/s2 carpeted floor duration ms g
A pendulum is placed on a distant planet. The length is one meter, and the measured period is 1.4 seconds, what is the acceleration of gravity on that planet?
Answer:
[tex]a=20.14\ m/s^2[/tex]
Explanation:
The time period of the simple pendulum is given by :
[tex]T=2\pi \sqrt{\dfrac{l}{g}}[/tex]
l is the length of the pendulum
g is the acceleration due to gravity
We have,
T = 1.4 s, l = 1 m
So,
[tex]T^2=\dfrac{4\pi^2 l}{g}\\\\g= \dfrac{4\pi^2 l}{T^2}\\\\g= \dfrac{4\pi^2 \times 1}{(1.4)^2}\\\\g=20.14\ m/s^2[/tex]
So, the acceleration due to gravity of that planet is [tex]20.14\ m/s^2[/tex].
During a phase change the temperature of a substance remains constant this is because during a phase heat changes the ____ energy of particles in a substance without changing their ____ energy
Answer:
Explanation:
individual and then net
hope that helps I could be wrong about this one though
A geosynchronous satellite orbits above the equator of Earth in a circular orbit, remaining in a fixed position with respect to observers on the ground. Therefore, the satellite's period of revolution must be equal to the period of rotation of the Earth. When calculations are made to launch a certain geosynchronous satellite and the satellite is launched, the satellite's orbital period is slightly larger than the rotational period of Earth. Which of the following could have caused the difference?
A) The mass of the satellite was larger than what was used in the calculation.
B) The mass of the satellite was smaller than what was used in the calculation.
C) The altitude of the satellite was larger than predicted by the calculation.
D) The altitude of the satellite was smaller than predicted by the calculation.
E) The diameter of the satellite was larger than what was used in the calculation.
Answer:
Explanation:
The relation between orbital period T and orbital radius R is as follows .
T² ∝ R³
T ∝ R¹°⁵
So time period of orbit is proportional to radius of orbit . Higher the height , larger the orbital period . As the orbital period is larger than required , the altitude of satellite must have been larger than required .
As mass of satellite is not involved in the formula of orbital period , this is independent of mass of the satellite .
Hence the option C is correct .
Police driving with a velocity of 50 m/s decide to chase a speeder who is 3 km ahead and moving at 55 m/s. The police car accelerates at 2 m/s2. Instantly the speeder becomes aware that he is being chased and starts to accelerate at 1 m/s2. How much time (in s) passes until the police catch the speeder
Answer:
The time that passes until the police catch the speeder is 82.6204 seconds.
Explanation:
A body performs a uniformly accelerated rectilinear motion or uniformly varied rectilinear motion when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases its modulus in a uniform way.
The position is calculated by the expression:
x = x0 + v0*t + 1/2*a*t²
where:
x0 is the initial position. v0 is the initial velocity. a is the acceleration. t is the time interval in which the motion is studied.First, let’s look at the police car’s equations of motion. In this case:
x0= 0 v0= 50 m/s a= 2 m/s²So: x = 50 m/s*t + 1/2*2 m/s²*t²
Now for the speeder’s car’s equations of motion you know:
x0= 3 km= 3,000 m v0= 55 m/s a= 1 m/s²So: x = 3,000 m + 55 m/s*t + 1/2*1 m/s²*t²
When the police catch the speeder they are both in the same position. So:
50 m/s*t + 1/2*2 m/s²*t²= 3,000 m + 55 m/s*t + 1/2*1 m/s²*t²
Solving:
0= 3,000 m + 55 m/s*t + 1/2*1 m/s²*t² - 50 m/s*t - 1/2*2 m/s²*t²
0= 3,000 + 55 *t + 1/2*t² - 50*t - 1*t²
0= 3,000 + 55 *t - 50*t - 1*t² + 1/2*t²
0= 3,000 + 5*t - 1/2*t²
Applying the quadratic formula:
[tex]x1,x2=\frac{-5+-\sqrt{5^{2}-4*(-\frac{1}{2})*3000 } }{2*(-\frac{1}{2} )}[/tex]
x1= -72.6209
and x2= 82.6209
Since you are calculating the value of a time and it cannot be negative, then the time that passes until the police catch the speeder is 82.6204 seconds.
The discharge of a pump is 3 m above the inlet. Water enters at a pressure of 138 kPa and leaves at a pressure of 1380 kPa. The specific volume of the water is 0.001 m3/kg. If there is no heat transfer and no change in kinetic or internal energy, what is the work per unit mass
Answer:
The answer is "[tex]1.271 \ \frac{KJ}{kg}\\[/tex]"
Explanation:
[tex]\Delta e_{mech} =\frac{P_2-P_1}{P} + \frac{v_{2}^2-v_{1}^2}{2}+g(z_2-z_1)\\\\\Delta e_{mech} =\frac{ 1380 -138 \times 1000 }{1000} + 0+g(3-0)\\\\P = \frac{1}{v}= \frac{1}{0.001} = 1000 \frac{kg}{m} \\\\ \Delta e_{mech} =1242 +9.81(3)= 1271.43 \frac{J}{kg} \\\\\text{work per unit pass}= 1.271 \ \frac{KJ}{kg}\\[/tex]