Answer:
Step-by-step explanation:
In an isosceles triangle, the base angles are equal. This also means that the length of two sides of the triangle are equal. Looking at triangle ABC, to prove that it is an isosceles triangle, then
Angle CAB = angle CBA
For the second question, to determine how it is known that QS is equivalent to YT, we would recall that the diameter of a circle passes through the center and from one side of the circle to the other side. Assuming R is the center of the circle, then QS and YT are the diameters of the circle and also the diagonals of the rectangle. Thus, the correct option is
The diameters act as diagonals
find the value of x...
Answer:
x = 7
Step-by-step explanation:
This problem can be solved using angular bisector theorem.
It states that if any angle of triangle is bisected by a line , then that line
divides the opposite side of that angle in same proportion as that of two other sides which contain the angle.
__________________________________
Here one angle is is divided into parts theta
Thus,
using angular bisector theorem
14/21 = 6/3x-12
=> 14(3x-12) = 21*6
=> 3x-12 = 21*6/14 = 9
=> 3x = 12+9 = 21
=> x = 21/3 = 7
Thus, x = 7
You want to be able to withdraw $4000 a month for 30 years how much would you need to have in your account with an APR of 3.4% to accomplish this goal
Answer:
$904,510.28
Step-by-step explanation:
If we assume the withdrawals are at the beginning of the month, we can use the annuity-due formula.
P = A(1 +r/n)(1 -(1 +r/n)^(-nt))/(r/n)
where r is the APR, n is the number of times interest is compounded per year (12), A is the amount withdrawn, and t is the number of years.
Filling in your values, we have ...
P = $4000(1 +.034/12)(1 -(1 +.034/12)^(-12·30))/(.034/12)
P = $904,510.28
You need to have $904,510.28 in your account when you begin withdrawals.
Answer:
You need to have $904,510.28 in your account when you begin
The function h(x)=12/x-1 is one to one. Algebraically find it’s inverse, h^-1(x).
Answer:
Step-by-step explanation:
hello,
I assume that you mean
[tex]h(x)=\dfrac{12}{x-1}[/tex]
so first of all let's take x real different from 1 , as this is not allowed to divide by 0
[tex](hoh^{-1})(x)=x=h(h^{-1}(x))=\dfrac{12}{h^{-1}(x)-1} \ \ \ so\\h^{-1}(x)-1=\dfrac{12}{x} \\\\h^{-1}(x)=1+\dfrac{12}{x}[/tex]
and this is defined for x real different from 0
hope this helps
Last winter Armand had StartFraction 5 Over 6 EndFraction of a row of stacked logs. At the end of the winter he had StartFraction 8 Over 15 EndFraction of the same row left. How much wood did he burn over the winter?
Answer:
3/10
Step-by-step explanation:
We have that the Armans last winter had 5/6 of a row of stacked logs and at the end of the winter he had 8/15 of the same row left, therefore:
Ambitious
First we have to do is that the denominator is the same.
in the case of 5/6 it would be 25/30
and for 8/15 it would be 16/30
Now if we can do the subtraction and it would be:
25/30 - 16/30 = 9/30 or what equals 3/10
3/10 was the amount of wood he burned in the winter
Answer:
D) 3/10 row
Step-by-step explanation:
Gregoire sold 24 cars to his friend for $71.76. What was the price per car?
a. $47.76
b. $2.99
c. $17.22
d. $3.25
Answer:
2.99
Step-by-step explanation:
Take the total cost and divide by the number of cards
71.76/24 = 2.99
The cost per car is 2.99
Answer:
b. $2.99.
Step-by-step explanation:
To get the price per car, you get the total price divided by the total number of cars.
That would be 71.26 / 24 = 2.969166667, which is most close to b. $2.99. Those are some cheap cars!
Hope this helps!
Suppose H is an ntimesn matrix. If the equation Hxequalsc is inconsistent for some c in set of real numbers R Superscript n, what can you say about the equation Hxequals0? Why?
Answer:
The answer is explained below
Step-by-step explanation:
Given that, the equation H*x = c is inconsistent for some c in R^n, we can say that the equation A*x = b has at least one solution for each b in R^n of IMT (Inverse Matrix Theorem) is not fulfilled.
Thanks to this we can say that by equivalence of theorem statement, the equation H*x = 0 will not have only the trivial solution. It will have non-trivial solutions too.
ga political candidate has asked you to conduct a poll to determine what percentage of people support her. if the candidate only wants a 8% margin of error at a 95% cnofidence level, what size of sample is needed
Answer: 151
Step-by-step explanation:
if prior population proportion is unknown , then the formula is used to find the sample size :
[tex]n=0.25(\frac{z_{\alpha/2}}{E})^2[/tex]
, where [tex]z_{\alpha/2}[/tex] = Two tailed critical value for significance level of [tex]\alpha.[/tex]
E = Margin of error.
Given : margin of error = 8%= .08
For 95% confidence level , two tailed critical value = 1.96
Now, the required sample size :
[tex]n=0.25(\frac{1.96}{0.08})^2\\\\=0.25(24.5)^2\\\\=150.0625\approx151[/tex]
Hence, the size of the sample needed = 151.
State the coordinates of the vertex for each of the following
Answer:
[a] y=x^2+3, vertex, V(0,3)
[b] y=2x^2, vertex, V(0,0)
[c] y=-x^2 + 4, vertex, V(0,4)
[d] y= (1/2)x^2 - 5, vertex, V(0,-5)
Step-by-step explanation:
The vertex, V, of a quadratic can be found as follows:
1. find the x-coordinate, x0, by completing the square
2. find the y-coordinate, y0, by substituting the x-value of the vertex.
[a] y=x^2+3, vertex, V(0,3)
y=(x-0)^2 + 3
x0=0, y0=0^2+3=3
vertex, V(0,3)
[b] y=2x^2, vertex, V(0,0)
y=2(x-0)^2+0
x0 = 0, y0=0^2 + 0 = 0
vertex, V(0,0)
[c] y=-x^2 + 4, vertex, V(0,4)
y=-(x^2-0)^2 + 4
x0 = 0, y0 = 0^2 + 4 = 4
vertex, V(0,4)
y = (1/2)(x-0)^2 -5
x0 = 0, y0=(1/2)0^2 -5 = -5
vertex, V(0,-5)
Conclusion:
When the linear term (term in x) is absent, the vertex is at (0,k)
where k is the constant term.
Don’t know this one
Answer:
B
Step-by-step explanation:
The answer is B because in order for the square root of a number to be equal to another number, the answer squared should be the number under the square root.
B. [tex](-4)^2\neq -16[/tex].
Hope this helps.
I NEED HELP PLEASE, THANKS! :)
please see the attached picture for full solution..
Hope it helps..
Good luck on your assignment...
–735 = 15(m + 929) m = _______
Answer:
-978
Step-by-step explanation:
1.) Use Distributive property (by multiplying 15 by the values in parentheses): -735=15m + 13935
2.) Subtract 13,935 on both sides, to move that value to the left side, to further isolate the variable m.
-735-13935=15m + 13935 - 13935
3.)-Simplify/Combine Like Terms
-14,670=15m
4.) Divide both sides by 15 to isolate and solve for m
-14,670/15=15m/15
5.) Simplify
-978=m
6.) Rearrange so m is on left side and value is on right side
m=-978
Which statement best interprets the factor (r+7) in this context?
Answer:
the height of the cylinder is 7 units greater than the radius
Step-by-step explanation:
When you match the forms of the equations ...
[tex]V=\pi r^2(r+7)\\V=\pi r^2h[/tex]
you see that the factor (r+7) corresponds to the height (h) of the cylinder. That is ...
the height of the cylinder is 7 units greater than the radius.
Which of the following is false? Correlation coefficient and the slope always have the same sign (positive or negative). If the correlation coefficient is 1, then the slope must be 1 as well. If the correlation between two variables is close to 0.01, then there is a very weak linear relation between them. Correlation measures the strength of linear association between two numerical variables.
Answer:
If the correlation coefficient is 1, then the slope must be 1 as well.
Step-by-step explanation:
Coefficient of correlation is used in statistics to determine the relationship between two variables. Correlation coefficient and slope always have same sign. It measures the strength of linear relation between two variables. The values of correlation coefficient ranges between 0 to 1. where 0 determines that there is no relationship between two variables.
If the correlation coefficient is 1, then the slope must be 1 as well.
The correlation coefficient (ρ) is a measure that determines the degree to which the movement of two different variables is associated.
Correlation coefficient and the slope both quantify the direction and strength of the relationship between two numeric variables. When the correlation (r) is negative, the regression slope (b) will be negative. When the correlation is positive, the regression slope will be positive.If the correlation between two variables is close to 0.01, then there is a very weak linear relation between them.
So, the false statement is:
If the correlation coefficient is 1, then the slope must be 1 as well.
Learn more:https://brainly.com/question/16557696
How many gallons of fuel costing $1.15 a gallon must be mixed with a fuel costing $0.85 per gallon to get 40
gallons of a fuel that costs $1 per gallon? Formulate an equation and then solve it in order to determine how
many gallons of fuel costing $1.15.
Answer:
multiply 0.85x40
Step-by-step explanation:
Which shapes have the same volume as the given rectangular prism?
The base of pyramid A is a rectangle with a length of 10 meters and a width of 20 meters. The base of pyramid B is a square with 10-meter sides.
The heights of the pyramids are the same.
The volume of pyramid Als
y the volume of pyramid B. If the helght of pyramid B increases to twice that of pyramid A, the
new volume of pyramid B is
the volume of pyramid A.
Answer:
a. The volume of Pyramid A is double that of Pyramid B.
b. The new volume of B is equal to the volume of A.
Step-by-step explanation:
The base of pyramid A is a rectangle with length 10 meters and width 20 meters.
The base of pyramid B is a square of side length 10 meter.
Both pyramids have the same height, h.
The volume of a pyramid is given as:
V = lwh / 3
where l = length
w = width
h = height
The volume of Pyramid A is:
V = (10 * 20 * h) / 3 = 66.7h cubic metres
The volume of Pyramid B is:
V = (10 * 10 * h) / 3 = 33.3h cubic metres
By comparing their values, the volume of Pyramid A is double that of Pyramid B.
If the height of B increases to 2h, its new volume is:
V = (10 * 10 * 2h) / 3 = 66.7h cubic metres
The new volume of B is equal to the volume of A.
Find [g ° h](x) and [h ° g](x) , if they exist. g(x)=x+6 and h(x)=3x2 YALL PLEASE I NEED HELP :((
Answer:
a) [g ° h](x) = 3x² +6
b) [h ° g](x) =3 x²+36x+108
Step-by-step explanation:
Explanation:-
a)
Given g(x) = x+6 and h(x) = 3x²
Given [g ° h](x) = g(h(x))
= g(3x²) (∵ h(x) =3x²)
= (3x²)+6 (∵ g(x) =x+6)
∴ [g ° h](x) = 3x² +6
b)
Given [h ° g](x) = h (g(x))
= h(x+6) (∵ g(x) =x+6)
= 3 (x+6)² (∵ h(x) =3x²)
= 3 (x²+2(6)x+36) (∵ (a + b)² = a²+2ab+b²)
= 3 (x²+12x+36)
= 3 x²+36x+108)
∴ [h ° g](x) =3 x²+36x+108
Find the value of x.
Answer:
[tex]\huge\boxed{x=\sqrt{66}}[/tex]
Step-by-step explanation:
ΔADC and ΔABD are similar (AAA)
Therefore the cooresponging sides are in proportion:
[tex]\dfrac{AD}{AC}=\dfrac{AB}{AD}[/tex]
Substitute
[tex]AD=x;\ AC=6+5=11;\ AB=6[/tex]
[tex]\dfrac{x}{11}=\dfrac{6}{x}[/tex] cross multiply
[tex](x)(x)=(11)(6)\\\\x^2=66\to x=\sqrt{66}[/tex]
Compare the distributions using either the means and standard deviations or the five-number summaries. Justify your choice. Set A Set B The distributions are symmetric, so use the means and standard deviations. The mean for Set A is about 44.6 with standard deviation of about 6.2. The mean for Set B is about 42.8 with standard deviation of about 1.86. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set B means that Set A’s low temperatures have a greater variability than Set B temperatures. The distributions are symmetric, so use the means and standard deviations. The mean for Set B is about 41.56 with standard deviation of about 6.07. The mean for Set A is about 43.8 with standard deviation of about 14.8. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set A means that Set A’s low temperatures have a greater variability than Set B temperatures. The distributions are symmetric, so use the means and standard deviations. The mean for Set A is about 44.6 with standard deviation of about 6.4. The mean for Set B is about 41.5 with standard deviation of about 6.7. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set B means that Set B’s low temperatures have a greater variability than Set A temperatures. The distributions are symmetric, so use the means and standard deviations. The mean for Set A is about 44.6 with standard deviation of about 6.2. The mean for Set B is about 43.8 with standard deviation of about 14.8. While the average low temperatures for the cities are approximately equal, the greater standard deviation for Set B means that Set B’s low temperatures have a greater variability than Set A temperatures.
Answer:
Explained below.
Step-by-step explanation:
The question is:
Compare the distributions using either the means and standard deviations or the five-number summaries. Justify your choice.
Set A: {36, 51, 37, 42, 54, 39, 53, 42, 46, 38, 50, 47}
Set B: {22, 57, 46, 24, 31, 41, 64, 50, 28, 59, 65, 38}
The five-number summary is:
MinimumFirst Quartile Median Third Quartile MaximumThe five-number summary for set A is:
Variable Minimum Q₁ Median Q₃ Maximum
Set A 36.00 38.25 44.00 50.75 54.00
The five-number summary for set B is:
Variable Minimum Q₁ Median Q₃ Maximum
Set B 22.00 28.75 48.00 58.50 65.00
Compute the mean for both the data as follows:
[tex]Mean_{A}=\frac{1}{12}\times [36+51+37+...+47]=44.58\approx 44.6\\\\Mean_{B}=\frac{1}{12}\times [22+57+46+...+38]=44.58\approx 44.6[/tex]
Both the distribution has the same mean.Compare mean and median for the two data:
[tex]Mean_{A}>Median_{A}\\\\Mean_{B}>Median_{B}[/tex]
This implies that set A is positively skewed whereas set B is negatively skewed.Compute the standard deviation for both the set as follows:
[tex]SD_{A}=\sqrt{\frac{1}{12-1}\times [(36-44.6)^{2}+...+(47-44.6)^{2}]}=6.44\approx 6.4\\\\SD_{B}=\sqrt{\frac{1}{12-1}\times [(22-44.6)^{2}+...+(38-44.6)^{2}]}=15.56\approx 15.6[/tex]
The set B has a greater standard deviation that set A. Implying set B has a greater variability that set B.true or false? the circumcenter of a triangle is the center of the only circle that can be inscribed about it
Answer:
TRUE
Step-by-step explanation:
The circumcenter of a triangle is the center of the only circle that can be circumscribed about it
Answer:
False
Step-by-step explanation:
Please answer this correctly
Answer:
1/2
Step-by-step explanation:
The numbers that are 6 or even on the cards are 2, 4, and 6.
3 cards out of a total of 6 cards.
3/6 = 1/2
Answer:
1/2 chance
Step-by-step explanation:
There are 3 numbers that fit the rule, 2, 4, and 6. 3/6 chance of picking one or 1/2, simplified.
What is the explicit rule for the geometric sequence?
600, 300, 150, 75, ...
Answer:
Step-by-step explanation:
Hello, this is a geometric sequence so we are looking for a multiplicative factor.
[tex]a_0=600\\\\a_1=a_0 \cdot \boxed{\dfrac{1}{2}} = 300 = 600 \cdot \boxed{\dfrac{1}{2}}\\\\a_2=a_1 \cdot \boxed{\dfrac{1}{2}} = 150= 300 \cdot \boxed{\dfrac{1}{2}}\\\\a_3=a_2 \cdot \boxed{\dfrac{1}{2}} = 75 = 150 \cdot \boxed{\dfrac{1}{2}}[/tex]
So, the explicit formula is for n
[tex]\boxed{a_n=a_0\cdot \left(\dfrac{1}{2}\right)^n=600\cdot \left(\dfrac{1}{2}\right)^n}}[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
The explicit rule is aₙ = a₀(1/2)ⁿ = 600(1/2)ⁿ for the given geometric sequence.
What is geometric series?The geometric series defined as a series represents the sum of the terms in a finite or infinite geometric sequence. The successive terms in this series share a common ratio.
The nth term of a geometric progression is expressed as
Tₙ = arⁿ⁻¹
Where a is the first term, r is the common ratio.
We have been given that geometric sequence as:
600, 300, 150, 75, ...
To determine the explicit rule for the geometric sequence, we have to find the common ratio.
Here the first term (a₀) is 600
So the common ratio = 300/600 = 150/300 = 75/150 = 1/2
Thus, the explicit formula for n would be:
aₙ = a(1/2)ⁿ = 600(1/2)ⁿ
Therefore, the explicit rule is aₙ = a(1/2)ⁿ = 600(1/2)ⁿ for the given geometric sequence.
Learn more about the geometric series here:
brainly.com/question/21087466
#SPJ2
What is 62 in expanded form?
A. 2 x 2 x 2 x 2 x 2 x 2
B. 6 x 6
C. 12
D. 36
Answer:
I think so you meant to write 62 as 6^2
If this is the question , then the answer is 6 x 6
HOPE THIS HELPS AND PLS MARK AS BRAINLIEST
THNXX :)
Answer:
B. 6 × 6
Step-by-step explanation:
6²
The square of a number means that the number is multiplied by itself.
6 × 6 (expanded form)
quanto e 500x6-51-5x50
Answer:
2699
Step-by-step explanation:
you do all the multiplication first
500×6= 3000
5 ×50 = 250
so it becomes
3000-51-250 = 2699
Answer:
2699
Step-by-step explanation:
If f(x) = 5x – 2 and g(x) = 2x + 1, find (f - g)(x).
A. 3 - 3x
B. 3x-3
C. 7x-1
D. 7x-3
Answer:
The difference of the functions is (f-g)(x) = 3x - 3
Step-by-step explanation:
In the problem, we are asked to find the difference of the two functions, f(x) and g(x). When we see (f-g)(x), this means that we are going to subtract g(x) from f(x).
f(x) = 5x - 2
g(x) = 2x + 1
(f-g)(x) = (5x - 2) - (2x + 1)
Distribute the negative to (2x + 1)
(f-g)(x) = 5x - 2 - 2x - 1
Combine like terms. Make sure your answer is in standard form.
(f-g)(x) = 3x - 3
So, the answer to the equation is (f-g)(x) = 3x - 3
9(d − 93) = –36 d = _______
Steps to solve:
9(d - 93) = -36d
~Distribute
9d - 837 = -36d
~Subtract 9d to both sides
-837 = -45d
~Divide -45 to both sides
18.6 = d
Best of Luck!
In a random sample of 2,305 college students, 339 reported getting 8 or more hours of sleep per night. Create a 95% confidence interval for the proportion of college students who get 8 or more hours of sleep per night. Use a TI-83, TI-83 plus, or TI-84 calculator, rounding your answers to three decimal places.
Answer:
The 95% confidence interval for the proportion of college students who get 8 or more hours of sleep per night is (0.133, 0.161).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
For this problem, we have that:
[tex]n = 2305, \pi = \frac{339}{2305} = 0.147[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.147 - 1.96\sqrt{\frac{0.147*0.853}{2305}} = 0.133[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.147 + 1.96\sqrt{\frac{0.147*0.853}{2305}} = 0.161[/tex]
The 95% confidence interval for the proportion of college students who get 8 or more hours of sleep per night is (0.133, 0.161).
Determine the intercepts of the line. -5x+9y=-18−5x+9y=−18minus, 5, x, plus, 9, y, equals, minus, 18 xxx-intercept: \Big((left parenthesis ,,comma \Big))right parenthesis yyy-intercept: \Big((left parenthesis ,,comma \Big))
Answer:
(3.6, 0), (0, -2)
Step-by-step explanation:
To find the y-intercept, set x=0:
-5·0 +9y = -18
y = -18/9 = -2
To find the x-intercept, set y=0:
-5x +9·0 = -18
x = -18/-5 = 3.6
The intercepts are ...
x-intercept: 3.6
y-intercept: -2
Find the median of: 1, 3, 4, 6, 2, 4, 5, 6, 2, 3, 1, 4, 0, 4, 4, 4, 8, 9, 7, 4
Answer:
4
Step-by-step explanation:
1, 3, 4, 6, 2, 4, 5, 6, 2, 3, 1, 4, 0, 4, 4, 4, 8, 9, 7, 4
Arrange the numbers from smallest to largest
0,1, 1,2,2, 3,3, 4, 4,4,4,4,4 , 4, 5, 6, 6, 7, 8, 9,
There are 20 numbers
The middle number is between 10 and 11
0,1, 1,2,2, 3,3, 4, 4,4 ,4,4,4 , 4, 5, 6, 6, 7, 8, 9,
The median is 4
Solution,
Arranging the data in ascending order:
0,1,1,2,2,3,3,4,4,4,4,4,4,4,5,6,6,7,8,9
N(total number of items)= 20
Now,
Median:
[tex] (\frac{n + 1}{2)} ) ^{th \: item} \\ = (\frac{20 + 1}{2} ) ^{th \: item} \\ = \frac{21}{2} \\ = 10.5 \: th \: \: item[/tex]
Again,
Median:
[tex] \frac{10 \: th \: item + 11 \: th \: item}{2} \\ = \frac{4 + 4}{2} \\ = \frac{8}{2} \\ = 4[/tex]
An object is dropped from the top of a tower with a height of 1160 feet. Neglecting air resistance, the height of the object at time t seconds is given by the
polynomial - 16t square + 1160. Find the height of the object at t = 1 second.
The height of the object at 1 second is feet.
Answer:
Height at t = 1 sec is 1144 ft
Step-by-step explanation:
Given:
Initial height of object = 1160 feet
Height of object after t seconds is given by the polynomial:
[tex]- 16t ^2+ 1160[/tex]
Let [tex]h(t)=- 16t ^2+ 1160[/tex]
Let us analyze the given equation once.
[tex]t^2[/tex] will always be positive.
and coefficient of [tex]t^2[/tex] is [tex]-16[/tex] i.e. negative value.
It means something is subtracted from 1160 ft (i.e. the initial height).
So, height will keep on decreasing with increasing value of t.
Also, given that the object is dropped from the top of a tower.
To find:
Height of object at t = 1 sec.
OR
[tex]h (1)[/tex] = ?
Solution:
Let us put t = 1 in the given equation: [tex]h(t)=- 16t ^2+ 1160[/tex]
[tex]h(1)=- 16\times 1 ^2+ 1160\\\Rightarrow h(1) = -16 + 1160\\\Rightarrow h(1) = 1144\ ft[/tex]
So, height of object at t = 1 sec is 1144 ft.