Answer:
t = 0.414s
Explanation:
In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:
[tex]t=\frac{d}{v}[/tex] (1)
d: distance to the plate = 18.4m
v: speed of the ball = 160.0km/h
You first convert the units of the sped of the ball to appropriate units (m/s)
[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]
Then, you replace the values of the speed v and distance s in the equation (1):
[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]
THe ball takes 0.414s to reach the home plate
A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.
Answer:
The found acceleration in terms of h and t is:
[tex]a=\frac{h}{5(t_1)^2}[/tex]
Explanation:
(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)
We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.
Stage 1Constant acceleration, starts from rest.
Distance = [tex]y = \frac{1}{2}a(t_1)^2[/tex]
Velocity = [tex]v_1=at_1[/tex]
Stage 2Constant velocity where
Velocity = [tex]v_o=v_1=at_1[/tex]
Distance =
[tex]y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\[/tex]Stage 3Constant deceleration where
Velocity = [tex]v_0=v_1=at_1[/tex]
Distance =
[tex]y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2[/tex]
Total HeightTotal height = y₁ + y₂ + y₃
Total height = [tex]\frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2[/tex]
AccelerationFind acceleration by rearranging the found equation of total height.
Total Height = h
h = 5a(t₁)²
[tex]a=\frac{h}{5(t_1)^2}[/tex]
A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.
Answer:
P = 5.97 × 10^(5) Pa
Explanation:
We are given;
Mass of balloon;m_b = 4.3 kg
Radius;r = 1.54 m
Temperature;T = 289 K
Density;ρ = 1.19 kg/m³
We know that, density = mass/volume
So, mass = Volume x Density
We also know that Force = mg
Thus;
F = mg = Vρg
Where m = mass of balloon(m_b) + mass of helium (m_he)
So,
(m_b + m_he)g = Vρg
g will cancel out to give;
(m_b + m_he) = Vρ - - - eq1
Since a sphere shaped balloon, Volume(V) = (4/3)πr³
V = (4/3)π(1.54)³
V = 15.3 m³
Plugging relevant values into equation 1,we have;
(3 + m_he) = 15.3 × 1.19
m_he = 18.207 - 3
m_he = 15.207 kg = 15207 g
Molecular weight of helium gas is 4 g/mol
Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles
From ideal gas equation, we know that;
P = nRT/V
Where,
P is absolute pressure
n is number of moles
R is the gas constant and has a value lf 8.314 J/mol.k
T is temperature
V is volume
Plugging in the relevant values, we have;
P = (3802 × 8.314 × 289)/15.3
P = 597074.53 Pa
P = 5.97 × 10^(5) Pa
A Nearsighted Eye. A certain very nearsighted person cannot focus on anything farther than 36.0 cm from the eye. Consider the simplified model of the eye. In a simplified model of the human eye, the aqueous and vitreous humors and the lens all have a refractive index of 1.40, and all the refraction occurs at the cornea, whose vertex is 2.60 cm from the retina.
Required:
a. If the radius of curvature of the cornea is 0.65 cm when the eye is focusing on an object 36.0 cm from the cornea vertex and the indexes of refraction are as described before, what is the distance from the cornea vertex to the retina?
b. What does this tell you about the shape of the nearsighted eye?
1. This distance is greater than for the normal eye.
2. This distance is shorter than for the normal eye.
Answer:
a) The distance from the cornea vertex to the retina is 2.37 cm
b) This distance is shorter than for the normal eye.
Explanation:
a) Let refractive index of air,
n(air) = x = 1
Let refractive index of lens,
n(lens) = y = 1.4
Object distance, s = 36 cm
Radius of curvature, R = 0.65 cm
The distance from the cornea vertex to the retina is the image distance because image is formed in the retina.
Image distance, s' = ?
(x/s) + (y/s') = (y-x)/R
(1/36) + (1.4/s') = (1.4 - 1)/0.65
1.4/s' = 0.62 - 0.028
1.4/s' = 0.592
s' = 1.4/0.592
s' = 2.37 cm
Distance from the cornea vertex to the retina is 2.37 cm
(b) For a normal eye, the distance between the cornea vertex and the retina is 2.60 cm. Since 2.37 < 2.60, this distance is shorter than for normal eye.
The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax
Answer:
The distance is [tex]d = 1.5 *10^{15} \ km[/tex]
Explanation:
From the question we are told that
The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]
Generally a grid unit is [tex]\frac{1}{10}[/tex] of an arcsec
This implies that 0.2 grid unit is [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]
The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as
[tex]d = \frac{1}{k}[/tex]
substituting values
[tex]d = \frac{1}{0.02}[/tex]
[tex]d = 50 \ parsec[/tex]
Note [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]
So [tex]d = 50 * 3.08 *10^{13}[/tex]
[tex]d = 1.5 *10^{15} \ km[/tex]
A skydiver stepped out of an airplane at an altitude of 1000m fell freely for 5.00s opened her parachute and slowed to 7.00m/s in a negligible time what was the total elapsed time from leaving the airplane to landing on the ground
Answer:
t = 17.68s
Explanation:
In order to calculate the total elapsed time that skydiver takes to reache the ground, you first calculate the distance traveled by the skydiver in the first 5.00s. You use the following formula:
[tex]y=y_o-v_ot-\frac{1}{2}gt^2[/tex] (1)
y: height for a time t
yo: initial height = 1000m
vo: initial velocity = 0m/s
g: gravitational acceleration = 9.8m/s^2
t: time = 5.00 s
You replace the values of the parameters to get the values of the new height of the skydiver:
[tex]y=1000m-\frac{1}{2}(9.8m/s^2)(5.00s)^2\\\\y=877.5m[/tex]
Next, you take this value of 877.5m as the initial height of the second part of the trajectory of the skydiver. Furthermore, use the value of 7.00m/s as the initial velocity.
You use the same equation (1) with the values of the initial velocity and new height. We are interested in the time for which the skydiver arrives to the ground, then y = 0
[tex]0=877.5-7.00t-4.9t^2[/tex] (2)
The equation (2) is a quadratic equation, you solve it for t with the quadratic formula:
[tex]t_{1,2}=\frac{-(-7.00)\pm \sqrt{(-7.00)^2-4(-4.9)(877.5)}}{2(-4.9)}\\\\t_{1,2}=\frac{7.00\pm 131.33}{-9.8}\\\\t_1=12.68s\\\\t_2=-14.11s[/tex]
You use the positive value of t1 because it has physical meaning.
Finally, you sum the times of both parts of the trajectory:
total time = 5.00s + 12.68s = 17.68s
The total elapsed time taken by the skydiver to arrive to the ground from the airplane is 17.68s
An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.
Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.
Answer:
a. F = 2.32*10^-18 N
b. The force F is 2.59*10^11 times the weight of the electron
Explanation:
a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:
[tex]v^2=v_o^2+2ax[/tex] (1)
v: final speed of the electron = 6.60*10^5 m/s
vo: initial speed of the electron = 4.00*10^5 m/s
a: acceleration of the electron = ?
x: distance traveled by the electron = 5.40cm = 0.054m
you solve the equation (2) for a and replace the values of the parameters:
[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]
Next, you use the second Newton law to calculate the force:
[tex]F=ma[/tex]
m: mass of the electron = 9.11*10^-31kg
[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]
The magnitude of the force exerted on the electron is 2.32*10^-18 N
b. The weight of the electron is given by:
[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]
The quotient between the weight of the electron and the force F is:
[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]
The force F is 2.59*10^11 times the weight of the electron
Two guitarists attempt to play the same note of wavelength 6.50 cm at the same time, but one of the instruments is slightly out of tune. Consequently, a 17.0-Hz beat frequency is heard between the two instruments. What were the possible wavelengths of the out-of-tune guitar’s note? Express your answers, separated by commas, in centimeters to three significant figures IN cm.
Answer:
The two value of the wavelength for the out of tune guitar is
[tex]\lambda _2 = (6.48,6.52) \ cm[/tex]
Explanation:
From the question we are told that
The wavelength of the note is [tex]\lambda = 6.50 \ cm = 0.065 \ m[/tex]
The difference in beat frequency is [tex]\Delta f = 17.0 \ Hz[/tex]
Generally the frequency of the note played by the guitar that is in tune is
[tex]f_1 = \frac{v_s}{\lambda}[/tex]
Where [tex]v_s[/tex] is the speed of sound with a constant value [tex]v_s = 343 \ m/s[/tex]
[tex]f_1 = \frac{343}{0.0065}[/tex]
[tex]f_1 = 5276.9 \ Hz[/tex]
The difference in beat is mathematically represented as
[tex]\Delta f = |f_1 - f_2|[/tex]
Where [tex]f_2[/tex] is the frequency of the sound from the out of tune guitar
[tex]f_2 =f_1 \pm \Delta f[/tex]
substituting values
[tex]f_2 =f_1 + \Delta f[/tex]
[tex]f_2 = 5276.9 + 17.0[/tex]
[tex]f_2 = 5293.9 \ Hz[/tex]
The wavelength for this frequency is
[tex]\lambda_2 = \frac{343 }{5293.9}[/tex]
[tex]\lambda_2 = 0.0648 \ m[/tex]
[tex]\lambda_2 = 6.48 \ cm[/tex]
For the second value of the second frequency
[tex]f_2 = f_1 - \Delta f[/tex]
[tex]f_2 = 5276.9 -17[/tex]
[tex]f_2 = 5259.9 Hz[/tex]
The wavelength for this frequency is
[tex]\lambda _2 = \frac{343}{5259.9}[/tex]
[tex]\lambda _2 = 0.0652 \ m[/tex]
[tex]\lambda _2 = 6.52 \ cm[/tex]
This question involves the concepts of beat frequency and wavelength.
The possible wavelengths of the out-of-tune guitar are "6.48 cm" and "6.52 cm".
The beat frequency is given by the following formula:
[tex]f_b=|f_1-f_2|\\\\[/tex]
f₂ = [tex]f_b[/tex] ± f₁
where,
f₂ = frequency of the out-of-tune guitar = ?
[tex]f_b[/tex] = beat frequency = 17 Hz
f₁ = frequency of in-tune guitar = [tex]\frac{speed\ of\ sound\ in\ air}{\lambda_1}=\frac{343\ m/s}{0.065\ m}=5276.9\ Hz[/tex]
Therefore,
f₂ = 5276.9 Hz ± 17 HZ
f₂ = 5293.9 Hz (OR) 5259.9 Hz
Now, calculating the possible wavelengths:
[tex]\lambda_2=\frac{speed\ of\ sound}{f_2}\\\\\lambda_2 = \frac{343\ m/s}{5293.9\ Hz}\ (OR)\ \frac{343\ m/s}{5259.9\ Hz}\\\\[/tex]
λ₂ = 6.48 cm (OR) 6.52 cm
Learn more about beat frequency here:
https://brainly.com/question/10703578?referrer=searchResults
Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below.
Sun exposure Stem mass (g) Stem volume (mL)
30 275 1100
45 415 1215
60 563 1425
75 815 1610
90 954 1742
a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (mº).
b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m)
c. Convert the density values to scientific notation.
Given that,
Sun exposure = 30%, 45%, 60%, 75%, 90%
Stem mass (g) = 275, 415, 563, 815, 954
Stem volume (ml) = 1100, 1215, 1425, 1610, 1742
(a). We need to convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters
Using conversion of mass
[tex]1\ g=0.001\ kg[/tex]
Conservation of volume
[tex]1\ Lt=0.001\ m^3[/tex]
[tex]1\ mL=1\times10^{-6}\ m^3[/tex]
So, mass in kg
Stem mass (kg) = 0.275, 0.415, 0.563, 0.815, 0.954
Volume in m³,
Stem volume (m³) = 0.0011, 0.001215, 0.001425, 0.001610, 0.001742
(b). We need to calculate the density of the samples
Using formula of density
[tex]\rho=\dfrac{m}{V}[/tex]
Where, m = mass
V = volume
If the m = 0.275 kg and V = 0.0011 m³
Put the value into the formula
[tex]\rho=\dfrac{0.275}{0.0011}[/tex]
[tex]\rho=250\ kg/m^3[/tex]
If the m = 0.415 kg and V = 0.001215 m³
Put the value into the formula
[tex]\rho=\dfrac{0.415}{0.001215}[/tex]
[tex]\rho=341.56\ kg/m^3[/tex]
[tex]\rho=342\ kg/m^3[/tex]
If the m = 0.563 kg and V = 0.001425 m³
Put the value into the formula
[tex]\rho=\dfrac{0.563}{0.001425}[/tex]
[tex]\rho=395.08\ kg/m^3[/tex]
If the m = 0.815 kg and V = 0.001610 m³
Put the value into the formula
[tex]\rho=\dfrac{0.815}{0.001610}[/tex]
[tex]\rho=506.21\ kg/m^3[/tex]
If the m = 0.954 kg and V = 0.001742 m³
Put the value into the formula
[tex]\rho=\dfrac{0.954}{0.001742}[/tex]
[tex]\rho=547.6\ kg/m^3[/tex]
[tex]\rho=548\ kg/m^3[/tex]
(c). We need to convert the density values to scientific notation
In scientific notation
The densities are
[tex]\rho\ (kg/m^3)= 2.50\times10^{2}, 3.42\times10^{2}, 3.95\times10^{2}, 5.06\times10^{2}, 5.48\times10^{2}[/tex]
Hence, This is required solution.
A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere
Answer:
The radius of the sphere is 4.05 m
Explanation:
Given;
potential at surface, [tex]V_s[/tex] = 450 V
potential at radial distance, [tex]V_r[/tex] = 150
radial distance, l = 8.1 m
Apply Coulomb's law of electrostatic force;
[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]
[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]
Therefore, the radius of the sphere is 4.05 m
A long horizontal hose of diameter 3.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.8 cm. Water squirts from the nozzle at velocity 14 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
A) What is the velocity of the water in the hose ?
B) What is the pressure differential between the water in the hose and water in the nozzle ?
C) How long will it take to fill a tub of volume 120 liters with the hose ?
Answer:
a) v₁ = 3.92 m / s , b) ΔP = = 9.0 10⁴ Pa, c) t = 0.0297 s
Explanation:
This is a fluid mechanics exercise
a) let's use the continuity equation
let's use index 1 for the hose and index 2 for the nozzle
A₁ v₁ = A₂v₂
in area of a circle is
A = π r² = π d² / 4
we substitute in the continuity equation
π d₁² / 4 v₁ = π d₂² / 4 v₂
d₁² v₁ = d₂² v₂
the speed of the water in the hose is v1
v₁ = v₂ d₂² / d₁²
v₁ = 14 (1.8 / 3.4)²
v₁ = 3.92 m / s
b) they ask us for the pressure difference, for this we use Bernoulli's equation
P₁ + ½ ρ v₁² + m g y₁ = P₂ + ½ ρ v₂² + mg y2
as the hose is horizontal y₁ = y₂
P₁ - P₂ = ½ ρ (v₂² - v₁²)
ΔP = ½ 1000 (14² - 3.92²)
ΔP = 90316.8 Pa = 9.0 10⁴ Pa
c) how long does a tub take to flat
the continuity equation is equal to the system flow
Q = A₁v₁
Q = V t
where V is the volume, let's equalize the equations
V t = A₁ v₁
t = A₁ v₁ / V
A₁ = π d₁² / 4
let's reduce it to SI units
V = 120 l (1 m³ / 1000 l) = 0.120 m³
d1 = 3.4 cm (1 m / 100cm) = 3.4 10⁻² m
let's substitute and calculate
t = π d₁²/4 v1 / V
t = π (3.4 10⁻²)²/4 3.92 / 0.120
t = 0.0297 s
A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)
Answer:
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
Explanation:
An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:
[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]
[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]
The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:
[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]
Where:
[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.
[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.
[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.
If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:
[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]
[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]
As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:
[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]
[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]
The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:
[tex]x = \frac{n_{R}}{n_{E}}[/tex]
[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]
[tex]x = 8.5222 \times 10^{-11}[/tex]
The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].
A soccer ball is released from rest at the top of a grassy incline. After 2.2 seconds, the ball travels 22 meters. One second later, the ball reaches the bottom of the incline. (Assume that the acceleration was constant.) How long was the incline
Answer:
x = 46.54m
Explanation:
In order to find the length of the incline you use the following formula:
[tex]x=v_ot+\frac{1}{2}at^2[/tex] (1)
vo: initial speed of the soccer ball = 0 m/s
t: time
a: acceleration
You first use the the fact that the ball traveled 22 m in 2.2 s. Whit this information you can calculate the acceleration a from the equation (1):
[tex]22m=\frac{1}{2}a(2.2s)^2\\\\a=9.09\frac{m}{s^2}[/tex] (2)
Next, you calculate the distance traveled by the ball for t = 3.2 s (one second later respect to t = 2.2s). The values of the distance calculated is the lenght of the incline:
[tex]x=\frac{1}{2}(9.09m/s^2)(3.2s)^2=46.54m[/tex] (3)
The length of the incline is 46.54 m
A glass flask whose volume is 1000 cm^3 at a temperature of 1.00°C is completely filled with mercury at the same temperature. When the flask and mercury are warmed together to a temperature of 52.0°C , a volume of 8.50 cm^3 of mercury overflows the flask.Required:If the coefficient of volume expansion of mercury is βHg = 1.80×10^−4 /K , compute βglass, the coefficient of volume expansion of the glass. Express your answer in inverse kelvins.
Answer:
the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Explanation:
Given that:
Initial volume of the glass flask = 1000 cm³ = 10⁻³ m³
temperature of the glass flask and mercury= 1.00° C
After heat is applied ; the final temperature = 52.00° C
Temperature change ΔT = 52.00° C - 1.00° C = 51.00° C
Volume of the mercury overflow = 8.50 cm^3 = 8.50 × 10⁻⁶ m³
the coefficient of volume expansion of mercury is 1.80 × 10⁻⁴ / K
The increase in the volume of the mercury = 10⁻³ m³ × 51.00 × 1.80 × 10⁻⁴
The increase in the volume of the mercury = [tex]9.18*10^{-6} \ m^3[/tex]
Increase in volume of the glass = 10⁻³ × 51.00 × [tex]\beta _{glass}[/tex]
Now; the mercury overflow = Increase in volume of the mercury - increase in the volume of the flask
the mercury overflow = [tex](9.18*10^{-6} - 51.00* \beta_{glass}*10^{-3})\ m^3[/tex]
[tex]8.50*10^{-6} = (9.18*10^{-6} -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]8.50*10^{-6} - 9.18*10^{-6} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]-6.8*10^{-7} = ( -51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]6.8*10^{-7} = ( 51.00* \beta_{glass}* 10^{-3} )\ m^3[/tex]
[tex]\dfrac{6.8*10^{-7}}{51.00 * 10^{-3}}= ( \beta_{glass} )[/tex]
[tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
Thus; the coefficient of volume expansion of the glass is [tex]\mathbf{ ( \beta_{glass} )= 1.333 *10^{-5} / K}[/tex]
That 85 kg paratrooper from the 50's was moving at constant speed of 56 m/s because the air was applying a frictional drag force to him that matched his weight. If he fell this way for 40 m, how much heat was generated by this frictional drag force in J
Answer:
46648 J
Explanation:
mass m= 85 Kg
velocity v = 56 m/s
distance covered s =40 m
According to Question,
frictional drag force to him that matched his weight
[tex]\Rightarrow F_d =mg\\=85\times9.81=833 N[/tex]
Therefore, work done by practometer against the drag force = heat was generated by this frictional drag force in J
W=Q= F_d×s
=833×56 = 46648 J