Two masses, each weighing 1.0 × 103 kilograms and moving with the same speed of 12.5 meters/second, are approaching each other. They have a head-on collision and bounce off away from each other. Assuming this is a perfectly elastic collision, what will be the approximate kinetic energy of the system after the collision?

A. 1.6 × 105 joules

B. 2.5 × 105 joules

C. 1.2 × 103 joules

D. 2.5 × 103 joules

Answers

Answer 1

Answer:

A. 1.6 × 105 joules

Explanation:

As per the question, the data given in the question is as follows

Number of masses = 2

Each weightage = [tex]1.0 \times 2.3[/tex]

Speed = 12.5 meters/ second

Based on the above information, the approximate kinetic energy after the collision is

A perfectly elastic collision is described as one where the collision does not cause any loss of kinetic energy. 

So we sum the kinetic energy of each kind of system which is given below:

Kinetic energy is

[tex]= 0.5(1.0 \times 10^3) (12.5)^2 + 0.5 (1.0 \times 10^3) (12.5 )^2[/tex]

= 156250 J

[tex]= 1.6 \times 10^5 J[/tex]


Related Questions

HELP ASAP!
There is a lever with 5 m long. The fulcrum is 2 m from the right end. Each end hangs a box. The whole system is in balance. If the box hung to the right end is 12 kg, then what is the mass of the box hung to the left end?

Answers

Answer:

8kg

Explanation:

For the box to be in equilibrium. The clockwise moment ensued by the box on the right should be same as that ensued by the one on the right. Hence :

M ×3 = 12 ×2

M = 24/3 = 8kg

Note mass is used because trying to compute the weight by multiplying by the acceleration of free fall due to gravity on both sides will cancel out.

Please help in the 2nd question

Answers

Answer:

[tex]q=4\times 10^{-16}\ C[/tex]

Explanation:

It is given that,

The charge on an object is 2500 e.

We need to find how many coulombs in the object. The charge remains quantized. It says that :

q = ne

[tex]q=2500\times 1.6\times 10^{-19}\ C\\\\q=4\times 10^{-16}\ C[/tex]

So, the charge on the object is [tex]4\times 10^{-16}\ C[/tex].

An aluminium bar 600mm long, with diameter 40mm, has a hole drilled in the center of the bar. The hole is 30mm in diameter and is 100mm long. If the modulus of elasticity for the aluminium is 85GN/m2, calculate the total contraction on the bar due to a compressive load of 180kN.​

Answers

Answer:

[tex]\delta = 0.385\,m[/tex] (Compression)

Explanation:

The aluminium bar is experimenting a compression due to an axial force, that is, a force exerted on the bar in its axial direction. (See attachment for further details) Under the assumption of small strain, the deformation experimented by the bar is equal to:

[tex]\delta = \frac{P\cdot L}{A \cdot E}[/tex]

Where:

[tex]P[/tex] - Load experimented by the bar, measured in newtons.

[tex]L[/tex] - Length of the bar, measured in meters.

[tex]A[/tex] - Cross section area of the bar, measured in square meters.

[tex]E[/tex] - Elasticity module, also known as Young's Module, measured in pascals, that is, newtons per square meter.

The cross section area of the bar is now computed: ([tex]D_{o} = 0.04\,m[/tex], [tex]D_{i} = 0.03\,m[/tex])

[tex]A = \frac{\pi}{4}\cdot (D_{o}^{2}-D_{i}^{2})[/tex]

Where:

[tex]D_{o}[/tex] - Outer diameter, measured in meters.

[tex]D_{i}[/tex] - Inner diameter, measured in meters.

[tex]A = \frac{\pi}{4}\cdot [(0.04\,m)^{2}-(0.03\,m)^{2}][/tex]

[tex]A = 5.498 \times 10^{-4}\,m^{2}[/tex]

The total contraction of the bar due to compresive load is: ([tex]P = -180\times 10^{3}\,N[/tex], [tex]L = 0.1\,m[/tex], [tex]E = 85\times 10^{9}\,Pa[/tex], [tex]A = 5.498 \times 10^{-4}\,m^{2}[/tex]) (Note: The negative sign in the load input means the existence of compressive load)

[tex]\delta = \frac{(-180\times 10^{3}\,N)\cdot (0.1\,m)}{(5.498\times 10^{-4}\,m^{2})\cdot (85\times 10^{9}\,Pa)}[/tex]

[tex]\delta = -3.852\times 10^{-4}\,m[/tex]

[tex]\delta = -0.385\,mm[/tex]

[tex]\delta = 0.385\,m[/tex] (Compression)

A thin, metallic spherical shell of radius 0.347 m0.347 m has a total charge of 7.53×10−6 C7.53×10−6 C placed on it. A point charge of 3.65×10−6 C3.65×10−6 C is placed at the center of the shell. What is the electric field magnitude EE a distance 0.795 m0.795 m from the center of the spherical shell?

Answers

Answer:

E = 12640.78 N/C

Explanation:

In order to calculate the electric field you can use the Gaussian theorem.

Thus, you have:

[tex]\Phi_E=\frac{Q}{\epsilon_o}[/tex]

ФE: electric flux trough the Gaussian surface

Q: net charge inside the Gaussian surface

εo: dielectric permittivity of vacuum = 8.85*10^-12 C^2/Nm^2

If you take the Gaussian surface as a spherical surface, with radius r, the electric field is parallel to the surface anywhere. Then, you have:

[tex]\Phi_E=EA=E(4\pi r^2)=\frac{Q}{\epsilon_o}\\\\E=\frac{Q}{4\pi \epsilon_o r^2}[/tex]

r can be taken as the distance in which you want to calculate the electric field, that is, 0.795m

Next, you replace the values of the parameters in the last expression, by taking into account that the net charge inside the Gaussian surface is:

[tex]Q=7.53*10^{-6}C+3.65*10^{-6}C=1.115*10^{-5}C[/tex]

Finally, you obtain for E:

[tex]E=\frac{1.118*10^{-5}C}{4\pi (8.85*10^{-12C^2/Nm^2})(0.795m)^2}=12640.78\frac{N}{C}[/tex]

hence, the electric field at 0.795m from the center of the spherical shell is 12640.78 N/C

What real-world examples show not work being done? Can you think of examples other than resisting the force of gravity?

Answers

Answer:

Work is defined as a force doing a movement, for example, if with a force F we move an object a distance D, the work done is:

W = F*D

(note, the force is causing the movement, the product here is a dot product, this means that if the force and the displacement are perpendiculars, the product is zero)

So the examples where there are not work being done may be:

We do not have any movement:

For example, you can go to a wall in your house and push it really hard.

There is a force, but the wall will not move, so we have D = 0

and W = F*D = F*0 = 0

Because we have no motion.

Another case is where the force and the direction of motion are perpendiculars.

If we have for example a car, moving at a constant speed, and you push it sidewise (perpendicular to the direction of movement) we have a force being applied and movement, but those are in different directions (so the force does not cause the movement) so we dont have work being done.

(III) A baseball is seen to pass upward by a window with a vertical speed of If the ball was thrown by a person 18 m below on the street, (a) what was its initial speed, (b) what altitude does it reach, (c) when was it thrown, and (d) when does it reach the street again? Giancoli, Douglas C.. Physics (p. 45). Pearson Education. Kindle Edition.

Answers

Answer:

Assuming that the vertical speed of the ball is 14 m/s we found the given values:

a) V₀ = 23.4 m/s

b) h = 27.9 m

c) t = 0.96 s

d) t = 4.8 s

 

Explanation:

a) Assuming that the vertical speed is 14 m/s (founded in the book) the initial speed of the ball can be calculated as follows:  

[tex] V_{f}^{2} = V_{0}^{2} - 2gh [/tex]

Where:

[tex]V_{f}[/tex]: is the final speed = 14 m/s

[tex]V_{0}[/tex]: is the initial speed =?

g: is the gravity = 9.81 m/s²

h: is the height = 18 m

[tex] V_{0} = \sqrt{V_{f}^{2} + 2gh} = \sqrt{(14 m/s)^{2} + 2*9.81 m/s^{2}*18 m} = 23.4 m/s [/tex]  

b) The maximum height is:

[tex] V_{f}^{2} = V_{0}^{2} - 2gh [/tex]

[tex] h = \frac{V_{0}^{2}}{2g} = \frac{(23. 4 m/s)^{2}}{2*9.81 m/s^{2}} = 27.9 m [/tex]

c) The time can be found using the following equation:

[tex] V_{f} = V_{0} - gt [/tex]

[tex] t = \frac{V_{0} - V_{f}}{g} = \frac{23.4 m/s - 14 m/s}{9.81 m/s^{2}} = 0.96 s [/tex]

d) The flight time is given by:

[tex] t_{v} = \frac{2V_{0}}{g} = \frac{2*23.4 m/s}{9.81 m/s^{2}} = 4.8 s [/tex]

         

I hope it helps you!    

You have two charges; Q1 and Q2, and you move Q1 such that the potential experienced by Q2 due to Q1 increases.


Gravity should be ignored.


Then, you must be:

a) Moving Q1 further away from Q2.
b) Moving in the opposite direction to that of the field due to Q1
c) Moving Q1 closer to Q2.
d) Moving in the same direction as the field due to Q1.
e) Any of the above

Answers

Given that,

First charge = Q₁

Second charge = Q₂

The potential experienced by Q2 due to Q1 increases

We know that,

The electrostatic force between two charges is defined as

[tex]F=\dfrac{kQ_{1}Q_{2}}{r^2}[/tex]

Where,

k = electrostatic constant

[tex]Q_{1}[/tex]= first charge

[tex]Q_{2}[/tex]= second charge

r = distance

According to given data,

The potential experienced by Q₂ due to Q₁ increases.

We know that,

The potential is defined from coulomb's law

[tex]V=\dfrac{Q_{1}}{4\pi\epsilon_{0}r}[/tex]

[tex]V\propto\dfrac{1}{r}[/tex]

If r decrease then V will be increases.

If V decrease then r will be increases.

Since, V is increases then r will decreases that is moving Q₁ closer  to Q₂.

Hence, Moving Q₁ closer to Q₂.

(c) is correct option.

Light from a fluorescent lamp is observed through a cloud of cool nitrogen gas. Again, two students are having a discussion about the kind of spectra that they would see.
Student 1: We would see absorption line spectra and the missing lines would correspond to the light from the fluorescent lamp.
Student 2: I disagree. We would see an emission line spectrum corresponding to nitrogen. This would happen because the nitrogen gas would absorb some energy from the fluorescent lamp and would reemit this energy which would result in an emission line spectrum.
Which student, if any, do you agree with and why?

Answers

Answer:

From the previous explanation Student No. 1 has the correct explanation

Explanation:

When the fluorescent lamp emits a light it has the shape of its emission spectrum, this light collides with the atoms of Nitrogen and excites it, so these wavelengths disappear, lacking in the spectrum seen by the observed, for which we would see an absorption spectrum

The nitrogen that was exited after a short time is given away in its emission lines, in general there are many lines, so the excitation energy is divided between the different emission lines, which must be weak

From the previous explanation Student No. 1 has the correct explanation

Consider a situation in which you are moving two point charges such that the potential energy between them decreases. (NOTE: ignore gravity).

This means that you are moving the charges:
a) Closer to each other
b) Farther apart
c) Either A or B

Answers

Answer: Option A

Explanation:

The potential energy decreases in the case when the charges are opposite and they attract each other.

In this case there is no external energy required in order to put the charges together.

This is so because the charges are opposite and they will attract each other. Yes, the only condition should be that the charges should be alike.

Example: a negative charge and a positive charge.

What is the impulse on a car (750 kg) that accelerates from rest to 5.0 m/s in 10 seconds

Answers

Explanation:

impulse J = m × (v2-v1) =750 × ( 5 - 0 ) =3750( N×s)

Answer:

3750Ns

Explanation:

Impulse is defined as Force × time

Force = mass × acceleration,

Hence impulse is;

mass × acceleration × time.

From Newton's second law

Force × time = mass × ∆velocity

750× 5 = 3750Ns

∆velocity = Vfinal-Vinitial ; the initial velocity is zero since the body starts from rest.

0.5 kg air hockey puck is initially at rest. What will it’s kinetic energy be after a net force of .8 N acts on it for a distance of 2 m

Answers

Answer:

1.6 J

Explanation:

Work = change in energy

W = ΔKE

Fd = KE

(0.8 N) (2 m) = KE

KE = 1.6 J

Two identical point charges q=71.0 pCq=71.0 pC are separated in vacuum by a distance of 2d=29.0 cm.2d=29.0 cm. Calculate the total electric flux ΦΦ through the infinite surface placed at a distance dd from each charge, perpendicular to the line on which the point charges are located.

Answers

Answer:

The electric flux at the infinite surface is ZERO

Explanation:

From the question we are told that  

    The point charge are identical and the value is  [tex]q = 71.0 pC = 71 * 10^{-12} \ C[/tex]

    The distance of separation is  [tex]D = 29.0 \ cm = 0.29 \ m[/tex]

    The distance of both from the infinite surface is  d

Generally the electric force exerted by each of the  charge on the infinite surface is

       [tex]\phi = \frac{q}{\epsilon_o}[/tex]

Now given from the question that they are identical, it then means that the electric flux of the first charge on the infinite surface will be nullified by the electric flux of the second charge hence the electric flux at that infinite surface due to this two identical charges is ZERO

In Parts A, B, C consider the following situation. In a baseball game the batter swings and gets a good solid hit. His swing applies a force of 12,000 N to the ball for a time of 0.70×10−3s. Part A Assuming that this force is constant, what is the magnitude J of the impulse on the ball?

Answers

Answer:

J = 8.4 kg*m/s

Explanation:

The magnitude of the impulse, J, on the ball can be calculated using the following equation:

[tex] J = F*t [/tex]   (1)

Where:

F: is the force = 12000 N

t: is the time = 0.70x10⁻³ s

So, by entering the values above into equation (1) we can find the impulse on the ball:

[tex] J = F*t = 12000 N*0.70 \cdot 10^{-3} s = 8.4 kg*m/s [/tex]

Therefore, the impulse on the ball is 8.4 kg*m/s.

I hope it helps you!

The magnitude J of the impulse on the ball is 8.4 kg m/s.

Calculation of the impulse:

Since it applies a force of 12,000 N to the ball for a time of 0.70×10−3s.

So,

The magnitude is

[tex]= Force \times time\\\\= 12,000 \times 0.70\times 10^{-3}[/tex]

= 8.4 kg m/s

Here we basically multiplied the force with the time to determine the magnitude.

Learn more about impulse here: https://brainly.com/question/16324614

A 60-kg skier is stationary at the top of a hill. She then pushes off and heads down the hill with an initial speed of 4.0 m/s. Air resistance and the friction between the skis and the snow are both negligible. How fast will she be moving after she is at the bottom of the hill, which is 10 m in elevation lower than the hilltop

Answers

Answer:

The velocity is  [tex]v = 8.85 m/s[/tex]

Explanation:

From the question we are told that

    The mass of the skier is [tex]m_s = 60 \ kg[/tex]

      The initial speed is [tex]u = 4.0 \ m/s[/tex]

       The height is  [tex]h = 10 \ m[/tex]

According to the law of energy conservation

     [tex]PE_t + KE_t = KE_b + PE_b[/tex]

Where [tex]PE_t[/tex] is the potential energy at the top which is mathematically evaluated as

       [tex]PE_t = mg h[/tex]

substituting values

       [tex]PE_t = 60 * 4*9.8[/tex]

      [tex]PE_t = 2352 \ J[/tex]

And  [tex]KE_t[/tex] is the kinetic energy at the top which equal to zero due to the fact that velocity is zero at the top of the hill

And  [tex]KE_b[/tex] is the kinetic energy at the bottom of the hill which is mathematically represented as

         [tex]KE_b = 0.5 * m * v^2[/tex]

  substituting  values

         [tex]KE_b = 0.5 * 60 * v^2[/tex]

=>     [tex]KE_b = 30 v^2[/tex]

Where v is the velocity at the bottom

   And [tex]PE_b[/tex] is the potential  energy at the bottom which equal to zero due to the fact that height  is zero at the bottom of the hill

So  

        [tex]30 v^2 = 2352[/tex]

=>      [tex]v^2 = \frac{2352}{30}[/tex]

=>       [tex]v = \sqrt{ \frac{2352}{30}}[/tex]

        [tex]v = 8.85 m/s[/tex]

         

Answer:

The Skier's velocity at the bottom of the hill will be 18m/s

Explanation:

This is simply the case of energy conversion between potential and kinetic energy. Her potential energy at the top of the hill gets converted to the kinetic energy she experiences at the bottom.

That is

[tex]mgh = 0.5 mv^{2}[/tex]

solving for velocity, we will have

[tex]v= \sqrt{2gh}[/tex]

hence her velocity will be

[tex]v=\sqrt{2 \times 9.81 \times 10}=14.00m/s[/tex]

This is the velocity she gains from the slope.

Recall that she already has an initial velocity of 4m/s. It is important to note that since velocities are vector quantities, they can easily be added algebraically. Hence, her velocity at the bottom of the hill is 4 + 14 = 18m/s

The Skier's velocity at the bottom of the hill will be 18m/s

A spaceship travels toward the Earth at a speed of 0.97c. The occupants of the ship are standing with their torsos parallel to the direction of travel. According to Earth observers, they are about 0.50 m tall and 0.50 m wide. Calculate what the occupants’ height and width according to the others on the spaceship?

Answers

Answer:

Explanation:

We shall apply length contraction einstein's relativistic formula to calculate the length observed by observer on the earth . For the observer , increased length will be observed for an observer on the earth

[tex]L=\frac{.5}{\sqrt{1-(\frac{.97c}{c})^2 } }[/tex]

[tex]L=\frac{.5}{.24}[/tex]

L= 2.05

The length will appear to be 2.05 m . and width will appear to be .5 m  to the observer on the spaceship. . It is so because it is length which is moving parallel to the direction of travel. Width will remain unchanged.  

In Fig. on the right, what is the acceleration at 1.0 s?

Answers

Answer:

10 m/s²

Explanation:

Acceleration is the slope of the velocity vs time graph.

At t = 1.0 s, the slope of the line is:

a = Δv/Δt

a = (20 m/s) / (2.0 s)

a = 10 m/s²

Answer:

10m/s2

Explanation:

Acceleration is defined as change in velocity over the time period

Now at 1second the velocity is 10m/s.

Hence the acceleration is V-U/t;

Where V is velocity at 10s and U is velocity when the object is at rest.

So we have;

Acceleration = 10-0/ 1 = 10m/s2

A particle initially located at the origin has an acceleration of = 1.00ĵ m/s2 and an initial velocity of i = 6.00î m/s. (a) Find the vector position of the particle at any time t (where t is measured in seconds). ( t î + t2 ĵ) m (b) Find the velocity of the particle at any time t. ( î + t ĵ) m/s (c) Find the coordinates of the particle at t = 4.00 s. x = m y = m (d) Find the speed of the particle at t = 4.00 s.

Answers

Answer:

a)     d = (6.00 t i ^ + 0.500 t²) m , b)   v = (6.00 i ^ + 1.00 t j ^) m / s

c) d = (24.00 i ^ + 8.00 j^ ) m , d)  v = (6.00 i ^ + 5 j^ ) m/s

Explanation:

This exercise is about kinematics in two dimensions

a) find the position of the particle on each axis

X axis

Since there is no acceleration on this axis, we can use the relation of uniform motion

       v = x / t

        x = v t

we substitute

        x = 6.00 t

Y Axis

on this axis there is an acceleration and there is no initial speed

         y = v₀ t + ½ a t²

         y = ½ at t²

we substitute

        y = ½ 1.00 t²

        y = 0.500 t²

in vector position is

       d = x i ^ + y j ^

       d = (6.00 t i ^ + 0.500 t²) m

b) x axis

as there is no relate speed is concatenating

       vₓ = v₀

       vₓ = 6.00 m / s

y Axis  

there is an acceleration and the initial speed is zero

         [tex]v_{y}[/tex] = v₀ + a t

         v_{y} = a t

         v_{y} = 1.00 t

the velocity vector is

         v = vₓ i ^ + v_{y} j ^

         v = (6.00 i ^ + 1.00 t j ^) m / s

c) the coordinates for t = 4 s

        d = (6.00 4 i ^ + 0.50 4 2 j⁾

        d = (24.00 i ^ + 8.00 j^ ) m

 

x = 24.0 m

y = 8.00 m

d) the velocity of for t = 4 s

        v = (6 i ^ + 1 5 j ^)

         v = (6.00 i ^ + 5 j^ ) m/s

Which of the following is NOT a type of electromagnetic wave?
Seismic waves
Visible light
Radio waves
Microwave

Answers

Answer:

Seismic waves

Explanation:

seismic waves are not represented by electromagnetic graphs, nor can they be reflected on an electromagnetic spectrum. Visible light, radio waves, and microwaves are all electromagnetic waves, which are represented by graphs and electromagnetic spectrums.

Answer:

Siesmic waves

Explanation:

11. A vector M is 15.0 cm long and makes an angle of 20° CCW from x axis and another vector N is 8.0 cm long and makes an angle of 40° clockwise from the x axis. Find out resultant vector with its magnitude and direction using components method.

Answers

Answer:

The magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°

Explanation:

To find the resultant vector, you first calculate x and y components of the two vectors M and N. The components of the vectors are calculated by using cos and sin function.

For M vector you obtain:

[tex]M=M_x\hat{i}+M_y\hat{j}\\\\M=15.0cm\ cos(20\°)\hat{i}+15.0cm\ sin(20\°)\hat{j}\\\\M=14.09cm\ \hat{i}+5.13\ \hat{j}[/tex]

For N vector:

[tex]N=N_x\hat{i}+N_y\hat{j}\\\\N=8.0cm\ cos(40\°)\hat{i}+8.0cm\ sin(40\°)\hat{j}\\\\N=6.12cm\ \hat{i}+5.142\ \hat{j}[/tex]

The resultant vector is the sum of the components of M and N:

[tex]F=(M_x+N_x)\hat{i}+(M_y+N_y)\hat{j}\\\\F=(14.09+6.12)cm\ \hat{i}+(5.13+5.142)cm\ \hat{j}\\\\F=20.21cm\ \hat{i}+10.27cm\ \hat{j}[/tex]

The magnitude of the resultant vector is:

[tex]|F|=\sqrt{(20.21)^2+(10.27)^2}cm=22.66cm[/tex]

And the direction of the vector is:

[tex]\theta=tan^{-1}(\frac{10.27}{20.21})=29.93\°[/tex]

hence, the magnitude of the resultant vector is 22.66 cm and it has a direction of 29.33°

Two stones are thrown vertically upward from the ground, one with three times the initial speed of the other. Assume free fall. Part A If the faster stone takes 12.0 s to return to the ground, how long will it take the slower stone to return

Answers

Answer:

36s

Explanation:

Let the objects be A and B.

Let the initial velocity of A be U and the initial velocity of B be 3U

The height sustain by A will be;

The final velocity would be zero

V2 = U2-2gH

Hence

0^2= U2 -2gH

H = U^2/2g

Similarly for object B, the height sustain is;

V2 = (3U)^2-2gH

Hence

0^2= 3U^2 -2gH

U2-2gH

Hence

0^2= U2 -2gH

H = 3U^2/2g

By comparism. The object with higher velocity sustains more height and so should fall longer than object A.

Now object A would take;

From V=U+gt as the object falls freely, the initial velocity is zero hence and the final velocity of the object is;

V=10×12=120m/s let g be 10m/S2

Similarly for object B,

The final velocity for B when it's falling it should be 3×that of A

Meaning

3V= gt

t =3V/g = 3× 120/10 = 36s

wich of the following are commonly distributed by veterinary assistants in typical veterinary practice?

Answers

Can you sent a picture of the answers

What is the gravitational potential energy of a ball of mass 2.00 kg which is tossed to a height of 13.0 m above the ground? Answer in J, taking the potential energy to be 0.00 J at the ground.

Answers

Answer:

I believe the answer is 254.8 J, or rounded 255 J.

Explanation:

The formula for potential energy is:

PE=m(h)g

This means the mass (m) times height (h) times gravity (m). Gravity is 9.8 m/s (meters per second). Putting all of the numbers into it would equal:

PE=2(13)9.8

This equals 254.8 exactly, or if the assignment calls for you to round, 255.

Two forces are acting on an object as shown in Fig. on the right. What is the magnitude of the resultant force?
A) 47.5 N
B) 185 N
C) 198 N
D) 200 N

Answers

Answer:

185 N

Explanation:

Sum of forces in the x direction:

Fₓ = -(80 N cos 75°) + (120 N cos 60°)

Fₓ = 39.3 N

Sum of forces in the y direction:

Fᵧ = (80 N sin 75°) + (120 N sin 60°)

Fᵧ = 181.2 N

The magnitude of the net force is:

F = √(Fₓ² + Fᵧ²)

F = √((39.3 N)² + (181.2 N)²)

F = 185 N

We have that for the Question "Two forces are acting on an object as shown in Fig. on the right. What is the magnitude of the resultant force?" it can be said that  the magnitude of the resultant force is

R=200N

From the question we are told

Two forces are acting on an object as shown in Fig. on the right. What is the magnitude of the resultant force?

A) 47.5 N

B) 185 N

C) 198 N

D) 200 N

Generally the equation for the Resultant force is mathematically given as

For x axis resolution

[tex]Fx=80cos75+120cos60\\\\Fx=80.7N[/tex]

For y axis resolution

[tex]Fx=80sin75+120sin60\\\\Fx=181.2N[/tex]

Therefore

[tex]R=\sqrt{80.7^2+181.2N^2}\\\\R=200N[/tex]

For more information on this visit

https://brainly.com/question/23379286

А
mass exerts force of
5.6 X 10^-10N on
another mass
when
seperated 93cm apart. If
one mass is the square root of
the other
Find
value of
the two masses.

Answers

Answer:

i hope it will be useful for you

Explanation:

F=5.6×10^-10N

R=93cm=0.93m

let take m1 and m2 =m²

according to newton's law of universal gravitation

F=m1m2/r²

F=m²/r²

now we have to find masses

F×r²=m²

5.6×10^10N×0.93m=m²

5.208×10^-9=m²

taking square root on b.s

√5.208×10^-9=√m²

so the two masses are m1=7.2×10^-5

and m2=7.2×10^-5

Consider the binding energy of two stable nuclei, one with 60 nucleons and one with 200 nucleons. a. Is the total binding energy of the nucleus with 200 nucleons more than, less than, or equal to the total binding energy of the nucleus with 60 nucleons. Justify your reasoning.

Answers

Answer:

The total binding energy of the nucleus with 200 nucleons more than the total binding energy of the nucleus with 60 nucleons

Explanation:

Binding energy can be given by the formula:

Binding energy = Binding energy per nucleon * Number of nucleons

This means that if the binding energy per nucleon = x MeV

Where x is a positive real number

The nucleus with 60 nucleons will have Binding energy = 60x MeV

The nucleus with 200 nucleons will have binding energy = 200x MeV

For a +ve x, 200x > 60x

Binding energy is proportional (directly) to nucleon volume. A further explanation is provided below.

Binding energy

Binding energy involving 200 nucleons would've been greater than 60 nucleons because so many more nucleons result in what seems like a stronger reaction.

It makes absolutely no difference out whether nucleon seems to be a proton as well as a neutron because they just have a similar strong coupling relatively steady.

Thus the response above is correct.

Find out more information about binding energy here:

https://brainly.com/question/23942204

Which statement best explains why the overall charge on an atom is zero?
ОООО
The positive charge of the neutrons in the nucleus equals the negative charge in the electron cloud.
The positive charge of the protons in the nucleus equals the negative charge in the electron cloud.
The negative charge of the neutrons in the nucleus equals the positive charge in the electron cloud.
The negative charge of the protons in the nucleus equals the positive charge in the electron cloud.

Answers

Answer:

B) The positive charge of the protons in the nucleus equals the negative charge in the electron cloud.

Explanation:

For every negative charge of an electron, there is an equal positively charged proton in the nucleus of the atom. This is why the overall charge on an atom is zero.

Answer:

B

Explanation:

This is described by Gauss a scientist.

The positive charge is found in the proton in the nucleus.

The neutron has no charge.

The positive charge radiates in all directions and a counter negative charge ensues.

Four heavy elements (A, B, C, and D) will fission when bombarded by neutrons. In addition to fissioning into two smaller elements, A also gives off a beta particle, B gives off gamma rays, C gives off neutrons, and D gives off alpha particles. Which element would make a possible fuel for a nuclear reactor

Answers

Answer:

Element C will be best for a nuclear fission reaction

Explanation:

Nuclear fission is the splitting of the nucleus of a heavy atom by bombarding it with a nuclear particle. The reaction leads to the the atom splitting into two smaller elements and a huge amount of energy is liberated in the process. For the reaction to be continuous in a chain reaction, the best choice of element to use as fuel for the reaction should be the element whose nucleus also liberates a neutron particle after fission. The neutron that is given off by other atoms in the reaction will then proceed to bombard other atoms of the element in the reaction, creating a cascade of fission and bombardment within the nuclear reactor.

How many times can a three-dimensional object that has a radius of 1,000 units fit something with a radius of 10 units inside of it? How many times can something with a radius of 2,000 units fit something with a radius of 1 unit?

Answers

Answer:

# _units = 1000

Explanation:

This exercise we can use a direct proportion rule.

If a volume of radius r = 1 is one unit, how many units can fit in a volume of radius 10?

    # _units = V₁₀ / V₁

The volume of a body of radius 1 is

       V₁ = 4/3 π r₁³

        V₁ = 4/3π

the volume of a body of radius r = 10

        V₁₀ = 4/3 π r₂³

        V10 = 4/3 π 10³

     

the number of times this content is

         #_units = 4/3 π 1000 / (4/3 π 1)

        # _units = 1000

If the mass of the ladder is 12.0 kgkg, the mass of the painter is 55.0 kgkg, and the ladder begins to slip at its base when her feet are 70% of the way up the length of the ladder, what is the coefficient of static friction between the ladder and the floor

Answers

Answer:

 μ = 0.336

Explanation:

We will work on this exercise with the expressions of transactional and rotational equilibrium.

Let's start with rotational balance, for this we set a reference system at the top of the ladder, where it touches the wall and we will assign as positive the anti-clockwise direction of rotation

          fr L sin θ - W L / 2 cos θ - W_painter 0.3 L cos θ  = 0

          fr sin θ  - cos θ  (W / 2 + 0,3 W_painter) = 0

          fr = cotan θ  (W / 2 + 0,3 W_painter)

Now let's write the equilibrium translation equation

     

X axis

        F1 - fr = 0

        F1 = fr

the friction force has the expression

       fr = μ N

Y Axis

       N - W - W_painter = 0

       N = W + W_painter

       

we substitute

      fr = μ (W + W_painter)

we substitute in the endowment equilibrium equation

     μ (W + W_painter) = cotan θ  (W / 2 + 0,3 W_painter)

      μ = cotan θ (W / 2 + 0,3 W_painter) / (W + W_painter)

we substitute the values ​​they give

      μ = cotan θ  (12/2 + 0.3 55) / (12 + 55)

      μ = cotan θ  (22.5 / 67)

      μ = cotan tea (0.336)

To finish the problem, we must indicate the angle of the staircase or catcher data to find the angle, if we assume that the angle is tea = 45

       cotan 45 = 1 / tan 45 = 1

the result is

    μ = 0.336

A 35.0-kg child swings in a swing supported by two chains, each 2.96 m long. The tension in each chain at the lowest point is 436 N. (a) Find the child's speed at the lowest point. Consider all the vertical components of force acting on the swing when it is at its lowest point and relate them to the acceleration of the swing at that instant. m/s (b) Find the force exerted by the seat on the child at the lowest point. (Ignore the mass of the seat.)

Answers

Answer:

6.69m/s,529N

Explanation:

Now we have 3 forces acting on the boy at its least point, the two tensions on the string and its weight. The tensions are acting upwards why its weight is acting downwards.

Hence the net force causes the child to swing in a circular fashion without skidding off the swing.

This net force is the centripetal force.

The weight of the child is mass × g

35×9.8=343N

The net force = 436+436-343 = 529N

The centripetal force is defined mathematically as;

F = mass × velocity square/ length of string.

Hence 529 = 35V^2/2.96

V^2 = 529×2.96/35 =44.7383

V=√44.7383 =6.69m/s

B. The force exerted by the seat on the child is the net force which keeps the boy from falling.

529N

Other Questions
Suppose that it costs $200 per day to search for chanterelle mushrooms at Pt. Reyes National Seashore. On an average day, the total weight of mushrooms M found at Pt. Reyes is M = 100x-x^2 pounds ,where x is the number of people mushroom hunting on that day. Chanterelles can be sold for $60 per pound. How many more people will go mushroom hunting than is socially optimal? An angle of 800 terminates in which quadrant?IIIIIIIV 40 points to whoever can answer for me! Please help me with this math problem Homework: 7.1 hwScore: 0 of 1 pt6 of 9 (5 complete)7.1.26Suppose you deposit $2,000 in a savings account that pays interest at an annual rate of 5%. If no rioney is added or withdrawn from the account, answer the following questions.a. How much will be in the account after 4 years?b. How much will be in the account after 17 years?c. How many years will it take for the account to contain $2,500?d. How many years will it take for the account to contain $3,000?a. After 4 years, the amount in the account will be $(Do not round until the final answer. Then round to the nearest cent as needed.) Select the correct solution set.X+17 5 -3{XIX2-20){XIXS-20)[xl xs 14 Determining the Input Value That Produces the Same OutputValue for Two FunctionsIf f(x) = -3x + 4 and g(0) = 2, solve for the value of xfor which f) = 9(26) is true2=0.5321-223IntroDone Phoebe and Sal devise a plan to gather more information on the lunatic. What information is obtained? From Walk Two MoonsA)The girls are able to obtain the lunatic's date of birth, his work schedule, and his license plate number.B)The girls are able to obtain the lunatic's home phone number, address at school, and name.C)The girls are able to obtain the lunatic's school phone number, his class schedule, and his campus job hours.D)The girls are able to obtain the lunatic's phone contact list, his internet usernames, and his passwords. What does this line of dialogue reveal about Whitneys character? Which of them do I turn into a decimal, a fraction, or a mixed number?. Use the map below to answer the following question: What is a geographical difference between southern Europe and northeastern Europe? (5 points) Select one: a. Southern Europe has a large number of mountains, while northeastern Europe is mostly flat. b. Southern Europe is mostly flat, while northeastern Europe is mostly mountainous. c. Southern Europe is a land of large rivers and lakes, while northeastern Europe is dry and arid. d. Southern Europe has few rivers and lakes, while northeastern Europe has more lakes than forests. Some believe that Nixon was concerned with his own political future first and the country second. Do you agree? Do you think his own interests had anything to do with his decisions for the country? Contextualization:What was going on inCuba at the time? Howmight this haveaffected what Castrosaid? What is the temperature, in degrees Celsius, of a substance with a temperature of 49K? 322C 224C 224C 322C The container of a breakfast cereal usually lists the number of calories and the amounts of protein, carbohydrate, and fat contained in one serving of the cereal. The amounts for two common cereals are given below. Suppose a mixture of these two cereals is to be prepared that contains exactly 295 calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat. a. Set up a vector equation for this problem. Include a statement of what the variables in your equation represent. b. Write an equivalent matrix equation, and then determine if the desired mixture of the two cereals can be prepared. $$\begin{matrix}\text{Nutrient} & \text{General Mills Cherrios} & \text{Quaker 100% Natura Cereal}\\text{Calories} & \text{110} & \text{130}\\text{Protein (g)} & \text{4} & \text{3}\\text{Carbhydrate (g)} & \text{20} & \text{18}\\text{Fat (g)} & \text{2} & \text{5}\\end{matrix}$$ What are some of the ways businesses increased productivity?obtained new machineryobtained new resourcesobtained new technologiesfound ways to make their workers more efficient Bering Rock acquires a granite quarry at a cost of $590,000, which is estimated to contain 200,000 tons of granite and is expected to take 6 years to remove. Compute the depletion expense for the first year assuming 38,000 tons were removed. Use the quote to answer the question that follows: "Ronald Reagan won the Cold War without firing a shot." -- Former British Prime Minister Margaret Thatcher This quote refers to the way that:a. President Reagan ended the Cold War without military action.b. the U.S. used nuclear weapons instead of guns to end the Cold War.c. Reagan used trade embargoes to end the Cold War.d. Great Britain ended the Cold War before the U.S. had to intervene write a program that takes in a positive integer as input, and output a string of 1's and 0's representing the integer in binary. for an integer x; the algothm is as long as x is greater than 0 output x % (remainder is either 0 or 1 . x=x/2 in coral language What was unexpected about President George W. Bushs support for programs like No Child Left Behind and Medicare Part D?Choose 1 answer:Choose 1 answer:(Choice A)ABoth programs left key policy decisions up to the states, and as a politician Bush had generally favored a stronger central government.(Choice B)BBush's wife, Laura, strongly opposed both programs, leading to an unusual policy rift between the First Lady and the president.(Choice C, Checked)CThose two pieces of legislation were much more aligned with traditional liberal policies that expanded federal spending, running counter to his conservative philosophy.