Answer:
Explanation:
As a result of impact of time widening, a clock moving as for an observer seems to run all the more gradually than a clock that is very still in the observer's casing.
At the point when observed from earth, the pendulum on the spaceship takes more time to finish one oscillation.
Hence, the clock related with that pendulum will run more slow (gives fewer oscillations as observed from the earth) than the clock related with the pendulum on earth.
Ans => B fewer oscillations
An inquisitive physics student and mountain climber climbs a 47.0-m-high cliff that overhangs a calm pool of water. He throws two stones vertically downward, 1.00 s apart, and observes that they cause a single splash. The first stone has an initial speed of 2.12 m/s.
(a) How long after release of the first stone do the two stones hit the water?
(b) What initial velocity must the second stone have if the two stones are to hit the water simultaneously?
magnitude =
(c) What is the speed of each stone at the instant the two stones hit the water?
first stone =
second stone =
Answer:
a) Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds, b) The initial velocity of the second stone is -16.038 meters per second, c) The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.
Explanation:
a) The time after the release after the release of the first stone can be get from the following kinematic formula for the first rock:
[tex]y_{1} = y_{1,o} + v_{1,o} \cdot t +\frac{1}{2}\cdot g \cdot t^{2}[/tex]
Where:
[tex]y_{1}[/tex] - Final height of the first stone, measured in meters.
[tex]y_{1,o}[/tex] - Initial height of the first stone, measured in meters.
[tex]v_{1,o}[/tex] - Initial speed of the first stone, measured in meters per second.
[tex]t[/tex] - Time, measured in seconds.
[tex]g[/tex] - Gravity constant, measured in meters per square second.
Given that [tex]y_{1,o} = 47\,m[/tex], [tex]y_{1} = 0\,m[/tex], [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following second-order polynomial is built:
[tex]-4.984\cdot t^{2} - 2.12\cdot t + 47 = 0[/tex]
Roots of the polynomial are, respectively:
[tex]t_{1} \approx 2.866\,s[/tex] and [tex]t_{2}\approx -3.291\,s[/tex]
Only the first root is physically reasonable. Therefore, both stones hit the water in 2.866 seconds.
b) As the second stone is thrown a second later than first one, its height is represented by the following kinematic expression:
[tex]y_{2} = y_{2,o} + v_{2,o}\cdot (t-t_{o}) + \frac{1}{2}\cdot g \cdot (t-t_{o})^{2}[/tex]
[tex]y_{2}[/tex] - Final height of the second stone, measured in meters.
[tex]y_{2,o}[/tex] - Initial height of the second stone, measured in meters.
[tex]v_{2,o}[/tex] - Initial speed of the second stone, measured in meters per second.
[tex]t[/tex] - Time, measured in seconds.
[tex]t_{o}[/tex] - Initial absolute time, measured in seconds.
[tex]g[/tex] - Gravity constant, measured in meters per square second.
Given that [tex]y_{2,o} = 47\,m[/tex], [tex]y_{2} = 0\,m[/tex], [tex]t_{o} = 1\,s[/tex], [tex]t = 2.866\,s[/tex] and [tex]g = -9.807\,\frac{m}{s^{2}}[/tex], the following expression is constructed and the initial speed of the second stone is:
[tex]1.866\cdot v_{2,o}+29.926 = 0[/tex]
[tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex]
The initial velocity of the second stone is -16.038 meters per second.
c) The final speed of each stone is determined by the following expressions:
First stone
[tex]v_{1} = v_{1,o} + g \cdot t[/tex]
Second stone
[tex]v_{2} = v_{2,o} + g\cdot (t-t_{o})[/tex]
Where:
[tex]v_{1,o}, v_{1}[/tex] - Initial and final velocities of the first stone, measured in meters per second.
[tex]v_{2,o}, v_{2}[/tex] - Initial and final velocities of the second stone, measured in meters per second.
If [tex]v_{1,o} = -2.12\,\frac{m}{s}[/tex] and [tex]v_{2,o} = -16.038\,\frac{m}{s}[/tex], the final speeds of both stones are:
First stone
[tex]v_{1} = -2.12\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right)\cdot (2.866\,s)[/tex]
[tex]v_{1} = -30.227\,\frac{m}{s}[/tex]
Second stone
[tex]v_{2} = -16.038\,\frac{m}{s} + \left(-9.807\,\frac{m}{s^{2}} \right) \cdot (2.866\,s-1\,s)[/tex]
[tex]v_{2} = -34.338\,\frac{m}{s}[/tex]
The speed of the first stone is 30.227 meters per second and the speed of the second stone is 34.338 meters per second.
Which statement describes one feature of a mineral's definite chemical composition?
It always occurs in pure form.
It always contains certain elements.
It cannot form from living or once-living materials.
It cannot contain atoms from more than one element.
N
Answer:
It always contains certain elements
Explanation:
Minerals can be defined as natural inorganic substances which possess an orderly internal structural arrangement as well as a particular, well known chemical composition, crystal structures and physical properties. Minerals include; quartz, dolomite, basalt, etc. Minerals may occur in isolation or in rock formations.
Minerals contain specific, well known chemical elements in certain ratios that can only vary within narrow limits. This is what we mean by a mineral's definite chemical composition. The structure of these minerals are all well known as well as their atom to atom connectivity.
The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.
A mineral is a naturally occurring chemical compound, usually of a crystalline form.
A mineral has one specific chemical composition.chemical composition that varies within a specific limited range and the atoms that make up the mineral must occur in specific ratiosthe proportions of the different elements and groups of elements in the mineral.Thus, The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.
Learn more:
https://brainly.com/question/690965
Use Kepler's third law to determine how many days it takes a spacecraft to travel in an elliptical orbit from a point 6 590 km from the Earth's center to the Moon, 385 000 km from the Earth's center.
Answer:
1.363×10^15 seconds
Explanation:
The spaceship travels an elliptical orbit from a point of 6590km from the earth center to the moon and 38500km from the earth center.
To calculate the time taken from Kepler's third Law :
T^2 = ( 4π^2/GMe ) r^3
Where Me is the mass of the earth
r is the average distance travel
G is the universal gravitational constant. = 6.67×10-11 m3 kg-1 s-2
π = 3.14
Me = mass of earth = 5.972×10^24kg
r =( r minimum + r maximum)/2 ......1
rmin = 6590km
rmax = 385000km
From equation 1
r = (6590+385000)/2
r = 391590/2
r = 195795km
From T^2 = ( 4π^2/GMe ) r^3
T^2 = (4 × 3.14^2/ 6.67×10-11 × 5.972×10^24) × 195795^3
= ( 4×9.8596/ 3.983×10^14 ) × 7.5059×10^15
= 39.4384/ 3.983×10^14 ) × 7.5059×10^15
= (9.901×10^14) × 7.5059×10^15
T^2 = 7.4321× 10^30
T =√7.4321× 10^30
T = 2.726×10^15 seconds
The time for one way trip from Earth to the moon is :
∆T = T/2
= 2.726×10^15 /2
= 1.363×10^15 secs
How do I find an apparent weight in N for a metal connected to a string submerged in water if a scale shows the mass 29.52 g when it is submerged ? Also how do I measure its density
The Tension of the string is going to be less when submerged in water by a value called the buoyancy force, so below in the attached file is explanation on how to calculate the apparent weight and density of the submerged object
Two people play tug of war. The 100-kg person on the left pulls with 1,000 N, and the 70-kg person on the right pulls with 830 N. Assume that neither person releases their grip on the rope with either hand at any time, assume that the rope is always taut, and assume that the rope does not stretch. What is the magnitude of the tension in the rope in Newtons
Answer:
The tension on the rope is T = 900 N
Explanation:
From the question we are told that
The mass of the person on the left is [tex]m_l = 100 \ kg[/tex]
The force of the person on the left is [tex]F_l = 1000 \ N[/tex]
The mass of the person on the right is [tex]m_r = 70 \ kg[/tex]
The force of the person on the right is [tex]F_r = 830 \ N[/tex]
Generally the net force is mathematically represented as
[tex]F_{Net} = F_l - F_r[/tex]
substituting values
[tex]F_{Net} = 1000-830[/tex]
[tex]F_{Net} = 170 \ N[/tex]
Now the acceleration net acceleration of the rope is mathematically evaluated as
[tex]a = \frac{F_{net}}{m_I + m_r }[/tex]
substituting values
[tex]a = \frac{170}{100 + 70 }[/tex]
[tex]a = 1 \ m/s ^2[/tex]
The force [tex]m_i * a[/tex]) of the person on the left that caused the rope to accelerate by a is mathematically represented as
[tex]m_l * a = F_r -T[/tex]
Where T is the tension on the rope
substituting values
[tex]100 * 1 = 1000 - T[/tex]
=> T = 900 N
The average density of the body of a fish is 1080kg/m^3 . To keep from sinking, the fish increases its volume by inflating an internal air bladder, known as a swim bladder, with air.
By what percent must the fish increase its volume to be neutrally buoyant in fresh water? Use 1.28kg/m^3 for the density of air at 20 degrees Celsius. (change in V/V)
Answer:
Increase of volume (F) = 8.01%
Explanation:
Given:
Density of fish = 1,080 kg/m³
Density of water = 1,000 kg/m³
density of air = 1.28 kg/m³
Find:
Increase of volume (F)
Computation:
1,080 kg/m³ + [F × 1.28 kg/m³ ] = (1+F) × 1,000 kg/m³
1,080 + 1.28 F =1,000 F + 1,000
80 = 998.72 F
F = 0.0801 (Approx)
F = 8.01% (Approx)
A circular coil of wire of 200 turns and diameter 2.0 cm carries a current of 4.0 A. It is placed in a magnetic field of 0.70 T with the plane of the coil making an angle of 30° with the magnetic field. What is the magnetic torque on the coil?
Answer:
0.087976 Nm
Explanation:
The magnetic torque (τ) on a current-carrying loop in a magnetic field is given by;
τ = NIAB sinθ --------- (i)
Where;
N = number of turns of the loop
I = current in the loop
A = area of each of the turns
B = magnetic field
θ = angle the loop makes with the magnetic field
From the question;
N = 200
I = 4.0A
B = 0.70T
θ = 30°
A = π d² / 4 [d = diameter of the coil = 2.0cm = 0.02m]
A = π x 0.02² / 4 = 0.0003142m² [taking π = 3.142]
Substitute these values into equation (i) as follows;
τ = 200 x 4.0 x 0.0003142 x 0.70 sin30°
τ = 200 x 4.0 x 0.0003142 x 0.70 x 0.5
τ = 200 x 4.0 x 0.0003142 x 0.70
τ = 0.087976 Nm
Therefore, the torque on the coil is 0.087976 Nm
A cowboy fires a silver bullet with a muzzle speed of 200 m/s into the pine wall of a saloon. Assume all the internal energy generated by the impact remains with the bullet. What is the temperature change of the bullet?
Explanation:
KE = q
½ mv² = mCΔT
ΔT = v² / (2C)
ΔT = (200 m/s)² / (2 × 236 J/kg/°C)
ΔT = 84.7°C
This question involves the concepts of the law of conservation of energy.
The temperature change of the bullet is "84.38°C".
What is the Law of Conservation of Energy?According to the law of conservation of energy, total energy of the system must remain constant. Therefore, in this situation.
[tex]Kinetic\ energy\ of\ bullet\ before\ impact=heat\ absorbed\ in\ bullet\\\\\frac{1}{2}mv^2=mC\Delta T\\\\\Delta T = \frac{v^2}{2C}[/tex]
where,
ΔT = change in temperature of the bullet = ?C = specific heat capacity of silver = 237 J/kg°Cv = speed of bullet = 200 m/sTherefore,
[tex]\Delta T = \frac{(200\ m/s)^2}{2(237\ J/kg.^oC)}[/tex]
ΔT = 84.38°C
Learn more about the law of conservation of energy here:
https://brainly.com/question/20971995
#SPJ2
Given small samples of three liquids, you are asked to determine their refractive indexes. However, you do not have enough of each liquid to measure the angle of refraction for light retracting from air into the liquid. Instead, for each liquid, you take a rectangular block of glass (n= 1.52) and Place a drop of the liquid on the top surface f the block. you shine a laser beam with wavelength 638 nm in vacuum at one Side of the block and measure the largest angle of incidence for which there is total internal reflection at the interface between the glass and the liquid. Your results are given in the table.
Liquid A B C
θ 52.0 44.3 36.3
Required:
a. What is the refractive index of liquid A at this wavelength?
b. What is the refractive index of liquid B at this wavelength?
c. What is the refractive index of liquid C at this wavelength?
Answer:
A — 1.198B — 1.062C — 0.900Explanation:
The index of refraction of the liquid can be computed from ...
[tex]n_i\sin{(\theta_t)}=n_t[/tex]
where ni is the index of refraction of the glass block (1.52) and θt is the angle at which there is total internal refraction. nt is the index of refraction of the liquid.
For the given incidence angles, the computed indices of refraction are ...
A: n = 1.52sin(52.0°) = 1.198
B: n = 1.52sin(44.3°) = 1.062
C: n = 1.52sin(36.3°) = 0.900
When a hydrometer (see Fig. 2) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface
Answer:
5.79 in
Explanation:
We are given that
Diameter,d=0.30 in
Radius,r=[tex]\frac{d}{2}=\frac{0.30}{2}=0.15 in[/tex]
Weight of hydrometer,W=0.042 lb
Specific gravity(SG)=1.10
Height of stem from the water surface=3.15 in
Density of water=[tex]62.4lb/ft^3[/tex]
In water
Volume of water displaced [tex]V=\frac{mass}{density}=\frac{0.042}{62.4}=6.73\times 10^{-4} ft^3[/tex]
Volume of another liquid displaced=[tex]V'=\frac{V}{SG}=\frac{6.73\times 10^{-4}}{1.19}=5.66\times 10^{-4}ft^3[/tex]
Change in volume=V-V'
[tex]V-V'=\pi r^2 l[/tex]
Substitute the values
[tex]6.73\times 10^{-4}-5.66\times 10^{-4}=3.14\times (\frac{0.15}{12})^2l[/tex]
By using
1 ft=12 in
[tex]\pi=3.14[/tex]
[tex]l=\frac{6.73\times 10^{-4}-5.66\times 10^{-4}}{3.14\times (\frac{0.15}{12})^2}[/tex]
l=2.64 in
Total height=h+l=3.15+2.64= 5.79 in
Hence, the height of the stem protrude above the liquid surface=5.79 in
5) What is the weight of a body in earth. if its weight is 5Newton
in moon?
Answer:
8.167
Explanation:
Consider the Earth and the Moon as a two-particle system.
Find an expression for the gravitational field g of this two-particle system as a function of the distance r from the center of the Earth. (Do not worry about points inside either the Earth or the Moon. Assume the Moon lies on the +r-axis. Give the scalar component of the gravitational field. Do not substitute numerical values; use variables only. Use the following as necessary: G, Mm, Me, r, and d for the distance from the center of Earth to the center of the Moon.)"
sorry but I don't understand
How much work will it take to lift a 2-kg pair of hiking boots 2 meters off the
ground and onto a shelf in your closet?
O A. 2.45 J
OB. 4J
C. 39.2 J
D. 20 J
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
Answer:39.2J
Explanation: I just answered this question and this was the correct answer. 4J is the wrong answer.
1. A ski-plane with a total mass of 1200 kg lands towards the west on a frozen lake at 30.0
m/s. The coefficient of kinetic friction between the skis and the ice is 0.200. How far does
the plane slide before coming to a stop?
Answer:
d = 229.5 m
Explanation:
It is given that,
Total mass of a ski-plane is 1200 kg
It lands towards the west on a frozen lake at 30.0 m/s.
The coefficient of kinetic friction between the skis and the ice is 0.200.
We need to find the distance covered by the plane before coming to rest. In this case,
[tex]\mu mg=ma\\\\a=\mu g\\\\a=0.2\times 9.8\\\\a=1.96\ m/s^2[/tex]
It is decelerating, a = -1.96 m/s²
Now using the third equation of motion to find the distance covered by the plane such that :
[tex]v^2-u^2=2ad\\\\d=\dfrac{-u^2}{2a}\\\\d=\dfrac{-(30)^2}{2\times -1.96}\\\\d=229.59\ m[/tex]
So, the plane slide a distance of 229.5 m.
Find the terminal velocity (in m/s) of a spherical bacterium (diameter 1.81 µm) falling in water. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 ✕ 103 kg/m3. (Assume the viscosity of water is 1.002 ✕ 10−3 kg/(m · s).)
Answer:
The terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.
Explanation:
The terminal velocity of the bacterium can be calculated using the following equation:
[tex] F = 6\pi*\eta*rv [/tex] (1)
Where:
F: is drag force equal to the weight
η: is the viscosity = 1.002x10⁻³ kg/(m*s)
r: is the radium of the bacterium = d/2 = 1.81 μm/2 = 0.905 μm
v: is the terminal velocity
Since that F = mg and by solving equation (1) for v we have:
[tex] v = \frac{mg}{6\pi*\eta*r} [/tex]
We can find the mass as follows:
[tex] \rho = \frac{m}{V} \rightarrow m = \rho*V [/tex]
Where:
ρ: is the density of the bacterium = 1.10x10³ kg/m³
V: is the volume of the spherical bacterium
[tex] m = \rho*V = \rho*\frac{4}{3}\pi*r^{3} = 1.10 \cdot 10^{3} kg/m^{3}*\frac{4}{3}\pi*(0.905 \cdot 10^{-6} m)^{3} = 3.42 \cdot 10^{-15} kg [/tex]
Now, the terminal velocity of the bacterium is:
[tex] v = \frac{mg}{6\pi*\eta*r} = \frac{3.42 \cdot 10^{-15} kg*9.81 m/s^{2}}{6\pi*1.002 \cdot 10^{-3} kg/(m*s)*0.905 \cdot 10^{-6} m} = 1.96 \cdot 10^{-6} m/s [/tex]
Therefore, the terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.
I hope it helps you!
When a certain capacitor carries charge of magnitude Q on each of its plates, it stores energy Ep. In order to store twice as much energy, how much charge should it have on its plates
2Q
Explanation:
When a capacitor carries some certain charge, the energy stored in the capacitor is its electric potential energy E. The magnitude of this potential energy is given by;
E = [tex]\frac{1}{2}qV[/tex] ------------(i)
Where;
q = charge between the plates of the capacitor
V = potential difference between the plates of the capacitor
From the question;
q = Q
E = Ep
Therefore, equation (i) becomes;
Ep = [tex]\frac{1}{2} QV[/tex] ----------------(ii)
Make V subject of the formula in equation (ii)
V = [tex]\frac{2E_{p}}{Q}[/tex]
Now, when the energy is doubled i.e E = 2Ep, equation (i) becomes;
2Ep = [tex]\frac{1}{2}qV[/tex]
Substitute the value of V into the equation above;
2Ep = [tex]\frac{1}{2}[/tex]([tex]q *\frac{2E_{p}}{Q}[/tex])
Solve for q;
[tex]2E_{p}[/tex] = [tex]\frac{2qE_p}{2Q}[/tex]
[tex]2E_{p}[/tex] = [tex]\frac{qE_p}{Q}[/tex]
[tex]q = 2Q[/tex]
Therefore, the charge, when the energy stored is twice the originally stored energy, is twice the original charge. i.e 2Q
A particle with charge q is to be brought from far away to a point near an electric dipole. Net nonzero work is done if the final position of the particle is on:__________
A) any point on the line through the charges of the dipole, excluding the midpoint between the two charges.
B) any point on a line that is a perpendicular bisector to the line that separates the two charges.
C) a line that makes an angle of 30 ∘ with the dipole moment.
D) a line that makes an angle of 45 ∘with the dipole moment.
Answer:
Net nonzero work is done if the final position of the particle is on options A, C and D
Explanation:
non zero work is done if following will be the final position of the charges :
A) Any point on the line through the charges of the dipole , excluding the midpoint between the two charges.
C) A line that makes an angle 30° with the dipole moment.
D) A line that makes an angle 45° with the dipole moment.
A proton with an initial speed of 400000 m/s is brought to rest by an electric field.
Part A- Did the proton move into a region of higher potential or lower potential?
Part B - What was the potential difference that stopped the proton?
?U = ________V
Part C - What was the initial kinetic energy of the proton, in electron volts?
Ki =_________eV
Answer:
moves into a region of higher potential
Potential difference = 835 V
Ki = 835 eV
Explanation:
given data
initial speed = 400000 m/s
solution
when proton moves against a electric field so that it will move into higher potential region
and
we know Work done by electricfield W is express as
W = KE of proton K
so
q × V = 0.5 × m × v² ......................1
put here va lue
1.6 × [tex]10^{-19}[/tex] × V = 0.5 × 1.67 × [tex]10^{-27}[/tex] × 400000²
Potential difference V = 1.336 × 10-16 / 1.6 × 10-19
Potential difference = 835 V
and
KE of proton in eV is express as
Ki = V numerical
Ki = 835 eV
An electron has an initial velocity of (17.1 + 12.7) km/s, and a constant acceleration of (1.60 × 1012 m/s2) in the positive x direction in a region in which uniform electric and magnetic fields are present. If = (529 µT) find the electric field .
Answer:
Explanation:
Since B is perpendicular, it does no work on the electron but instead deflects it in a circular path.
q = 1.6 x 10-19 C
v = (17.1j + 12.7k) km/s = square root(17.1² + 12.7²) = 2.13 x 10⁴ m/s
the force acting on electron is
F= qvBsinΦ
F= (1.6 x 10⁻¹⁹C)(2.13.x 10⁴ m/s)(526 x 10⁻⁶ T)(sin90º)
F = 1.793x 10⁻¹⁸ N
The net force acting on electron is
F = e ( E+ ( vXB)
= ( - 1.6 × 10⁻¹⁹) ( E + ( 17.1 × 10³j + 12.7 × 10³ k)X( 529 × 10⁻⁶ ) (i)
= ( -1.6 × 10⁻¹⁹ ) ( E- 6.7k + 9.0j)
a= F/m
1.60 × 10¹² i = ( -1.6 × 10⁻¹⁹ ) ( E- 6.9 k + 7.56 j)/9.11 × 10⁻³¹
9.11 i = - ( E- 6.7 k + 9.0 j)
E = -9.11i + 6.7k - 9.0j
If 2 balls had the same volume but ball a has twice as much mass as babil which one will have the greater density
2. A 2.0-kg block slides down an incline surface from point A to point B. Points A and B are 2.0 m apart. If the coefficient of kinetic friction is 0.26 and the block is starting at rest from point A. What is the work done by friction force
Answer:a
Explanation:
(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Suppose a spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?
(b) Find the area of the region enclosed by one loop of the curve r=2sin(5θ).
Answer:
a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].
Explanation:
a) The work, measured in joules, is a physical variable represented by the following integral:
[tex]W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx[/tex]
Where
[tex]x_{o}[/tex], [tex]x_{f}[/tex] - Initial and final position, respectively, measured in meters.
[tex]F(x)[/tex] - Force as a function of position, measured in newtons.
Given that [tex]F = k\cdot x[/tex] and the fact that [tex]F = 25\,N[/tex] when [tex]x = 0.3\,m - 0.2\,m[/tex], the spring constant ([tex]k[/tex]), measured in newtons per meter, is:
[tex]k = \frac{F}{x}[/tex]
[tex]k = \frac{25\,N}{0.3\,m-0.2\,m}[/tex]
[tex]k = 250\,\frac{N}{m}[/tex]
Now, the work function is obtained:
[tex]W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx[/tex]
[tex]W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}][/tex]
[tex]W = 0.313\,J[/tex]
The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.
b) Let be [tex]r(\theta) = 2\cdot \sin 5\theta[/tex]. The area of the region enclosed by one loop of the curve is given by the following integral:
[tex]A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta[/tex]
[tex]A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta[/tex]
By using trigonometrical identities, the integral is further simplified:
[tex]A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta[/tex]
[tex]A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta[/tex]
[tex]A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta[/tex]
[tex]A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)[/tex]
[tex]A = 4\pi[/tex]
The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].
A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
8 m/s to the east. What is the recoil velocity of the launcher?
Answer:
1.6 m/s west
Explanation:
The recoil velocity of the launcher is 1.6 m/s west.
What is conservation of momentum principle?When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.
A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of 8 m/s to the east.
Final momentum will be zero, so
m₁u₁ +m₂u₂ =0
Substitute the values for m₁ = 5kg, m₂ =1kg and u₂ =8 m/s, then the recoil velocity will be
5 x v +1x8 = 0
v = - 1.6 m/s
Thus, the recoil velocity of the launcher is 1.6 m/s (West)
Learn more about conservation of momentum principle
https://brainly.com/question/14033058
#SPJ2
at the temperature at which we live, earth's core is solid or liquid?
Explanation:
The Earth has a solid inner core
The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that we can still apply Gauss's law to a Gaussian surface that is entirely within an insulator by replacing the right-hand side of Gauss's law, Qin/eo, with Qin/e, where ε is the permittivity of the material. (Technically, Eo is called the vacuum permittivity.) Suppose that a 70 nC point charge is surrounded by a thin, 32-cm-diameter spherical rubber shell and that the electric field strength inside the rubber shell is 2500 N/C.
What is the permittivity of rubber?
Answer:
The permittivity of rubber is [tex]\epsilon = 8.703 *10^{-11}[/tex]
Explanation:
From the question we are told that
The magnitude of the point charge is [tex]q_1 = 70 \ nC = 70 *10^{-9} \ C[/tex]
The diameter of the rubber shell is [tex]d = 32 \ cm = 0.32 \ m[/tex]
The Electric field inside the rubber shell is [tex]E = 2500 \ N/ C[/tex]
The radius of the rubber is mathematically evaluated as
[tex]r = \frac{d}{2} = \frac{0.32}{2} = 0.16 \ m[/tex]
Generally the electric field for a point is in an insulator(rubber) is mathematically represented as
[tex]E = \frac{Q}{ \epsilon } * \frac{1}{4 * \pi r^2}[/tex]
Where [tex]\epsilon[/tex] is the permittivity of rubber
=> [tex]E * \epsilon * 4 * \pi * r^2 = Q[/tex]
=> [tex]\epsilon = \frac{Q}{E * 4 * \pi * r^2}[/tex]
substituting values
[tex]\epsilon = \frac{70 *10^{-9}}{2500 * 4 * 3.142 * (0.16)^2}[/tex]
[tex]\epsilon = 8.703 *10^{-11}[/tex]
Charge of uniform surface density (0.20 nC/m2) is distributed over the entire xy plane. Determine the magnitude of the electric field at any point having z
The question is not complete, the value of z is not given.
Assuming the value of z = 4.0m
Answer:
the magnitude of the electric field at any point having z(4.0 m) =
E = 5.65 N/C
Explanation:
given
σ(surface density) = 0.20 nC/m² = 0.20 × 10⁻⁹C/m²
z = 4.0 m
Recall
E =F/q (coulumb's law)
E = kQ/r²
σ = Q/A
A = 4πr²
∴ The electric field at point z =
E = σ/zε₀
E = 0.20 × 10⁻⁹C/m²/(4 × 8.85 × 10⁻¹²C²/N.m²)
E = 5.65 N/C
An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?
Answer:
a
[tex]\theta = 0.0022 rad[/tex]
b
[tex]I = 0.000304 I_o[/tex]
Explanation:
From the question we are told that
The wavelength of the light is [tex]\lambda = 550 \ nm = 550 *10^{-9} \ m[/tex]
The distance of the slit separation is [tex]d = 0.500 \ mm = 5.0 *10^{-4} \ m[/tex]
Generally the condition for two slit interference is
[tex]dsin \theta = m \lambda[/tex]
Where m is the order which is given from the question as m = 2
=> [tex]\theta = sin ^{-1} [\frac{m \lambda}{d} ][/tex]
substituting values
[tex]\theta = 0.0022 rad[/tex]
Now on the second question
The distance of separation of the slit is
[tex]d = 0.300 \ mm = 3.0 *10^{-4} \ m[/tex]
The intensity at the the angular position in part "a" is mathematically evaluated as
[tex]I = I_o [\frac{sin \beta}{\beta} ]^2[/tex]
Where [tex]\beta[/tex] is mathematically evaluated as
[tex]\beta = \frac{\pi * d * sin(\theta )}{\lambda }[/tex]
substituting values
[tex]\beta = \frac{3.142 * 3*10^{-4} * sin(0.0022 )}{550 *10^{-9} }[/tex]
[tex]\beta = 0.06581[/tex]
So the intensity is
[tex]I = I_o [\frac{sin (0.06581)}{0.06581} ]^2[/tex]
[tex]I = 0.000304 I_o[/tex]
In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation between adjacent maxima. You observe that this separation is greatest when you illuminate the double slit with:_________.
1. yellow light.
2. red light.
3. blue light.
4. green light.
5. The separation is the same for all wavelengths.
Answer:
Red light
Explanation:
This because All interference or diffraction patterns depend upon the wavelength of the light (or whatever wave) involved. Red light has the longest wavelength (about 700 nm)
1) A net force of 75.5 N is applied horizontally to slide a 225 kg crate across the floor.
a. Compute the acceleration of the crate?
Answer:
The acceleration of the crate is [tex]0.3356\,\frac{m}{s^2}[/tex]
Explanation:
Recall the formula that relates force,mass and acceleration from newton's second law;
[tex]F=m\,a[/tex]
Then in our case, we know the force applied and we know the mass of the crate, so we can solve for the acceleration as shown below:
[tex]F=m\,a\\75.5\,N=225\,\,kg\,\,a\\a=\frac{75.5}{225} \,\frac{m}{s^2} \\a=0.3356\,\,\frac{m}{s^2}[/tex]
A car moving at a speed of 25 m/s enters a curve that traces a circular quarter turn of radius 129 m. The driver gently applies the brakes, slowing the car with a constant tangential acceleration of magnitude 1.2 m/s2.a) Just before emerging from the turn, what is the magnitudeof the car's acceleration?
b) At that same moment, what is the angle q between the velocity vector and theacceleration vector?
I am having trouble because this problem seems to have bothradial and tangential accleration. I tried finding the velocityusing V^2/R, but then that didnt take into account thedeceleration. Any help would be great.
Answer:
8.7 m/s^2
82.15°
Explanation:
Given:-
- The initial speed of the car, vi = 25 m/s
- The radius of track, r = 129 m
- Car makes a circular " quarter turn "
- The constant tangential acceleration, at = 1.2 m/s^2
Solution:-
- We will solve the problem using rotational kinematics. Determine the initial angular velocity of car ( wi ) as follows:
[tex]w_i = \frac{v_i}{r} \\\\w_i = \frac{25}{129}\\\\w_i = 0.19379 \frac{rad}{s}[/tex]
- Now use the constant tangential acceleration ( at ) and determine the constant angular acceleration ( α ) for the rotational motion as follows:
at = r*α
α = ( 1.2 / 129 )
α = 0.00930 rad/s^2
- We know that the angular displacement from the initial entry to the exit of the turn is quarter of a turn. The angular displacement would be ( θ = π/2 ).
- Now we will use the third rotational kinematic equation of motion to determine the angular velocity at the exit of the turn (wf) as follows:
[tex]w_f^2 = w_i^2 + 2\alpha*theta\\\\w_f = \sqrt{0.19379^2 + 0.00930\pi } \\\\w_f = 0.25840 \frac{rad}{s}[/tex]
- We will use the evaluated final velocity ( wf ) and determine the corresponding velocity ( vf ) as follows:
[tex]v_f = r*w_f\\\\v_f = 129*0.2584\\\\v_f = 33.33380 \frac{x}{y}[/tex]
- Now use the formulation to determine the centripetal acceleration ( ac ) at this point as follows:
[tex]a_c = \frac{v_f^2}{r} \\\\a_c = \frac{33.3338^2}{129} \\\\a_c = 8.6135 \frac{m}{s^2}[/tex]
- To determine the magnitude of acceleration we will use find the resultant of the constant tangential acceleration ( at ) and the calculated centripetal acceleration at the exit of turn ( ac ) as follows:
[tex]|a| = \sqrt{a^2_t + a_c^2} \\\\|a| = \sqrt{1.2^2 + 8.6135^2} \\\\|a| = 8.7 \frac{m}{s^2}[/tex]
- To determine the angle between the velocity vector and the acceleration vector. We need to recall that the velocity vector only has one component and always tangential to the curved path. Hence, the velocity vector is parallel to the tangential acceleration vector ( at ). We can use the tangential acceleration ( at ) component of acceleration ( a ) and the centripetal acceleration ( ac ) component of the acceleration and apply trigonometric ratio as follows:
[tex]q = arctan \frac{a_c}{a_t} = arctan \frac{8.7}{1.2} \\\\q = 82.15 ^.[/tex]
Answer: The angle ( q ) between acceleration vector ( a ) and the velocity vector ( v ) at the exit of the turn is 82.15° .