Answer:
Option 1.
Step-by-step explanation:
When triangles are similar, their angles cannot be proportional. The angles on both triangles have to be same.
Option 3 and 4 are wrong.
Angle T and angle U cannot be congruent on the same triangle.
Therefore, option 1 is correct.
The answer would be the third one because if they are simillar that means they are not exactly the same but one is a dillation of one. This means they are proportinate. Mark Branliest!!!!
Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. In a talent competition, half of the contestants are eliminated in each round. At the end of the nth round, 32 contestants remain. If there were 1,024 contestants at the start of the competition, what is the value of n? The value of n is .
Answer:
n =32
Step-by-step explanation:
If 1 contestant is eliminated each round
then of 1024contestants
32 left
1024/32=32
Answer:
n=32
Step-by-step explanation:
Where is my phone? I seem to have lost my phone. I know where I last saw it but it has been moved since then and I need help to locate it. It started at the following coordinates A (14, -12); B (14, -19); C (10, -19); D (10, -14); E (13, -14); F (13, -12). My Mom told me she translated it 6 units to the left Then my little brother said he had reflected it over the Y-axis My friend many found it and translated it 9 units up Dad said he tripped over it and reflected it over the X-axis My sister then rotated it 900 clockwise Uncle Jose translated it 5 units left and 4 units down Cousin Michelle then said she rotated it 900 clockwise Finally my dog picked it up and translated it 5 units down and 10 units to the right Where is my phone? Using the scenario on this page do the following. Graph the preimage using the given points. Label points (A, B, C, ...) Transform the objects using the information provided. Show each transformation and label. (A', B', C', ...) Determine the final location. Write a 2 to 3 sentence explain on how you found the phone location.
Answer:
see attached
Step-by-step explanation:
The attachments show the initial (brown) and final (blue) positions of the phone. The spreadsheet shows all the intermediate locations and the formulas used to determine them.
The two reflections cancel the total of 180° of CW rotation, so the net result is simply a translation. That translation is up by 9 units.
__
Translation up adds to the y-coefficient; translation right adds to the x-coefficient. Down or left use negative values.
90° CW does this: (x, y) ⇒ (y, -x)
Reflection across y does this: (x, y) ⇒ (-x, y)
Reflection across x does this: (x, y) ⇒ (x, -y)
Butler Trucking Company has developed a regression equation to predict the delivery time for its drivers (y). The model is based on the miles traveled (x 1), the number of deliveries (x 2) and whether or not the travel will occur during rush hours (x 3 - 1 if during rush hour and 0 if not during rush hour). The regression equation that they use is y
Answer:
The answer is Y = 6.3973.
Note: Kindly find an attached document of the complete question to this solution
Sources: The complete question was researched from Quizlet site.
Step-by-step explanation:
Solution
Given that:
The regression equation is given below:
Y = - 0.3302 + 0.0672 x₁ + 0.6735 x₂ + 0.9980 x₃
Now,
When x₂ = 5, x₁ = 50, x₃ = 0
Y = - 0.3302 + 0.0672 * 50 +0.6735 * 5
Y= - 0.3302 + 3.36 + 3.3675
Y = 6.3973
Therefore the time (hour) it will take for the driver to make five deliveries on a 50 mile journey not during rush hour is 6.3973.
According to the National Association of Theater Owners, the average price for a movie in the United States in 2012 was $7.96. Assume the population standard deviation is $0.50 and that a sample of 30 theaters was randomly selected.
Required:
a. Calculate the standard error of the mean.
b. What is the probability that the sample mean will be less than $7.75?
c. What is the probability that the sample mean will be less than $8.10?
d. What is the probability that the sample mean will be more than $8.20?
Answer:
(a) The standard error of the mean is 0.091.
(b) The probability that the sample mean will be less than $7.75 is 0.0107.
(c) The probability that the sample mean will be less than $8.10 is 0.9369.
(d) The probability that the sample mean will be more than $8.20 is 0.0043.
Step-by-step explanation:
We are given that the average price for a movie in the United States in 2012 was $7.96.
Assume the population standard deviation is $0.50 and that a sample of 30 theaters was randomly selected.
Let [tex]\bar X[/tex] = sample mean price for a movie in the United States
The z-score probability distribution for the sample mean is given by;
Z = [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] ~ N(0,1)
where, [tex]\mu[/tex] = population mean price for a movie = $7.96
[tex]\sigma[/tex] = population standard deviation = $0.50
n = sample of theaters = 30
(a) The standard error of the mean is given by;
Standard error = [tex]\frac{\sigma}{\sqrt{n} }[/tex] = [tex]\frac{0.50}{\sqrt{30} }[/tex]
= 0.091
(b) The probability that the sample mean will be less than $7.75 is given by = P([tex]\bar X[/tex] < $7.75)
P([tex]\bar X[/tex] < $7.75) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{7.75-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z < -2.30) = 1 - P(Z [tex]\leq[/tex] 2.30)
= 1 - 0.9893 = 0.0107
The above probability is calculated by looking at the value of x = 2.30 in the z table which has an area of 0.9893.
(c) The probability that the sample mean will be less than $8.10 is given by = P([tex]\bar X[/tex] < $8.10)
P([tex]\bar X[/tex] < $8.10) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{8.10-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z < 1.53) = 0.9369
The above probability is calculated by looking at the value of x = 1.53 in the z table which has an area of 0.9369.
(d) The probability that the sample mean will be more than $8.20 is given by = P([tex]\bar X[/tex] > $8.20)
P([tex]\bar X[/tex] > $8.20) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{8.20-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z > 2.63) = 1 - P(Z [tex]\leq[/tex] 2.63)
= 1 - 0.9957 = 0.0043
The above probability is calculated by looking at the value of x = 2.63 in the z table which has an area of 0.9957.
Dr. Miriam Johnson has been teaching accounting for over 20 years. From her experience, she knows that 60% of her students do homework regularly. Moreover, 95% of the students who do their homework regularly generally pass the course. She also knows that 85% of her students pass the course.
a. What is the probability that a student will do homework regularly and also pass the course?
b. What is the probability that a student will neither do homework regularly nor will pass the course?
c. Are the events "pass the course" and "do homework regularly" mutually exclusive? Explain.
d. Are the events "pass the course" and "do homework regularly" independent? Explain.
Answer:
a) The probability that a student will do homework regularly and also pass the course = P(H n P) = 0.57
b) The probability that a student will neither do homework regularly nor will pass the course = P(H' n P') = 0.12
c) The two events, pass the course and do homework regularly, aren't mutually exclusive. Check Explanation for reasons why.
d) The two events, pass the course and do homework regularly, aren't independent. Check Explanation for reasons why.
Step-by-step explanation:
Let the event that a student does homework regularly be H.
The event that a student passes the course be P.
- 60% of her students do homework regularly
P(H) = 60% = 0.60
- 95% of the students who do their homework regularly generally pass the course
P(P|H) = 95% = 0.95
- She also knows that 85% of her students pass the course.
P(P) = 85% = 0.85
a) The probability that a student will do homework regularly and also pass the course = P(H n P)
The conditional probability of A occurring given that B has occurred, P(A|B), is given as
P(A|B) = P(A n B) ÷ P(B)
And we can write that
P(A n B) = P(A|B) × P(B)
Hence,
P(H n P) = P(P n H) = P(P|H) × P(H) = 0.95 × 0.60 = 0.57
b) The probability that a student will neither do homework regularly nor will pass the course = P(H' n P')
From Sets Theory,
P(H n P') + P(H' n P) + P(H n P) + P(H' n P') = 1
P(H n P) = 0.57 (from (a))
Note also that
P(H) = P(H n P') + P(H n P) (since the events P and P' are mutually exclusive)
0.60 = P(H n P') + 0.57
P(H n P') = 0.60 - 0.57
Also
P(P) = P(H' n P) + P(H n P) (since the events H and H' are mutually exclusive)
0.85 = P(H' n P) + 0.57
P(H' n P) = 0.85 - 0.57 = 0.28
So,
P(H n P') + P(H' n P) + P(H n P) + P(H' n P') = 1
Becomes
0.03 + 0.28 + 0.57 + P(H' n P') = 1
P(H' n P') = 1 - 0.03 - 0.57 - 0.28 = 0.12
c) Are the events "pass the course" and "do homework regularly" mutually exclusive? Explain.
Two events are said to be mutually exclusive if the two events cannot take place at the same time. The mathematical statement used to confirm the mutual exclusivity of two events A and B is that if A and B are mutually exclusive,
P(A n B) = 0.
But, P(H n P) has been calculated to be 0.57, P(H n P) = 0.57 ≠ 0.
Hence, the two events aren't mutually exclusive.
d. Are the events "pass the course" and "do homework regularly" independent? Explain
Two events are said to be independent of the probabilty of one occurring dowant depend on the probability of the other one occurring. It sis proven mathematically that two events A and B are independent when
P(A|B) = P(A)
P(B|A) = P(B)
P(A n B) = P(A) × P(B)
To check if the events pass the course and do homework regularly are mutually exclusive now.
P(P|H) = 0.95
P(P) = 0.85
P(H|P) = P(P n H) ÷ P(P) = 0.57 ÷ 0.85 = 0.671
P(H) = 0.60
P(H n P) = P(P n H)
P(P|H) = 0.95 ≠ 0.85 = P(P)
P(H|P) = 0.671 ≠ 0.60 = P(H)
P(P)×P(H) = 0.85 × 0.60 = 0.51 ≠ 0.57 = P(P n H)
None of the conditions is satisfied, hence, we can conclude that the two events are not independent.
Hope this Helps!!!
At the U.S. Open Tennis Championship a statistician keeps track of every serve that a player hits during the tournament. The statistician reported that the mean serve speed was 100 miles per hour (mph) and the standard deviation of the serve speeds was 15 mph. Assume that the statistician also gave us the information that the distribution of serve speeds was mound- shaped and symmetric. What percentage of the player's serves were between 115 mph and 145 mph
Answer:
15.74% of the player's serves were between 115 mph and 145 mph
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 100, \sigma = 15[/tex]
What percentage of the player's serves were between 115 mph and 145 mph
This is the pvalue of Z when X = 145 subtracted by the pvalue of Z when X = 115.
X = 145
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{145 - 100}{15}[/tex]
[tex]Z = 3[/tex]
[tex]Z = 3[/tex] has a pvalue of 0.9987
X = 115
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{115 - 100}{15}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a pvalue of 0.8413
0.9987 - 0.8413 = 0.1574
15.74% of the player's serves were between 115 mph and 145 mph
Please answer this correctly
Answer:
The number of employees classified into groups as shown below:
1 - 10: 3 6 (2companies)
11-20: 16 (1 company)
21-30: 25, 26, 27 (3 companies)
31-40: 34, 35, 35, 35, 36 (5 companies)
41-50: 41, 43, 48, 48 (4 companies)
Hope this helps!
Answer:
11-20 is 1
31-40 is 5
Step-by-step explanation:
Just count the amount
Hope that helps :D
B
Round your answer to the nearest hundredth.
A
9
B
5
Answer:
56.25°
Step-by-step explanation:
The definition of the cosine function tells you that
cos(B) = BC/BA
B = arccos(BC/BA) = arccos(5/9)
B ≈ 56.25°
Please help with this problem
Answer:
The length of the short side is 14.5 units, the length of the other short side is 18.5 units, and the length of the longest side is 23.5 units.
Step-by-step explanation:
The Pythagorean Theorem
If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.
This relationship is represented by the formula:
[tex]a^2+b^2=c^2[/tex]
Applying the Pythagorean Theorem to find the lengths of the three sides we get:
[tex](x)^2+(x+4)^2=(x+9)^2\\\\2x^2+8x+16=x^2+18x+81\\\\2x^2+8x-65=x^2+18x\\\\2x^2-10x-65=x^2\\\\x^2-10x-65=0[/tex]
Solve with the quadratic formula
[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}[/tex]
[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]
[tex]\mathrm{For\:}\quad a=1,\:b=-10,\:c=-65:\quad x_{1,\:2}=\frac{-\left(-10\right)\pm \sqrt{\left(-10\right)^2-4\cdot \:1\left(-65\right)}}{2\cdot \:1}\\\\x_{1}=\frac{-\left(-10\right)+ \sqrt{\left(-10\right)^2-4\cdot \:1\left(-65\right)}}{2\cdot \:1}=5+3\sqrt{10}\\\\x_{2}=\frac{-\left(-10\right)- \sqrt{\left(-10\right)^2-4\cdot \:1\left(-65\right)}}{2\cdot \:1}=5-3\sqrt{10}[/tex]
Because a length can only be positive, the only solution is
[tex]x=5+3\sqrt{10}\approx 14.5[/tex]
The length of the short side is 14.5, the length of the other short side is [tex]14.5+4=18.5[/tex], and the length of the longest side is [tex]14.5+9=23.5[/tex].
Select a composite number to break into factors. Continue factoring until all factors are prime
Answer:
2*2 * 2*2 * 2*3
Step-by-step explanation:
96 =16 *6
Break these down, since neither 16 nor 6 are prime
= 4*4 * 2*3
4 in not prime, but 2 and 3 are prime
= 2*2 * 2*2 * 2*3
All of these are prime
Answer:
22, 23
Step-by-step explanation:
Just got it right on edge 2021
Among coffee drinkers, men drink a mean of 3.2 cups per day with a standard deviation of 0.8 cups. Assume the number of cups per day follows a normal distribution.
a. What proportion drink 2 cups per day or more?
b. What proportion drink no more than 4 cups per day?
c. If the top 5% of coffee drinkers are considered "heavy" coffee drinkers, what is the minimum number of cups consumed by a heavy coffee drinker?
d. If a sample of 20 men is selected, what is the probability that the mean number of cups per day is greater than 3?
Answer:
a) 0.9332 = 93.32% drink 2 cups per day or more.
b) 0.8413 = 84.13% drink no more than 4 cups per day
c) The minimum number of cups consumed by a heavy coffee drinker is 4.52.
d) 86.86% probability that the mean number of cups per day is greater than 3
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
[tex]\mu = 3.2, \sigma = 0.8[/tex]
a. What proportion drink 2 cups per day or more?
This is 1 subtracted by the pvalue of Z when X = 2. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{2 - 3.2}{0.8}[/tex]
[tex]Z = -1.5[/tex]
[tex]Z = -1.5[/tex] has a pvalue of 0.0668
1 - 0.0668 = 0.9332
0.9332 = 93.32% drink 2 cups per day or more.
b. What proportion drink no more than 4 cups per day?
This is the pvalue of Z when X = 4.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{4 - 3.2}{0.8}[/tex]
[tex]Z = 1[/tex]
[tex]Z = 1[/tex] has a pvalue of 0.8413
0.8413 = 84.13% drink no more than 4 cups per day
c. If the top 5% of coffee drinkers are considered "heavy" coffee drinkers, what is the minimum number of cups consumed by a heavy coffee drinker?
This is the 100 - 5 = 95th percentile, which is X when Z has a pvalue of 0.95. So X when Z = 1.645. Then
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.645 = \frac{X - 3.2}{0.8}[/tex]
[tex]X - 3.2 = 1.645*0.8[/tex]
[tex]X = 4.52[/tex]
The minimum number of cups consumed by a heavy coffee drinker is 4.52.
d. If a sample of 20 men is selected, what is the probability that the mean number of cups per day is greater than 3?
Sample of 20, so applying the central limit theore with n = 20, [tex]s = \frac{0.8}{\sqrt{20}} = 0.1789[/tex]
This probability is 1 subtracted by the pvalue of Z when X = 3.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{3 - 3.2}{0.1789}[/tex]
[tex]Z = -1.12[/tex]
[tex]Z = -1.12[/tex] has a pvalue of 0.1314
1 - 0.1314 = 0.8686
86.86% probability that the mean number of cups per day is greater than 3
Any help would be great
Hey there! :)
Answer:
[tex]-25m^{6}n^{9}[/tex]
Step-by-step explanation:
The product rule means that when multiplying variables with exponents, the exponents must be added together. Therefore:
[tex](-5m^{5}n^{6})(5mn^{3}) =[/tex]
[tex]-25m^{5+1}n^{6+3} =[/tex]
Simplify:
[tex]-25m^{6}n^{9}[/tex]
This is your answer!
Can someone plz help me solved this problem! I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Answer:
See the answers below.
Step-by-step explanation:
[tex]a.\:\frac{f\left(x\right)-f\left(a\right)}{x-a}=\frac{2x^2-x-5-\left(2a^2-a-5\right)}{x-a}\\\\=\frac{2x^2-x+a-2a^2}{x-a}\\\\=\frac{2\left(x+a\right)\left(x-a\right)-1\left(x-a\right)}{x-a}\\\\=\frac{\left(x-a\right)\left[2\left(x+a\right)-1\right]}{x-a}\\\\=2x+2a-1\\\\\\b.\:\frac{f\left(x+h\right)-f\left(x\right)}{h}=\frac{2\left(x+h\right)^2-\left(x+h\right)-5-\left(2x^2-x-5\right)}{h}\\\\=\frac{2\left(x^2+2xh+h^2\right)-\left(x+h\right)-5-\left(2x^2-x-5\right)}{h}\\[/tex]
Expand and simplify to get:
[tex]=\frac{2h^2+4xh-h}{h}\\\\=\frac{h\left(2h+4x-1\right)}{h}\\\\=2h+4x-1[/tex]
Best Regards!
Simplify the expression by combining like terms
15 + 12x – 5.2 + 4y - 7
9.8 +12x+y-7
2.8+12x+4y
determine whether these two functions are inverses.
Answer:
No The reactions are not inverses to each other
Step-by-step explanation:
f(x) = 3x + 27
Let f(x) be y
y= 3x+27
subtracting 27 on both sides
3x = y - 27
x= (y-27)/3
= y/3 - 9
inverse function is x/3 -9 not x/3 + 9
Therefore, not an inverse
Hope it helps...
Rewrite the expression using exponents .Then find the product
Answer:
[tex]m ^ {3/7}[/tex]
Step-by-step explanation:
=> [tex]\sqrt[7]{m^3}[/tex]
[tex]\sqrt[7]{}= ^\frac{1}{7}[/tex]
=> [tex]m^{3*1/7}[/tex]
=> [tex]m ^ {3/7}[/tex]
. A foreman for an injection-molding firm admits that on 23% of his shifts, he forgets to shut off the injection machine on his line. Failure to shut down at night causes the machine to overheat, increasing the probability that a defective molding will be produced during the early morning run from 5% to 15%. The plant manager randomly selects a molding from the early morning run and discovers it is defective. What is the probability that the foreman forgot to shut off the machine the previous night?
Answer:
P(F | D) = 47.26%
There is a 47.26% probability that the foreman forgot to shut off the machine the previous night.
Step-by-step explanation:
A foreman for an injection-molding firm admits that on 23% of his shifts, he forgets to shut off the injection machine on his line.
Let F denote the event that foreman forgets to shut off the machine.
Failure to shut down at night causes the machine to overheat, increasing the probability that a defective molding will be produced during the early morning run from 5% to 15%.
Let D denote the event that the mold is defective.
If the foreman forgets to shut off the machine then 15% molds get defective.
P(F and D) = 0.23×0.15
P(F and D) = 0.0345
If the foreman doesn't forget to shut off the machine then 5% molds get defective.
P(F' and D) = (1 - 0.23)×0.05
P(F' and D) = 0.77×0.05
P(F' and D) = 0.0385
The probability that the mold is defective is
P(D) = P(F and D) + P(F' and D)
P(D) = 0.0345 + 0.0385
P(D) = 0.073
The probability that the foreman forgot to shut off the machine the previous night is given by
∵ P(B | A) = P(A and B)/P(A)
For the given case,
P(F | D) = P(F and D)/P(D)
Where
P(F and D) = 0.0345
P(D) = 0.073
So,
P(F | D) = 0.0345/0.073
P(F | D) = 0.4726
P(F | D) = 47.26%
In general, shopping online is supposed to be more convenient than going to stores. However, according to a recent Harris Interactive poll, 87% of people have experienced problems with an online transaction (The Wall Street Journal, October 2, 2007). Forty-two percent of people who experienced a problem abandoned the transaction or switched to a competitor′s website. Fifty-three percent of people who experienced problems contacted customer-service representatives.
a. What percentage of people did not experience problems with an online transaction?
b. What percentage of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website?
c. What percentage of people experienced problems with an online transaction and contacted customer-service representatives?
Answer:
a) 13% of people did not experience problems with an online transaction.
b) 36.54% of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website
c) 46.11% of people experienced problems with an online transaction and contacted customer-service representatives.
Step-by-step explanation:
a. What percentage of people did not experience problems with an online transaction?
87% of people have experienced problems with an online transaction. So 100 - 87 = 13% of people did not experience problems with an online transaction.
b. What percentage of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website?
87% of people have experienced problems with an online transaction. Forty-two percent of people who experienced a problem abandoned the transaction or switched to a competitor′s website.
Then:
0.87*0.42 = 0.3654
36.54% of people experienced problems with an online transaction and abandoned the transaction or switched to a competitor′s website.
c. What percentage of people experienced problems with an online transaction and contacted customer-service representatives?
87% of people have experienced problems with an online transaction. Fifty-three percent of people who experienced problems contacted customer-service representatives.
Then:
0.87*0.53 = 0.4611
46.11% of people experienced problems with an online transaction and contacted customer-service representatives.
100 pts You have a bag of 15 marbles: 5 blue, 3 red, 4 green, and 3 yellow. You draw 3 marbles without replacement. Which action, performed before the draws, increases the probability of drawing 3 green marbles in a row?
Answer:
see below
Step-by-step explanation:
You can remove one or more of the other color marbles to increase the probability of drawing a green marble
or
You can add one or more green marbles to have more green marbles in the bag
Solve for x: −3x + 3 < 6
Answer:x>-1
Step-by-step explanation:
Step 1: Subtract 3 from both sides.
-3x+3-3<6-3
-3x<3
Step 2: Divide both sides by -3.
-3x/-3<3/3
X>-1
Justin spent $23 on fruit at grocery store. He spent a total of $25 at the store. What percentage of the total did he spend on fruit?
Step-by-step explanation:
In my opinion maybe he has spent 98%
Pls help marking Brainliest! (x-1)(x-1)=?
Answer:
Brainleist!Step-by-step explanation:
x^2-2x+1thats the answer...
just: Expand the polynomial using the FOIL method.
Answer:
(x-1)(x-1)=(x-1)² because it's the same thing multiplied by itself
Using FOIL method:
(x-1)(x-1)=
x²-x-x+1=
x²-2x+1
Lucy has to run two errands. She starts from home and travels 3 miles south to the post office. From the post office, she travels 4 miles east to the gas station. Then, from the gas station, she travels 5 miles to return home. The entire trip forms a triangle. What was the smallest angle made at her trip? A. At the gas station B. At Lucy's home C. At the post office D. It depends on the direction she is traveling
Answer:
the correct choice is A. At the gas station
Step-by-step explanation:
Lucy starts at home and travels 3 miles south to the post office. From the post office, she travels 4 miles east to the gas station. As it is known south and east directions form right angle. Since the entire trip forms a triangle, this triangle is right with right angle at the post office.
Call the vertices of this triangle P - post office, G - gas station, H - home. Then HP and PG are legs of this triangle and GH is hypotenuse.
From the given data:
HP=3;
PG=4;
GH=5;
∠P=90°.
The smallest angle is opposite to the smallest side. The smallest side is leg HP, so the smallest angle is G that is the angle at gas station.
Answer:
a
Step-by-step explanation:
Margo borrows $1700, agreeing to pay it back with 4% annual interest after 6 months. How much interest
will she pay?
Round your answer to the nearest cent, if necessary.
Answer:
$1733.67
Step-by-step explanation:
Simple interest rate formula: A = P(1 + r)^t
Simply plug in your known variables
A = 1700(1 + 0.04)^0.5
A = 1733.67
Remember that t is time in years.
State the size of angle 'n' in the triangle illustrated below.
Answer:
Option B
Step-by-step explanation:
<r = 32 degrees (alternate angles )
<r = <n = 32 degrees (vertical angles)
What is the distance between (8, -3) and (4, - 7)?
Answer:
[tex]distance=\sqrt{32}[/tex] , which agrees with answer "c" in your list of possible options
Step-by-step explanation:
Use the formula for distance between two points [tex](x_1,y_1)[/tex], and [tex](x_2,y_2)[/tex] on the plane:
[tex]distance = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\distance= \sqrt{(4-8)^2+(-7-(-3))^2} \\distance= \sqrt{(-4)^2+(-4)^2} \\distance=\sqrt{16+16}\\distance=\sqrt{32}[/tex]
The answer to – 7x + y = -10
Step-by-step explanation:
y=7x-10
Answer:
[tex]\huge \boxed{y=7x-10}[/tex]
Step-by-step explanation:
[tex]-7x+y=-10[/tex]
[tex]\sf Add \ 7x \ on \ both \ sides.[/tex]
[tex]-7x+y+7x=-10+7x[/tex]
[tex]y=7x-10[/tex]
Construct a boxplot for the given data. Include values of the 5-number summary in all boxplots. The test scores of 40 students are listed below. Construct a boxplot for the data set.
25 35 43 44 47 48 54 55 56 57
59 62 63 65 66 68 69 69 71 72
72 73 74 76 77 77 78 79 80 81
81 82 83 85 89 92 93 94 97 98
Answer:
Minimum = 25
First quartile = 58
Second quartile = 72
Third quartile = 80
Maximum = 98
Step-by-step explanation:
N
Write the rate as a unit rate
729 riders in 9 subway cars
А
The unit rate is
This
(Simplify your answ
riders/car
Answer:
Unit rate = 81 riders/ car.
Step-by-step explanation:
Given
729 riders in 9 cars
we have to find unit rate in terms of riders per car
let the the riders per car (i.e rate) be x.
If there are 9 cars then
total no. of riders in 9 cars = no. of cars * riders per car = 9*x = 9x
given that 729 riders in 9 cars
then
9x = 729
=> x = 729/9 = 81
Thus, riders per car = x = 81.
Unit rate is 81 riders per car.
y= -3/2x-6 x=15 plssssssssssssssssssssssss help
Answer:
-45/2 - 12/2 = -57/2
Step-by-step explanation:
Substitute 15 for x in the given equation: y = (-3/2)x - 6 becomes
y = (-3/2)(15) - 6 = -45/2 - 6 when x = 15. This is equivalent to -57/2