Explanation:
This equation for acceleration can be used to calculate the acceleration of an object that is acted on by a net force. For example, Xander and his scooter have a total mass of 50 kilograms. Assume that the net force acting on Xander and the scooter is 25 Newtons. What is his acceleration? Substitute the relevant values into the equation for acceleration:
Answer:
a=Fm=25 N50 kg=0.5 Nkg
The Newton is the SI unit for force. It is defined as the force needed to cause a 1-kilogram mass to accelerate at 1 m/s2. Therefore, force can also be expressed in the unit kg • m/s2. This way of expressing force can be substituted for Newtons in Xander’s acceleration so the answer is expressed in the SI unit for acceleration, which is m/s2:
a=0.5 Nkg=0.5 kg⋅m/s2kg=0.5 m/s2
Elizabeth was a brilliant lawyer until she began hearing voices and seeing things that are not there. She also has trouble with her thought processes and making sense in her speech. She is suffering from:
A. fugue
B. schizophrenia
C. anxiety
D. dissociation
Answer:
B) Schizophrenia
Explanation:
Hope this helps!
Alex kicks a soccer ball with a force of 250 N. The force is applied to the soccer ball for 0.05 seconds. What is the impulse applied to the ball?
Answer:
12.5 Ns.
Explanation:
From the question given above, the following data were obtained:
Force (F) = 250 N.
Time (t) = 0.05 s
Impulse =?
Impulse can be obtained by using the following formula:
Impulse = force × time
Impulse = 250 × 0.05
Impulse = 12.5 Ns
Thus, the Impulse applied to the ball is 12.5 Ns.
What kinds of forces can act on an object
Which is the luminous object?
A light wave passes through an aperture (that is, a narrow slit). When it does so, the degree to which the wave spreads out will be...
Explanation:
Single slit diffraction
Diffraction is the phenomenon of spreading out of waves as they pass through an aperture or around objects. Diffraction occurs when the size of the aperture or obstacle is of the same order of magnitude as the wavelength of the incident wave. For very small aperture sizes, the vast majority of the wave is blocked. in case of large apertures the wave passes by or through the obstacle without any significant diffraction.
A water-skier of mass 75.0 kg initially at rest is being pulled due east by a horizontal towrope. The rope exerts a force of 365 N (east). The water (and air) exerts a combined average frictional force of 190 N (in the opposite direction). How fast will the skier be moving after a distance of 38.0 m?
Answer:
The skier will be moving at 13.31 m/s.
Explanation:
To calculate the velocity of the skier we need to find the acceleration, as follows:
[tex] \Sigma F = ma [/tex]
[tex] F_{r} - F_{f} = ma [/tex]
Where:
[tex] F_{r}[/tex]: is the force due to the rope = 365 N
[tex] F_{f}[/tex]: is the combined average frictional force = 190 N
m: is the mass = 75.0 kg
[tex] a = \frac{365 N - 190 N}{75.0 kg} = 2.33 m/s^{2} [/tex]
Now, we can calculate the velocity of the skier by using the following kinematic equation:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad [/tex]
Where:
[tex] v_{f}[/tex]: is the final velocity =?
[tex] v_{0}[/tex]: is the initial velocity = 0 (the skier is initially at rest)
d: is the distance = 38.0 m
[tex] v_{f} = \sqrt{2*2.33 m/s^{2}*38.0 m} = 13.31 m/s [/tex]
Therefore, the skier will be moving at 13.31 m/s.
I hope it helps you!
a sphere with a radius of 8cm carries a uniform volume charge density of 1.5 find the magnitude of the electric field
Answer:
E = 5.65 x 10¹⁰ N/C
Explanation:
First we need to find the total charge on the sphere. So, we use the following formula for that purpose:
[tex]q = \sigma V\\[/tex]
where,
q = total charge on sphere
V = Volume of Sphere = [tex]\frac{4}{3} \pi r^3 = \frac{4}{3} \pi (0.08\ m)^3 = 0.335\ m^3[/tex]
σ = volume charge density = 1.5 C/m³
Therefore,
[tex]q = (0.335\ m^3)(1.5\ C/m^3) \\q = 0.502 C[/tex]
Now, we use the following formula to find the electric field due to this charged sphere:
[tex]E = \frac{kq}{r^2}[/tex]
where.
E = Electric Field Magnitude = ?
k = Coulomb's Constant = 9 x 10⁹ N.m²/C²
r = radius of sphere = 8 cm = 0.08 m
Therefore,
[tex]E = \frac{(9\ x\ 10^9\ Nm^2/C^2)(0.502 C)}{(0.08\ m)^2}\\\\[/tex]
E = 5.65 x 10¹⁰ N/C
An image is a copy of an objecí formed by what light
Answer:
Plane mirror
Explanation:
A virtual image is a copy of an object formed at the location from which the light rays appear to come.
HELP PLEASE
When a magnet spins in a oil of wire it generates
A. Magnetism
B.convection
C. Radiation
D.electricity
Answer:
A, Magnetism
Explanation:
An ordinary electric generator produces electric power by spinning a strong magnet inside a set of wire coils. As the magnet spins, its magnetic field sweeps across the coils and gives rise to electric fields in those coils.
Hope this helps!!
a pendulum oscillates 25 times in 5 seconds calculate itrs time period and frequency
Answer:
I. Time period = 0.2 seconds.
II. Frequency = 5 Hertz.
Explanation:
Given the following data;
Time, t = 5 seconds.
Number of oscillation, n = 25 times
I. To find the time period;
[tex] Time \; period = \frac {time}{number \; of \; oscillations}[/tex]
Substituting into the equation, we have;
[tex] Time \; period = \frac {5}{25}[/tex]
Time period = 0.2 seconds.
II. To find frequency;
[tex] Frequency = \frac {1}{Time \; period}[/tex]
Substituting into the equation, we have;
[tex] Frequency = \frac {1}{0.2}[/tex]
Frequency = 5 Hertz.
Therefore, the time period and frequency of the pendulum is 0.2 seconds and 5 Hertz respectively.
Given the data in the question;
Number of oscillation in time t; [tex]n = 25[/tex]
Time taken for the oscillation; [tex]t = 5s[/tex]
Time period
Using the expression for Time period:
[tex]Time \ period = \frac{t}{Number\ of\ oscillation}[/tex]
We substitute our given value into the equation
[tex]Time \ period = \frac{5s}{25}\\\\Time \ period = 0.2s[/tex]
Hence, the time period is 0.2 seconds
Also, using the formula for frequency:
[tex]f = \frac{1}{T}[/tex]
Where f is frequency and T is time period.
We substitute our values into the equation
[tex]f = \frac{1}{0.2s} \\\\f = 5s^{-1}\\\\f = 5Hz[/tex]
Therefore, the frequency of the pendulum is 5 Hertz.
Learn more: https://brainly.com/question/24159297
Alex, parked by the side of an east-west road, is watching car P, which is moving in a westerly direction. Barbara, driving east at a speed 52 km/h, watches the same car. Take the easterly direction as positive. If Alex measures a speed of 78 km/h for car P, what velocity will Barbara measure?
Answer:
[tex]v_{PB} = 130\ km/h[/tex]
Explanation:
Since, Alex is at rest. Therefore, the speed measured by him will be the absolute speed of car P. Therefore, taking easterly direction as positive:
[tex]Absolute\ Velocity\ of\ Car\ P = v_{P} = -78\ km/h[/tex]
And the absolute velocity of Barbara's Car is given as:[tex]Absolute\ Velocity\ of\ Barbara's\ Car = v_{B} = 52\ km/h[/tex]
Now, for the velocity of Car p with respect to the velocity of Barbara's Car can be given s follows:
[tex]Velocity\ of\ Car\ P\ measured\ by\ Barbara = v_{PB} = v_{B}-v_{P}\\\\v_{PB} = 52\ km/h-(-78\ km/h)[/tex]
[tex]v_{PB} = 130\ km/h[/tex]
A 0.50 mº gas tank holds 3.0 moles of ideal monatomic Helium gas at a temperature of 250 K. What is the mms speed of the molecules? (The Boltzmann constant is 1.38 x 10-23 J/K, NA = 6.022 x 1023 molecules/mol.)
Answer:
v = 1247.92 m/s
Explanation:
The formula for kinetic energy is given as follows:
[tex]K.E = \frac{1}{2}mv^2[/tex]
Another formula that is used for Kinetic Energy is given as:
[tex]K.E = \frac{3}{2}KT[/tex]
Comparing both formulae for K.E:
[tex]\frac{1}{2}mv^2 = \frac{3}{2}KT\\\\mv^2 = 3KT\\v = \sqrt{ \frac{3KT}{m}}[/tex]
where,
v = rms speed of helium molecule = ?
K = Boltzmann Constant = 1.38 x 10⁻²³ J/k
T = Absolute Temperature = 250 K
m = mass of helium molecule = 6.646 x 10⁻²⁷ kg
Therefore,
[tex]v = \sqrt{\frac{(3)(1.38\ x\ 10^{-23}\ J/k)(250\ k)}{6.646\ x\ 10^{-27}\ kg}} \\\\[/tex]
v = 1247.92 m/s
A rock is at the top og a 20 meter tall hill. The rock has a mass of 10 kg. How much potential energy does it have
Answer:
1962 joules
Explanation:
m = 10 kg
h = 20 m
g = 9.81 ms^-2
PE = ?
PE = MGH
PE = 10 x 9.81 x 20
PE = 1962 joules
A particle is moving with (SHM) of period 8.0s and amplitude5.0m
Find
The speed of the particle when it is 3.0m from the centre of it's motion,
The maximum speed,
The maximum acceleration
Answer:
[tex]velocity(x)=15\,\frac{\pi}{4}\,cos(\frac{\pi}{4}x)[/tex]
Max speed = [tex]\frac{15\, \pi}{4} \,\, \frac{m}{s}[/tex]
Max acceleration = [tex]\frac{15\,\pi^2}{16} \,\,\frac{m}{s^2}[/tex]
Explanation:
Given the description of period and amplitude, the SHM could be described by:
[tex]f(x)=5\,sin(\frac{\pi}{4}x)[/tex]
and its angular velocity can be calculated doing the derivative:
[tex]f(x)=5\, \,sin(\frac{\pi}{4}x)\\f'(x)=5\,\frac{\pi}{4}\,cos(\frac{\pi}{4}x)[/tex]
And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
[tex]velocity(x)=15\,\frac{\pi}{4}\,cos(\frac{\pi}{4}x)[/tex] and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = [tex]\frac{15\, \pi}{4} \,\, \frac{m}{s}[/tex]
The acceleration is found from the derivative of the velocity expression, and therefore given by:
[tex]acceleraton(x)=-15\,\frac{\pi^2}{16}\,sin(\frac{\pi}{4}x)[/tex]
and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = [tex]\frac{15\,\pi^2}{16} \,\,\frac{m}{s^2}[/tex]
Choose the correct answer
Answer:
1.(c) 7
2.(d) 900
3.(b) two
4.(c) 0.0007
5.(d)0.0004
Explanation:
(1) White light after reflection through prism splits into 7 colors.
(2) Arabs and Chinese knew about lenses in about 900 AD
(3) There are Two more colors in the spectrum which cannot be seen with naked eye.
(4) Wavelength of red light is 0.0007mm
(5) Wavelength of violet light is 0.0004mm
calculate the load placed 10m from the fulcrum that can be balanced by an effort of 5 N applied at a distance of 4 m from the fulcrum in a lever
Answer:
A = 2 m from fulcrum
Explanation:
Product of anti clockwise = Product of clockwise moment
5 × 4 = 10 × A
20 = 10 x A
A = 20 / 10
A = 2 m from fulcrum
What is the power output in watts and horsepower of a 70.0-kg sprinter who accelerates from rest to 10.0 m/s in 3.00 s
Given that,
Mass of a sprinter = 70 kg
Initial velocity, u = 0
Final velocity, v = 10 m/s
Time, t = 3 s
To find,
Power output.
Solution,
The work done by the sprinter is equal to its kinetic energy.
[tex]W=\dfrac{1}{2}m(v^2-u^2)\\\\=\dfrac{1}{2}\times 70\times 10^2\\\\=3500\ J[/tex]
Let P is power output. Power is equal to work done per unit time. So,
[tex]P=\dfrac{3500\ J}{3\ s}\\\\=1166.67\ W[/tex]
So, the power output is 1166.66 W.
en the current in one coil changes at a rate of 3.2 A/s, an emf of 5.7 is induced in a second, nearby coil. What is the magnitude of the mutual inductance of the two coils
Given that,
The rate of change of current = 3.2 A/s
Emf induced in the coil = 5.7 V
To find,
The magnitude of the mutual inductance of the two coils.
Solution,
The mutual inductance between the coils is given by the formula as follows :
[tex]\epsilon=M\dfrac{dI}{dt}\\\\M=\dfrac{\epsilon}{\dfrac{dI}{dt}}\\\\M=\dfrac{5.7}{3.2}\\\\=1.78\ H[/tex]
So, the mutual inductance of the two coils is 1.78 H.
if A.B=A.C
does this imply that B must be equal to c ?
I need answer with example please
Answer:
Yes
Explanation:
[tex]Consider\ three\ variables\ a,b\ and\ c.\\If,\\ab=ac\\a*b=a*c\\We\ may\ now\ divide\ the\ LHS\ and\ RHS\ by\ a,\\Hence,\\\frac{a*b}{a} =\frac{a*c}{a}\\Hence,\\b=c[/tex]
[tex]Ex: \\Consider\ a=5, b=6.\\Hence\ if,\\a*b=a*c\\5*6=5*c\\Hence,\\30=5c\\Hence, c=\frac{30}{5}\\c=6\\As\ b\ also\ equals\ to\ 6,\\b=c[/tex]
PLZZZ I will give brainliest. A ball that contains mechanical energy is rolled across the floor. You notice the ball is slowing down. If the ball started with 20 units of energy, explain how much energy would there be when the ball comes to a complete stop? How can you tell?
Answer: because of friction it will stop rolling completly
Explanation:
Starting with the definitions of momentum and kinetic energy, derive an equation for the kinetic energy of a particle expressed as a function of its momentum.
Answer:
[tex]K.E = (\frac{1}{2})Pv[/tex]
Explanation:
The momentum of a particle is defined as the product of its mass and velocity:
[tex]P = mv[/tex] -------------------- equation (1)
where,
P = momentum of the particle
m = mass of the particle
v = velocity of the particle
The kinetic energy of the particle is given as follows:
[tex]K.E = (\frac{1}{2})mv^2\\\\K.E = (\frac{1}{2})v(mv)[/tex]
using equation (1), we get:
[tex]K.E = (\frac{1}{2})Pv[/tex]
0.0884 moles of a diatomic gas
are in a piston. When the piston
is compressed, the temperature
drops by 18.8 K, and 83.7 J of
heat flow out. Find W.
(Be careful with + and - signs.
+W = expansion, +Q = added,
+AU = temp goes up)
(Unit = J)
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:
[tex]\Delta\ U = nC_{v}\Delta\ T[/tex]
where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,
[tex]\Delta\ U = (0.0884\ moles)(20.785\ J/mol.K)(18.8\ K)\\\Delta\ U = 34.54\ J[/tex]
Now, we can apply First Law of Thermodynamics as follows:
[tex]\Delta\ Q = \Delta\ U + W[/tex]
where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,
[tex]-83.7\ J = 34.54\ J + W\\W = -83.7\ J - 34.54\ J\\[/tex]
W = - 118.24 J (negative sign shows that work is done on piston)
Answer:
-49.2
Explanation:
Trust me bro
An astronaut on the Moon releases a rock from rest and allows it to drop straight downward. If the acceleration due to gravity on the Moon is 1.62m/s2 and the rock falls for 2.4s before hitting the ground, what is its speed just before it lands?
Answer:
speed before landing = 3.9 m/s (3 s.f.)
Explanation:
As rock is released from rest, u = 0 m/s a = 1.62 m/s² t = 2.4 s v = ?
v = u + at
v = 0 + (1.62 x 2.4)
v = 3.888 = 3.9 s (3 s.f.)
Hope this helps!
The speed of the rock before hitting the ground is 3.89 m/s
The given parameters;
acceleration due to gravity on moon, g = 1.62 m/s²
time taken for the object to fall, t = 2.4 s
To find:
the speed of the object before hitting the ground;The maximum height of fall of the rock is calculated as;
[tex]h = v_0t + \frac{1}{2} gt^2\\\\v_0 = 0\\\\h = \frac{1}{2} gt^2\\\\h = 0.5 \times 1.62 \times 2.4^2 \\\\h = 4.67 \ m[/tex]
The speed of the rock before hitting the ground is calculated as;
[tex]v_f^2 = v_0 ^2 + 2gh\\\\v_f^2 = 0 + 2\times 1.62 \times 4.67\\\\v_f^2 = 15.13\\\\v_f = \sqrt{15.13} \\\\v_f = 3.89 \ m/s[/tex]
Thus, the speed of the rock before hitting the ground is 3.89 m/s
Learn more here: https://brainly.com/question/4617423
At 3.00 m from a source that is emitting sound uniformly in all directions, the sound level (b) is 60.0 dB.
How many meters from the source would the sound level be one-fourth the sound level at 3.00 m?
Given that,
At 3.00 m from a source that is emitting sound uniformly in all directions, the sound level is 60.0 dB.
To find,
The distance from the source would the sound level be one-fourth the sound level at 3.00 m.
Solution,
The intensity from a source is inversely proportional to the distance.
Let I₁ = 60 dB, r₁ = 3 m, I₂ = 60/4 = 15 dB, r₂ =?
Using relation :
[tex]\dfrac{I_1}{I_2}=\dfrac{r_2^2}{r_1^2}\\\\r_2^2=\dfrac{I_1r_1^2}{I_2}\\\\r_2^2=\dfrac{60\times (3)^2}{15}\\\\r_2=6\ m[/tex]
So, at a distance of 6 m the sound level will be one fourth of the sound level at 3 m.
Two students (90.0 kg and 60.0 kg) on roller skates face-to-face push against each other. The 90.0 kg student moves at 5.0 m/s just after their hands lose contact. What is the velocity of the other student?
Given that,
Mass of student 1, m₁ = 90 kg
Mass of student 2, m₂ = 60 kg
Speed of student 1, v₁ = 5 m/s
To find,
The velocity of the other student.
Solution,
Using the conservation of momentum to find the velocity of the other student. Let it is v₂.
[tex]m_1v_1=m_2v_2\\\\v_2=\dfrac{m_1v_1}{m_2}\\\\v_2=\dfrac{90\times 5}{60}\\\\=7.5\ m/s[/tex]
So, the velocity of the other student is 7.5 m/s.
In a car, how does an air bag minimize the force acting on a person during a collision?
Answer:
It increases the time it takes for the person to stop.
Explanation:
Answer:
C: It increases the time it takes for the person to stop.
Explanation:
on edge! hope this helps!!~ o(〃^▽^〃)o
the question is in a picture
Answer:
same for all objects
Explanation:
earth pulls every object by same force of gravity
The mass of an electron is 9.11 x 10-31 kg. If you want to increase the speed of the
electron from 90% of the speed of light to 95% of the speed of light (where the
speed of light is 2.997x108 m/s), the amount of work that must be done is:
8.2 x 10-13)
0 3.2× 10-13 ,
O 2.6% 10-13 ,
O 7.4× 10-14 ,
3.8 x 10-15)
I'm not sure of this question, yet i know you may get angry but, just know your loved and if going through a hard time i'm so so sorry, i know how it feels it sucks. take care of yourself, drink water, listen to that one song that makes you dance in your room and go do what YOU love. your beautiful your perfect and dont listen to what anyone says. i love u, everyone loves u, i know its scary but it happens to everyone life isnt a peice of cake unfortunatly and it sucks but woahh your strong! if you need someone to talk to leave a comment below, happy hoildays everyone!
P.S, im looking into the answer of this question. I may not answer it right on time (since i'm not the smartest...) but i promise ill try my best! Also, i am not doing this for points im doing this to make others smile. I hate how no one checks up on anyone, lots of people are going through a stressful time (including me) and i just want to let everyone know that its okay not to be okay! I hope that you all find happiness in every possible situation, once again HAPPY HOLIDAYS!
Solenoid 2 has twice the radius and six times the number of turns per unit length as solenoid 1. The ratio of the magnetic field in the interior of 2 to that in the interior of 1 is: 1/3 1 2 4 6
Answer:
6
Explanation:
The magnetic field inside a solenoid is given by the following formula:
[tex]B = \mu_{0}nI[/tex]
where,
B = Magnetic Field Inside Solenoid
μ₀ = permittivity of free space
n = No. of turns per unit length
I = Current Passing through Solenoid
For Solenoid 1:
[tex]B_{1} = \mu_{0}n_{1}I ------------------- equation 1[/tex]
For Solenoid 2:
n₂ = 6n₁
Therefore,
[tex]B_{1} = \mu_{0}n_{2}I\\B_{1} = 6\mu_{0}n_{1}I ----------------- equation 2[/tex]
Diving equation 1 and equation 2:
[tex]\frac{B_{2}}{B_{1}} = \frac{6\mu_{0}nI}{\mu_{0}nI}\\\\\frac{B_{2}}{B_{1}} = 6[/tex]
Hence, the correct option is:
6
The ratio of the magnetic fields in interior 2 to interior 1 will be
[tex]\dfrac{B_2}{B_1} =\dfrac{6}{1}[/tex]
What will be the ratio of the magnetic fields?The formula for the magnetic fields inside the solenoid will be given:
[tex]B=\mu_onI[/tex]
here,
B = Magnetic Field Inside Solenoid
μ₀ = permittivity of free space
n = No. of turns per unit length
I = Current Passing through Solenoid
For the first Solenoid
[tex]B_1=\mu_on_1I[/tex]..................(1)
For the second solenoid
[tex]n_2=6n_1[/tex]
Now
[tex]B_2=\mu_on_2I[/tex]
[tex]B_2=\mu_o(6n_1)I[/tex]..................(2)
Diving equation 1 and equation 2:
[tex]\dfrac{B_2}{B_1} =\dfrac{\mu_o(6n_1)I}{\mu_on_2I}[/tex]
[tex]\dfrac{B_2}{B_1} =6[/tex]
Thus the ratio of the magnetic fields in interior 2 to interior 1 will be
[tex]\dfrac{B_2}{B_1} =\dfrac{6}{1}[/tex]
To know more about the Magnetic field of solenoids follow
https://brainly.com/question/14357721
A large bagel spins with angular speed w about its center. A smaller bagel spins with triple the angular speed.
How does the period Tlarge of the large bagel compare with the period Tsmall of the small bagel?
Answer:
T large = 3T small
Explanation:
It's just 3 times larger