Three resistors in parallel have an equivalent resistance of 10 ohms. Two of the resistors have resistances of 40 ohms and 30 ohms. What is the resistance of the third resistor?

Answers

Answer 1

the resistance of the third resistor is 24 Ohms

How to determine the value

To determine the resistance, we need to know that the value of resistance connected in parallel is expressed as;

1/Rt  = 1/R1 + 1/R2 + 1/R3

Now, substitute the values of the resistance, we have that;

1/10 = 1/40 + 1/30 + 1/x

Find the lowest common factor, we have;

1/x = 1/10 - 1/40 - 1/30

1/x =  12 - 3 - 4  /120

Subtract the values of the numerators, we get;

1/x = 5/120

Now, cross multiply the values, we get;

5x = 120

Divide both sides by the coefficient of x, we get;

x = 120/5

x = 24 Ohms

Learn more about resistors at: https://brainly.com/question/24858512

#SPJ1


Related Questions

Michael has a credit card with an APR of 15. 33%. It computes finance charges using the daily balance method and a 30-day billing cycle. On April 1st, Michael had a balance of $822. 5. Sometime in April, he made a purchase of $77. 19. This was the only purchase he made on this card in April, and he made no payments. If Michael’s finance charge for April was $10. 71, on which day did he make the purchase? a. April 5th b. April 10th c. April 15th d. April 20th.

Answers

In this question, it is given that Michael has a credit card with an APR of 15.33%. It computes finance charges using the daily balance method and a 30-day billing cycle.

On April 1st, Michael had a balance of $822.5. Sometime in April, he made a purchase of $77.19.

This was the only purchase he made on this card in April, and he made no payments. If Michael’s finance charge for April was $10.71, on which day did he make the purchase?

We have to find on which day did he make the purchase.Since Michael made only one purchase, the entire balance is attributed to that purchase.

This means that the balance was $822.50 until the purchase was made and then increased by $77.19 to $899.69. 

Therefore, the average balance would be equal to the sum of the beginning and ending balances divided by 2.Using the daily balance method:Average balance * Daily rate * Number of days in billing cycle.[tex](0.1533/365)*30 days=0.012684[/tex]There is no reason to perform any further calculations, since the answer is in days, not dollars.

This means that, if Michael had made his purchase on April 10th, there would have been exactly 21 days of accumulated interest, resulting in a finance charge of $10.71.

Therefore, the purchase was made on April 10th and the answer is option B. April 10th.

To know more about the word calculations visits :

https://brainly.com/question/30781060

#SPJ11

let h 5 {(1), (12)}. is h normal in s3?

Answers

To determine if h is normal in s3, we need to check if g⁻¹hg is also in h for all g in s3. s3 is the symmetric group of order 3, which has 6 elements: {(1), (12), (13), (23), (123), (132)}.

We can start by checking the conjugates of (1) in s3:
(12)⁻¹(1)(12) = (1) and (13)⁻¹(1)(13) = (1), both of which are in h.
Next, we check the conjugates of (12) in s3:
(13)⁻¹(12)(13) = (23), which is not in h. Therefore, h is not normal in s3.
In general, for a subgroup of a group to be normal, all conjugates of its elements must be in the subgroup. Since we found a conjugate of (12) that is not in h, h is not normal in s3.

Learn more about conjugates here:

https://brainly.com/question/28175934

#SPJ11

Consider 4 sequential flips of a fair coin. • 2.1. Let A be the event that 2 consecutive flips both yield heads and let B be the event that the first OR last flip yields tails. Prove or disprove that events A and B are independent. • 2.2. Let X be the random variable of how many pairs of consecutive flips (of the 4 total flips) both yield heads. What is the expected value of X?

Answers

The probability of a specific pair being heads is 1/2 × 1/2 = 1/4. The expected value of X is the sum of the probabilities for each pair, E(X) = 3 × 1/4 = 3/4.

In a sequence of 4 coin flips, let A be the event of 2 consecutive heads and B be the event of having tails in the first or last flip. To prove independence, we must show P(A ∩ B) = P(A)P(B). P(A) = 1/2 × 1/2 × (3/4) = 3/16, since there are 3 ways to get 2 consecutive heads. P(B) = 1 - P(both first and last are heads) = 1 - 1/4 = 3/4. Now, consider the sequences HTHH and THHT. P(A ∩ B) = 2/16 = 1/8, but P(A)P(B) = 3/16 × 3/4 = 9/64. Since P(A ∩ B) ≠ P(A)P(B), events A and B are not independent.
For 2.2, let X be the random variable of how many pairs of consecutive flips yield heads. There are 3 pairs of consecutive flips: (1,2), (2,3), and (3,4). The probability of a specific pair being heads is 1/2 × 1/2 = 1/4. The expected value of X is the sum of the probabilities for each pair, E(X) = 3 × 1/4 = 3/4.

Learn more about consecutive here:

https://brainly.com/question/29774880

#SPJ11

Kelsey orders several snow globes that each come in a cubic box that measures 1/4 foot on each side. Her order arrives in the large box shown below. The large box is completely filled with snow globes.

Answers

There are 672 snow globes in the large box.

A cubic box that measures 1/4 foot on each side.

So, we need to find out how many snow globes are in the large box.

 Let's first find the volume of a small box in cubic feet. Each side of the small box measures 1/4 feet.

Volume of the small box = (1/4)³ = 1/64 cubic feet

Let's now find the volume of the large box in cubic feet.

The length of the large box is 2 feet, width is 1.5 feet, and height is 3.5 feet.

Volume of the large box = length × width × height= 2 × 1.5 × 3.5

                                                                                    = 10.5 cubic feet

To find the number of snow globes in the large box, we need to divide the volume of the large box by the volume of one small box.

Number of snow globes in the large box = Volume of the large box / Volume of one small box

                                                                     = 10.5 / (1/64)= 10.5 × 64= 672

To know more about volume visit

https://brainly.com/question/28058531

#SPJ11

to make predictions of logarithmic dependent variables, they first have to be converted to their level forms. a. true b. false

Answers

False. To make predictions of logarithmic dependent variables, they can be kept in their logarithmic form and the coefficients can be exponentiated to obtain the predicted values in the original scale.

This is commonly done in econometrics and other fields where logarithmic transformations are used to linearize relationships.

When making predictions using regression models, it is important to consider the form of the dependent variable. If the dependent variable is in logarithmic form, the relationship between the dependent and independent variables is no longer linear.

Therefore, in order to make meaningful predictions, the dependent variable needs to be transformed back to its original level form.

This is commonly done using an exponential transformation, where the natural logarithm of the dependent variable is taken, and then the exponential function is applied to convert it back to its level form. Once the dependent variable is back in its level form, predictions can be made using the regression model as usual.

To know more about logarithmic variable refer here:

https://brainly.com/question/31433625?#

#SPJ11

Brennan measured the wading pool at the salem community center and calculated that it has a circumference of 6.28 meters. what is the pool's radius?

Answers

The radius of the wading pool at the Salem Community Center can be calculated by dividing the circumference by 2π.

The circumference of a circle can be calculated using the formula C = 2πr, where C is the circumference and r is the radius of the circle. In this case, Brennan measured the circumference of the wading pool to be 6.28 meters.

To find the radius, we rearrange the formula as r = C / (2π). Substituting the given circumference value, we have r = 6.28 / (2π).

By dividing 6.28 by 2π, we can calculate the radius of the pool. The exact value will depend on the precision used for π (pi). If we use an approximation of π, such as 3.14, we can evaluate r as 6.28 / (2 * 3.14) = 1 meter.

Therefore, the radius of the wading pool at the Salem Community Center is approximately 1 meter.

Learn more about circumference here:

https://brainly.com/question/28757341

#SPJ11

the graph of the line y+=2/5x-2 is drawn on the coordinate plane which table of ordered pairs contains only points on this line

Answers

Okay, let's break this down step-by-step:

The equation of the line is: y+=2/5x-2

To get the ordered pairs (x, y) on this line, we plug in values for x and solve for y:

When x = 3: y = 2/5(3) - 2 = 1 - 2 = -1

So (3, -1) is a point on the line.

When x = 5: y = 2/5(5) - 2 = 2 - 2 = 0

So (5, 0) is also a point on the line.

When x = 8: y = 2/5(8) - 2 = 4 - 2 = 2

So (8, 2) is a third point on the line.

Therefore, the table of ordered pairs containing only points on this line is:

(3, -1)

(5, 0)

(8, 2)

Does this make sense? Let me know if you have any other questions!

consider the series ∑n=1[infinity](−8)nn4. attempt the ratio test to determine whether the series converges. ∣∣∣an 1an∣∣∣= , l=limn→[infinity]∣∣∣an 1an∣∣∣=

Answers

The ratio test for the series ∑n=1infinitynn4 shows that it converges.

To apply the ratio test, we evaluate the limit of the absolute value of the ratio of successive terms:

l = limn→[infinity]∣∣∣an+1/an∣∣∣

= limn→[infinity]∣∣∣(−8)(n+1)(n+1)4/n4(−8)nn4∣∣∣

= limn→[infinity]∣∣∣(n/n+1)4∣∣∣

Since the limit of the ratio is less than 1, the series converges absolutely by the ratio test.

Therefore the ratio test for the series ∑n=1infinitynn4 shows that it converges.

For more questions like Series click the link below:

https://brainly.com/question/28167344

#SPJ11

The following table shows sample salary information for employees with bachelor's and associate’s degrees for a large company in the Southeast United States.
Bachelor's Associate's
Sample size (n) 81 49
Sample mean salary (in $1,000) 60 51
Population variance (σ2) 175 90
The point estimate of the difference between the means of the two populations is ______.

Answers

The point estimate would be:

Point estimate = 9

Since, The point estimate of the difference between the means of the two populations can be calculated by subtracting the sample mean of employees with an associate's degree from the sample mean of employees.

Therefore, the point estimate would be:

Point estimate = 60 - 51

                       = 9 (in $1,000)

It means , All the employees with a bachelor's degree have a higher average salary than which with an associate's degree from approximately $9,000.

It is important to note that this is only a point estimate, which is a single value that estimates the true difference between the population means.

Hence, This is based on the sample data and is subject to sampling variability.

Therefore, the correct difference between the population means would be higher / lower than the point estimate.

To determine the level of precision of this point estimate, confidence intervals and hypothesis tests can be conducted using statistical methods. This would provide more information on the accuracy of the point estimate and help in making informed decisions.

Learn more about point estimate here:

brainly.com/question/30057704

#SPJ1

9. A sample of 4 plane crashes finds that the average number of deaths was 49 with a standard deviation of 15. Find a 99% confidence interval for the average number of deaths per plane crash.

Answers

We can be 99% confident that the true average number of deaths per plane crash is between 16.67 and 81.33.

To calculate the confidence interval, we'll use the formula:

Confidence interval = sample mean ± (t-value) x (standard error)

where the t-value is based on the desired level of confidence, the standard error is the standard deviation divided by the square root of the sample size, and the sample mean is the average number of deaths per plane crash.

First, we need to find the t-value for a 99% confidence level and a sample size of 4. From a t-distribution table with 3 degrees of freedom (sample size minus one), we find that the t-value is 4.303.

Next, we calculate the standard error:

standard error = standard deviation / sqrt(sample size)

              = 15 / √(4)

              = 7.5

Now, we can plug in the values and calculate the confidence interval:

Confidence interval = 49 ± (4.303) x (7.5)

                   = 49 ± 32.33

                   = (16.67, 81.33)

Therefore, we can be 99% confident that the true average number of deaths per plane crash is between 16.67 and 81.33.

for such more question on average

https://brainly.com/question/20118982

#SPJ11

The 99% confidence interval for the average number of deaths per plane crash is given as follows:

(5.19, 92.81).

What is a t-distribution confidence interval?

The t-distribution is used when the standard deviation for the population is not known, and the bounds of the confidence interval are given according to the equation presented as follows:

[tex]\overline{x} \pm t\frac{s}{\sqrt{n}}[/tex]

The variables of the equation are listed as follows:

[tex]\overline{x}[/tex] is the sample mean.t is the critical value.n is the sample size.s is the standard deviation for the sample.

The critical value, using a t-distribution calculator, for a two-tailed 99% confidence interval, with 4 - 1 = 3 df, is t = 5.841.

The parameters for this problem are given as follows:

[tex]\overline{x} = 49, s = 15, n = 4[/tex]

The lower bound of the interval is given as follows:

[tex]49 - 5.841 \times \frac{15}{\sqrt{4}} = 5.19[/tex]

The upper bound of the interval is given as follows:

[tex]49 + 5.841 \times \frac{15}{\sqrt{4}} = 92.81[/tex]

More can be learned about the t-distribution at https://brainly.com/question/17469144

#SPJ4

A genetic experiment involving peas yielded one sample of offspring consisting of 405 green peas and 138 yellow peas. Use a 0.05 significance level to test the claim that under the same circumstances, 27% of offsprinig peas will be yellow. Identify the null hypothesis, alterrnative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. Use the P-value method and the normal distribution as an approximation to the binomial distribution.A) what are the hypotheses? alternative hypothesis?B) Identify the test statistict=?C) Identify the P-value___ (round to four decimal places as needed)D) Identify the critical value(s)The critical value(s) is (are)___(round to three decimal places as needed. Use a comma to seperate as needed)

Answers

A genetic experiment with peas resulted in 138 yellow and 405 green peas. The null hypothesis was rejected at the 0.05 level, concluding that the proportion of yellow peas is different from 27%. The test statistic was -1.7524  and the p-value was 0.0791. The critical values were -1.96 and 1.96.

The null hypothesis is that the proportion of yellow peas is equal to 0.27, and the alternative hypothesis is that the proportion of yellow peas is not equal to 0.27.

The test statistic is the z-score, which is calculated as z = (P - p) / √(p(1-p)/n), where P is the sample proportion, p is the hypothesized proportion, and n is the sample size.

The P-value for the two-tailed test is calculated as P(Z ≤ -z) + P(Z ≥ z), where z is the absolute value of the calculated z-score. Using a significance level of 0.05, the critical z-value is ±1.96.

The sample proportion of yellow peas is P = 138 / (405 + 138) ≈ 0.2543. The calculated z-score is z = (0.2543 - 0.27) / √(0.27 * 0.73 / 543) ≈ -1.7524. The P-value is P(Z ≤ -1.7524) + P(Z ≥ 1.7524) ≈ 0.0791.

The critical values for a two-tailed test with a significance level of 0.05 are ±1.96. Since the calculated z-score of -1.7524 is less than the critical value of -1.96, we fail to reject the null hypothesis.

Therefore, there is not enough evidence to conclude that the proportion of yellow peas is different from 0.27. The final conclusion is that the data do not support the claim that under the same circumstances, 27% of offspring peas will be yellow.

To know more about Null hypothesis:

https://brainly.com/question/28920252

#SPJ4

Find an increasing subsequence of maximal length and a decreasing subsequence of maximal length in the sequence $22, 5, 7, 2, 23, 10, 15, 21, 3, 17.$

Answers

The increasing subsequence of maximal length is $5,7,10,15,21$ and the decreasing subsequence of maximal length is $22,23,17$.

To find an increasing subsequence of maximal length, we can use the longest increasing subsequence algorithm. Starting with an empty sequence, we iterate through each element of the given sequence and append it to the longest increasing subsequence that ends with an element smaller than the current one.

If no such sequence exists, we start a new increasing subsequence with the current element. The resulting sequence is the increasing subsequence of maximal length.

Using this algorithm, we get the increasing subsequence $5,7,10,15,21$ of length 5.

To find a decreasing subsequence of maximal length, we can reverse the given sequence and use the longest increasing subsequence algorithm on the reversed sequence. The resulting sequence is the decreasing subsequence of maximal length.

Using this algorithm, we get the decreasing subsequence $22,23,17$ of length 3.

For more questions like Sequence click the link below:

https://brainly.com/question/21961097

#SPJ11

Calculate the magnitude of the built-in field in the quasi-neutral
region of an exponential impurity distribution:
N= N0 e[-x/λ]
Let the surface dopant concentration be 1018 cm-3 and λ= 0.4 µm.
Compare this field to the maximum field in the depletion region of an
abrupt p-n junction with acceptor and donor concentrations of 1018
cm-3 and 1015 cm-3 , respectively, on the two sides of the junction.

Answers

The magnitude of the built-in field in the quasi-neutral region of an exponential impurity distribution can be calculated as:
Ebi = kT/q ln(Na Nd/ni^2)
After putting the values in the equation for Ebi, we get Ebi = 340 V/cm.

where k is the Boltzmann constant, T is the temperature, q is the charge of an electron, Na and Nd are the acceptor and donor concentrations, and ni is the intrinsic carrier concentration.
In this case, we have an exponential impurity distribution with N = N0 e[-x/λ], where N0 is the surface dopant concentration and λ = 0.4 µm. Therefore, the acceptor and donor concentrations are both 1018 cm-3, and the intrinsic carrier concentration can be calculated using ni^2 = Na Nd exp(-Eg/kT), where Eg is the bandgap energy. Assuming Si as the material with Eg = 1.12 eV, we get ni = 1.45x10^10 cm-3.
Substituting these values in the equation for Ebi, we get Ebi = 340 V/cm.
On the other hand, the maximum field in the depletion region of an abrupt p-n junction can be calculated using:
Emax = qNA/ε, where NA is the acceptor concentration in the p-region and ε is the dielectric constant of the material.
In this case, NA = 1018 cm-3 and assuming Si with ε = 11.7, we get Emax = 1.24x10^5 V/cm.
Comparing these two fields, we can see that the maximum field in the depletion region of an abrupt p-n junction is much larger than the built-in field in the quasi-neutral region of an exponential impurity distribution. This is because in an abrupt p-n junction, there is a sharp transition between the p and n regions, leading to a large concentration gradient and hence a large electric field.

To know more about  Quasi-Neutral Region visit:

https://brainly.com/question/31324092
#SPJ11

Suppose a student has no knowledge about the problems and answers every problem with a random choice. what is the expected score of the student?

Answers

the expected score of the student is (n/m) points out of a total of n points. For example, if there are 10 problems each worth 1 point with 4 choices per problem, then the student's expected score is (10/4) = 2.5 points.

Suppose there are n problems on an exam, each with m choices and only one correct answer. If a student has no knowledge about the problems and answers every problem with a random choice, then the probability of getting each problem correct is 1/m.

Let X be the number of correct answers. Then X follows a binomial distribution with parameters n and 1/m. The expected value of X is given by:

E(X) = np = n(1/m) = n/m

To learn more about probability visit:

brainly.com/question/30034780

#SPJ11

In circle O, AE and FC are diameters. Arc ED measures

What is the measure of EFC?

17.

A

O 107°

O 180°

O 253

O 270°

B

חי

F

C

E

D

Answers

The measure of EFC is 8.5.

In circle O, AE and FC are diameters. Arc ED measures 17. We need to find the measure of EFC.

The diagram is attached below: In a circle, the diameter is the longest chord. Therefore, AE and FC are diameters and intersect at the center of the circle O.

Since the measure of an arc is twice the measure of its corresponding central angle, the measure of arc ED is twice the measure of central angle EOD.

Measure of arc ED = 17 (given)

The measure of angle EOD = 1/2 × measure of arc

ED = 1/2 × 17 = 8.5

The angle EOD is an inscribed angle of arc EF. An inscribed angle is half the measure of the arc it intercepts.

The measure of arc EF = 2 × measure of angle

EOD = 2 × 8.5 = 17

The measure of angle EFC = 1/2 × measure of arc

EF = 1/2 × 17 = 8.5

Thus, the measure of EFC is 8.5. The answer is option A.

To learn about angle measure here:

https://brainly.com/question/19750219

#SPJ11

10, 1060, -5 b-5, 6050, 50 a. identify the one-shot nash equilibrium.

Answers

The one-shot nash equilibrium is (1060, 50).

To find the one-shot Nash equilibrium, we need to find a strategy profile where no player can benefit from unilaterally deviating from their strategy.

Let's consider player 1's strategy. If player 1 chooses 10, player 2 should choose -5 since 10-(-5) = 15, which is greater than 0. If player 1 chooses 1060, player 2 should choose 50 since 1060-50 = 1010, which is greater than 0. If player 1 chooses -5, player 2 should choose 10 since -5-10 = -15, which is less than 0. So, player 1's best strategy is to choose 1060.

Now let's consider player 2's strategy. If player 2 chooses -5, player 1 should choose 10 since 10-(-5) = 15, which is greater than 0. If player 2 chooses 6050, player 1 should choose 1060 since 1060-6050 = -4990, which is less than 0. If player 2 chooses 50, player 1 should choose 1060 since 1060-50 = 1010, which is greater than 0. So, player 2's best strategy is to choose 50.

Therefore, the one-shot Nash equilibrium is (1060, 50).

To learn more about Nash equilibrium visit: brainly.com/question/27578385

#SPJ11

1. what is the ksp expression for the dissolution of ca(oh)2? ksp = [ca2 ] [oh−] ksp = [ca2 ] 2[oh−]2 ksp = [ca2 ][oh−]2 ksp = [ca2 ][oh−]

Answers

The Ksp expression for the dissolution of Ca(OH)2 is Ksp = [Ca2+][OH−]^2.

The Ksp expression is an equilibrium constant that describes the degree to which a sparingly soluble salt dissolves in water. For the dissolution of Ca(OH)2, the balanced equation is:

Ca(OH)2(s) ⇌ Ca2+(aq) + 2OH−(aq)

The Ksp expression is then written as the product of the concentrations of the ions raised to their stoichiometric coefficients, which is Ksp = [Ca2+][OH−]^2. This expression shows that the solubility of Ca(OH)2 depends on the concentrations of Ca2+ and OH− ions in the solution. The higher the concentrations of these ions, the greater the dissolution of Ca(OH)2 and the larger the value of Ksp.

It is worth noting that Ksp expressions vary depending on the chemical equation of the dissolution reaction. For example, if the equation were Ca(OH)2(s) ⇌ Ca(OH)+ + OH−, the Ksp expression would be Ksp = [Ca(OH)+][OH−].

Learn more about dissolution here

https://brainly.com/question/16818744

#SPJ11

Eva volunteers at the community center. Today, she is helping them get ready for the Fire Safety Festival by blowing up balloons from a big box of uninflated balloons in a variety of colors. Eva randomly selects balloons from the box. So far, she has inflated 2 purple, 6 yellow, 3 green, 1 blue, and 4 red balloons. Based on the data, what is the probability that the next balloon Eva inflates will be yellow?

Write your answer as a fraction or whole number

Answers

The probability of the next balloon Eva inflates being yellow is 6/16, which can be simplified to 3/8.

Step 1: Count the total number of balloons

Eva has inflated a total of 2 purple, 6 yellow, 3 green, 1 blue, and 4 red balloons. Adding these quantities together, we find that she has inflated a total of 2 + 6 + 3 + 1 + 4 = 16 balloons.

Step 2: Count the number of yellow balloons

From the given data, we know that Eva has inflated 6 yellow balloons.

Step 3: Calculate the probability

To determine the probability of the next balloon being yellow, we divide the number of yellow balloons by the total number of balloons. In this case, it is 6/16.

Simplifying the fraction, we get 3/8.

Therefore, the probability that the next balloon Eva inflates will be yellow is 3/8.

Learn more about probability  Visit : brainly.com/question/13604758

#SPJ11

8) When 2. 49 is multiplied by 0. 17, the result (rounded to 2 decimal places) is:


A) 0. 04


B) 0. 42


C) 4. 23


D) 0. 423

Answers

When 2.49 is multiplied by 0.17, the result (rounded to 2 decimal places) is 0.42. Therefore, the answer is option b) 0.42

To find the result of multiplying 2.49 by 0.17, we can simply multiply these two numbers together. Performing the multiplication, we get 2.49 * 0.17 = 0.4233.

Since we are asked to round the result to 2 decimal places, we need to round 0.4233 to the nearest hundredth. Looking at the digit in the thousandth place (3), which is greater than or equal to 5, we round up the hundredth place digit (2) to the next higher digit. Thus, the rounded result is 0.42.

Therefore, when 2.49 is multiplied by 0.17, the result (rounded to 2 decimal places) is 0.42, which corresponds to option B) 0.42.

Learn more about decimal places here:

https://brainly.com/question/20563248

#SPJ11

(1 point) for the functions f(t)=h(t) and g(t)=h(t), defined on 0≤t<[infinity], compute f∗g in two different ways:

Answers

We get two different answers for fg depending on the method used to compute the convolution. Using a change of variables, we get fg = 1/√(2π), while using integration by parts, we get f°g = ∞.

Since both functions f!(t) and g(t) are equal to h(t), their convolution f°g can be computed as follows:

f°g = ∫[0,∞] f(τ)g(t-τ) dτ

= ∫[0,∞] h(τ)h(t-τ) dτ

Method 1: Change of Variables

To compute the convolution using a change of variables, let u = t' and v = t - t'. Then, τ = u and t = u + v, and we have:

f°g = ∫∫[D] h(u)h(u+v) dudv

where D is the region of integration corresponding to the domain of u and v. Since the limits of integration are 0 to ∞ for both u and v, we can write:

f°g = ∫[0,∞] ∫[0,∞] h(u)h(u+v) dudv

Using the convolution theorem, we know that f°g is equal to the Fourier transform of H(f), where H(f) is the Fourier transform of h(t). Since h(t) is a constant function, H(f) is a Dirac delta function, given by:

H(f) = 1/√(2π) δ(f)

where δ(f) is the Dirac delta function. Therefore, we have:

f°g = Fourier^-1{H(f)} = Fourier^-1{1/√(2π) δ(f)} = 1/√(2π)

Method 2: Integration by Parts

To compute the convolution using integration by parts, we have:

f°g = ∫[0,∞] h(τ)h(t-τ) dτ

= h(t) ∫[0,∞] h(τ-t) dτ (using a change of variables)

= h(t) ∫[0,∞] h(u) du (since h is a constant function)

= h(t) [u]0^∞

= h(t) [∞ - 0]

= ∞

Learn more about integral function at https://brainly.com/question/29738170

#SPJ11

Telephone call can be classified as voice (V) if someone is speaking, or data (D) if there is a modem or fax transmission.Based on extension observation by the telephone company, we have the following probability model:P[V] 0.75 and P[D] = 0.25.Assume that data calls and voice calls occur independently of one another, and define the random variable K₂ to be the number of voice calls in a collection of n phone calls.Compute the following.(a) EK100]= 75(b) K100 4.330Now use the central limit theorem to estimate the following probabilities. Since this is a discrete random variable, don't forget to use "continuity correction".(c) PK10082] ≈ 0.0668(d) P[68 K10090]≈ In any one-minute interval, the number of requests for a popular Web page is a Poisson random variable with expected value 300 requests.
(a) A Web server has a capacity of C requests per minute. If the number of requests in a one-minute interval is greater than C, the server is overloaded. Use the central limit theorem to estimate the smallest value of C for which the probability of overload is less than 0.06.
Note that your answer must be an integer. Also, since this is a discrete random variable, don't forget to use "continuity correction".
C = 327
(b) Now assume that the server's capacity in any one-second interval is [C/60], where [x] is the largest integer < x. (This is called the floor function.)
For the value of C derived in part (a), what is the probability of overload in a one-second interval? This time, don't approximate via the CLT, but compute the probability exactly.
P[Overload] =0

Answers

(a) E[K100] = 75, since there is a 0.75 probability that a call is a voice call and 100 total calls, we expect there to be 75 voice calls.

(b) Using the formula for the expected value of a binomial distribution, E[K100] = np = 100 * 0.75 = 75 and the variance of a binomial distribution is given by np(1-p) = 100 * 0.75 * 0.25 = 18.75. So the standard deviation of K100 is the square root of the variance, which is approximately 4.330.

(c) Using the central limit theorem, we have Z = (82.5 - 75) / 4.330 ≈ 1.732. Using continuity correction, we get P(K100 ≤ 82) ≈ P(Z ≤ 1.732 - 0.5) ≈ P(Z ≤ 1.232) ≈ 0.8932. Therefore, P(K100 > 82) ≈ 1 - 0.8932 = 0.1068.

(d) Using the same approach as (c), we get P(68.5 < K100 < 90.5) ≈ P(-2.793 < Z < 1.232) ≈ 0.9846. Therefore, P(68 < K100 < 90) ≈ 0.9846 - 0.5 = 0.4846.

For the second part of the question:

(a) Using the central limit theorem, we need to find the value of C such that P(K > C) < 0.06, where K is a Poisson random variable with lambda = 300. We have P(K > C) = 1 - P(K ≤ C) ≈ 1 - Φ((C+0.5-300)/sqrt(300)) < 0.06, where Φ is the standard normal cumulative distribution function. Solving for C, we get C ≈ 327.

(b) In one second, the number of requests follows a Poisson distribution with parameter 300/60 = 5. Using the Poisson distribution, P(overload) = P(K > ⌊C/60⌋), where K is a Poisson random variable with lambda = 5 and ⌊C/60⌋ = 5. Therefore, P(overload) = 1 - P(K ≤ 5) = 1 - Σi=0^5 e^(-5) * 5^i / i! ≈ 0.015.

Learn more about probability here

https://brainly.com/question/13604758

#SPJ11

25) Let B = {(1, 2), (?1, ?1)} and B' = {(?4, 1), (0, 2)} be bases for R2, and let
25) Let B = {(1, 2), (?1, ?1)}
and&
(a) Find the transition matrix P from B' to B.
(b) Use the matrices P and A to find [v]B and [T(v)]B?, where [v]B' = [4 ?1]T.
(c) Find P?1 and A' (the matrix for T relative to B').
(d) Find [T(v)]B' two ways.
1) [T(v)]B' = P?1[T(v)]B = ?
2) [T(v)]B' = A'[v]B' = ?

Answers

In this problem, we are given two bases for R2, B = {(1, 2), (-1, -1)} and B' = {(-4, 1), (0, 2)}. We are asked to find the transition matrix P from B' to B, and then use this matrix to find [v]B and [T(v)]B'. Finally, we need to find the inverse of P and the matrix A' for T relative to B', and then use these to find [T(v)]B' in two different ways.

To find the transition matrix P from B' to B, we need to express the vectors in B' as linear combinations of the vectors in B, and then write the coefficients as columns of a matrix. Doing this, we get:

P = [ [1, 2], [-1, -1] ][tex]^-1[/tex] * [ [-4, 0], [1, 2] ] = [ [-2, 2], [1, -1] ]

Next, we are given [v]B' = [4, -1]T and asked to find [v]B and [T(v)]B'. To find [v]B, we use the formula [v]B = P[v]B', which gives us [v]B = [-10, 5]T. To find [T(v)]B', we first need to find the matrix A for T relative to B. To do this, we compute A = [tex][T(1,2), T(-1,-1)][/tex]* P^-1 = [ [6, 3], [-1, -1] ]. Then, we can compute [T(v)]B' = A[v]B' = [-26, 5]T.

Next, we are asked to [tex]find[/tex][tex]P^-1[/tex]and A', the matrix for T relative to B'. To find P^-1, we simply invert the matrix P to get P^-1 = [ [-1/2, 1/2], [1/2, -1/2] ]. To find A', we need to compute the matrix A for T relative to B', which is given by A' = P^-1 * A * P = [ [0, -3], [0, 2] ].

Finally, we are asked to find [T(v)]B' in two different ways. The first way is to use the formula [T(v)]B' = P^-1[T(v)]B, which gives us [T(v)]B' = [-26, 5]T, the same as before. The second way is to use the formula[tex][T(v)]B'[/tex] = A'[v]B', which gives us[tex][T(v)]B'[/tex] = [-26, 5]T

Learn more about transition matrix here:

https://brainly.com/question/30034998

#SPJ11

The box plot shows the total amount of time, in minutes, the students of a class spend studying each day:

A box plot is titled Daily Study Time and labeled Time (min). The left most point on the number line is 40 and the right most point is 120. The box is labeled 57 on the left edge and 112 on the right edge. A vertical line is drawn inside the rectangle at the point 88. The whiskers are labeled as 43 and 116.

What information is provided by the box plot? (3 points)

a
The lower quartile for the data

b
The number of students who provided information

c
The mean for the data

d
The number of students who studied for more than 112.5 minutes

Answers

The requried,  information is provided by the box plot in the lower quartile of the data. Option A is correct.

a) The lower quartile for the data is provided by the bottom edge of the box, which is labeled as 57.

b) The box plot does not provide information about the number of students who provided information.

c) The box plot does not provide information about the mean for the data.

d) The box plot does not provide information about the exact number of students who studied for more than 112.5 minutes, but it does indicate that the maximum value in the data set is 120 and the upper whisker extends to 116, which suggests that their may be some students who studied for more than 112.5 minutes.

Learn more about the lower quartile here:

https://brainly.com/question/7134426

#SPJ1

Let Z be the standard normal variable. Find the values of z if z satisfies the following problems, 4 - 6. P(Z < z) = 0.1075 a. 1.25 b. 1.20 c. -1.20 d. -1.25 e. -1.24

Answers

To find the value of z, we can use a standard normal table or a calculator with a standard normal distribution function.  Therefore, The value of z that satisfies P(Z < z) = 0.1075 is -1.24 (option e).

To find the value of z, we can use a standard normal table or a calculator with a standard normal distribution function. From the table, we can look for the probability closest to 0.1075, which is 0.1073. The corresponding z-value is -1.24. Alternatively, using a calculator, we can use the inverse standard normal distribution function to find the z-value that corresponds to the probability of 0.1075, which also gives us -1.24.

The standard normal distribution is a probability distribution with mean 0 and standard deviation 1. It is often used to transform normal distributions into standard normal distributions, allowing for easier calculations and comparisons. The probability that a standard normal variable Z is less than a certain value z can be found using a standard normal table or calculator. In this case, the table or calculator shows that the value of z that corresponds to a probability of 0.1075 is -1.24. Therefore, P(Z < -1.24) = 0.1075.

Learn more about standard normal table here:

https://brainly.com/question/30401972

#SPJ11

create a list of partitions of n for 1 ≤n≤7. use this list to compute pn for 1 ≤n≤7.

Answers

We first list all the partitions of integers from 1 to 7, then use these lists to compute the values of the partition function p(n) for n from 1 to 7. Therefore, the values of the partition function for integers from 1 to 7 are 1, 2, 3, 5, 7, 11, and 15, respectively.

A partition of a positive integer n is a way of writing n as a sum of positive integers, where the order of the summands does not matter. For example, the partitions of 4 are 4, 3+1, 2+2, 2+1+1, and 1+1+1+1. To compute the partition function p(n), we count the number of partitions of n.

Here are the partitions of integers from 1 to 7:

1: {1}

2: {2}, {1,1}

3: {3}, {2,1}, {1,1,1}

4: {4}, {3,1}, {2,2}, {2,1,1}, {1,1,1,1}

5: {5}, {4,1}, {3,2}, {3,1,1}, {2,2,1}, {2,1,1,1}, {1,1,1,1,1}

6: {6}, {5,1}, {4,2}, {4,1,1}, {3,3}, {3,2,1}, {3,1,1,1}, {2,2,2}, {2,2,1,1}, {2,1,1,1,1}, {1,1,1,1,1,1}

7: {7}, {6,1}, {5,2}, {5,1,1}, {4,3}, {4,2,1}, {4,1,1,1}, {3,3,1}, {3,2,2}, {3,2,1,1}, {3,1,1,1,1}, {2,2,2,1}, {2,2,1,1,1}, {2,1,1,1,1,1}, {1,1,1,1,1,1,1}

Using this list, we can compute the values of the partition function p(n) for n from 1 to 7:

p(1) = 1

p(2) = 2

p(3) = 3

p(4) = 5

p(5) = 7

p(6) = 11

p(7) = 15

Therefore, the values of the partition function for integers from 1 to 7 are 1, 2, 3, 5, 7, 11, and 15, respectively.

Learn more about  partition function here:

https://brainly.com/question/32065524

#SPJ11

Add 6 hours 30 minutes 40 seconds and 3 hours 40 minutes 50 seconds

Answers

The answer is:

10 hours, 20 minutes, and 1 second.

To add 6 hours 30 minutes 40 seconds and 3 hours 40 minutes 50 seconds, we add the hours, minutes, and seconds separately.

Hours: 6 hours + 3 hours = 9 hours

Minutes: 30 minutes + 40 minutes = 70 minutes (which can be converted to 1 hour and 10 minutes)

Seconds: 40 seconds + 50 seconds = 90 seconds (which can be converted to 1 minute and 30 seconds)

Now we add the hours, minutes, and seconds together:

9 hours + 1 hour = 10 hours

10 minutes + 1 hour + 10 minutes = 20 minutes

30 seconds + 1 minute + 30 seconds = 1 minute

Therefore, the total is 10 hours, 20 minutes, and 1 second.

To know more about addition of time, visit:

https://brainly.com/question/30929767

#SPJ11

Find the limit. Use l'Hospital's Rule if appropriate. If there is a more elementary method, consider using it. lim x→0 x/ (tan^(−1) (9x)).

Answers

The limit is 1.

We can solve this limit by applying L'Hospital's Rule:

lim x→0 x/ (tan^(−1) (9x)) = lim x→0 (d/dx x) / (d/dx (tan^(−1) (9x)))

Taking the derivative of the denominator:

= lim x→0 1/ (1 + (9x)^2)

Now plugging in x=0, we get:

= 1/1 = 1

Therefore, the limit is 1.

To know more about limit refer here:

https://brainly.com/question/12211820

#SPJ11

let a and b be events such that p[a]=0.7 and p[b]=0.9. calculate the largest possible value of p[a∪b]−p[a∩b].

Answers

To find the largest possible value of p[a∪b]−p[a∩b], we need to first calculate both probabilities separately. The probability of a union b (p[a∪b]) can be found using the formula:
p[a∪b] = p[a] + p[b] - p[a∩b]

Substituting the values given in the problem, we get:
p[a∪b] = 0.7 + 0.9 - p[a∩b]
Now, we need to find the largest possible value of p[a∪b]−p[a∩b]. This can be done by minimizing the value of p[a∩b].
Since p[a∩b] is a probability, it must be between 0 and 1. Therefore, the smallest possible value of p[a∩b] is 0.
Substituting p[a∩b]=0, we get:
p[a∪b] = 0.7 + 0.9 - 0 = 1.6
Therefore, the largest possible value of p[a∪b]−p[a∩b] is:
1.6 - 0 = 1.6
In other words, the largest possible value of p[a∪b]−p[a∩b] is 1.6.
This means that if events a and b are not mutually exclusive (i.e., they can both occur at the same time), the probability of at least one of them occurring (p[a∪b]) is at most 1.6 times greater than the probability of both of them occurring (p[a∩b]).

Learn more about union here

https://brainly.com/question/29031688

#SPJ11

PLEASE ANSWER FAST.




1. Shania wants to make population pyramids for the cities in her state. What information will she need to make these?



the age and gender of the population



the mortality rates of the population



the fertility rates of the population



the population distribution of the cities

Answers

To make population pyramids for the cities in her state, Shania will need the following information: the age and gender of the population, the fertility rates of the population, and the population distribution of the cities.

What is a population pyramid?

A population pyramid, also known as an age-sex pyramid, is a visual representation of a population's age and gender composition. It's a graphical representation of population data, with the age cohorts on the vertical axis and the percentage of the population on the horizontal axis. Population pyramids are used to explain demographic variables such as birth rate, life expectancy, and infant mortality rate. They're also utilized to predict the future population size of a region or country.

What information is needed to make a population pyramid?

The following information is required to make a population pyramid: Age and gender of the population: A population pyramid is divided into male and female categories. The age distribution of the population is divided into five-year age cohorts. For example, age cohorts from 0 to 4 years, 5 to 9 years, and so on. Fertility rates of the population: The birth rates of a population are represented by the shape of a pyramid. The number of children born per woman is referred to as the fertility rate. Population distribution of the cities: The population size of a particular location affects the shape of the pyramid.

The population can be divided into urban and rural areas, and their numbers will affect the shape of the pyramid.

To know more about Population pyramids visit:

https://brainly.com/question/32165513

#SPJ11

Find the limit of the sequence if it converges; otherwise indicate divergence.an= (ln n)^5/√n

Answers

To determine if the sequence converges or diverges, we can use the limit test. We'll analyze the limit of the given function as n approaches infinity:

an = (ln n)^5 / √n

We'll find the limit as n approaches infinity:

lim (n→∞) [(ln n)^5 / √n]

To evaluate this limit, we can apply L'Hopital's Rule, which states that if the limit of the ratio of the derivatives of the numerator and denominator exists, then the limit of the ratio of the functions exists and is equal to the limit of the ratio of the derivatives.

First, let's rewrite the expression as:

an = (ln n)^5 * n^(-1/2)

Now, let's find the derivatives of (ln n)^5 and n^(-1/2) with respect to n:

d/dn (ln n)^5 = 5(ln n)^4 * (1/n)
d/dn n^(-1/2) = (-1/2)n^(-3/2)

Now, let's find the limit of the ratio of the derivatives:

lim (n→∞) [(5(ln n)^4 * (1/n)) / (-1/2)n^(-3/2)]

We can simplify this expression:

lim (n→∞) [(10(ln n)^4) / n^(1/2)]

Now, we observe that as n approaches infinity, the denominator (n^(1/2)) grows much faster than the numerator (10(ln n)^4). Therefore, the limit of the expression goes to zero:

lim (n→∞) [(10(ln n)^4) / n^(1/2)] = 0

Since the limit is zero, the sequence converges to 0.

To know more about sequence, visit:

https://brainly.com/question/30262438

#SPJ11

Other Questions
a) Let Y1, Y2be independent standard normal random variables. Let U = Y12+ Y22.i. Find the mgf of Uii. Identify the "named distribution" of U, and specify the value(s) of its parameter(s)b) Let Y1 Poi(1) and Y2 Poi(2). Assume Y1and Y2are independent and let U = Y1+ Y2i. Find the mgf of Uii. Identify the "named distribution" of U and specify the value(s) of its parameter(s)c) Find the pmf of (Y1| U = u), where u is a nonnegative integer. Identify your answer as a named distribution and specify the value(s) of its parameter(s) complete the electronpushing mechanism for the given reaction of cyclohexanone in potassium cyanide and hydrogen cyanide. add any missing atoms, bonds, charges, nonbonding electron pairs, and curved arrows. details count. According to a report on sleep deprivation by the Centers for Disease Control and Prevention, the percent of California residents who reported insufficient rest or sleep during each of the preceding 30 days is 7. 3%, while this percent is 9. 1% for Oregon residents. These data are based on simple random samples of 11630 California and 4387 Oregon residents. Calculate a 95% confidence interval for the difference between the proportions of Californians and Oregonians who are sleep deprived. Round your answers to 4 decimal places. Make sure you are using California as Group A and Oregon as Group B. Lower bound: 0. 0106 Incorrect Upper bound: 0. 0254 Incorrect Submit All PartsQuestion 11 You create solutions of H2SO4 and NaOH with concentrations of 1.25M and 0.84M ,respectively. If you titrate 10.0 mL of the H2SO4 solution with the NaOH base you have created, at what volume do you expect to see the equivalence point? Describe the sample space of the experiment, and list the elements of the given event. (Assume that the coins are distinguishable and that what is observed are the faces or numbers that face up.)A sequence of two different letters is randomly chosen from those of the word sore; the first letter is a vowel. A sample of n = 22 is taken and the sample mean is =35 and a sample standard deviation of s= 9.38. Construct a 95% confidence interval for the true mean, .(33, 37)(31.56, 38.44)(30.84, 39.16)(25.62, 44.38) Calculate the total energy intake for a 21-year-old male weighing 78 kg with a moderate activity level who is losing weight at 150 kcals/day.You may need the following equations:1.0 kcal/kg body weight per hour0.9 kcal/kg body weight per hourType your answers in the blanks using only the numbers (no units, no commas, round to the nearest whole number).BMRThe first step is to identify the BMR equation for a male, which is____________ kcal/kg body weight per hour. Next, multiply this by_________ kg x ________hours/day to calculate his BMR of_______ kcal/day (round to the nearest whole number, no commas).ActivityMultiply his BMR by the activity coefficient for moderate activity, which is__________ % to calculate his activity level of _________ kcal/day (round to the nearest whole number, no commas).LossType either "subtract" or "add" into the blank: __________ 150 kcals per day to determine his loss.TEFUse _______% to calculate his TEF of ________ kcal/day (round to the nearest whole number, no commas).Total Energy IntakeCalculate his total energy intake to be _______ kcal/day (round to the nearest whole number, no commas).Since he is under eating by 150 kcals/day, how much weight would he lose in 2 weeks, in theory in pounds (lbs)?________ lbs (round to the nearest tenths place, i.e. 0.1)What is his requirement in protein ________(g/day)?First, identify the RDA for protein, which is ________ g/kg per day.Use the RDA to determine his requirement in protein is g/day (round to the nearest whole number). A waiter or waitress does not bring you food and warm smile because you are hungry, but because of the: a. Utility b. Incentive c. Marginal Cost d. Diminishing Return Violet light (410 nm) and red light (685 nm) pass through a diffraction grating with d=3. 33x10^-6. What is the angular separation between them for m=2 in an alcohol-in-glass thermometer, the alcohol column has length 12.68 cm at 0.0 c and length 22.55 cm at 100.0 c. What is the temperature if the column has length a. 15.10 cm, and b. 22.95 cm. In 14-karat gold jewelry, 14 out of 24 parts are real gold. What percent of a 14K gold ring is real gold? resources that may result from a socially complex phenomenon, something which cannot be systematically managed or influenced is called? Companies with market power face a trade-off between O having a higher marginal cost and a reduction in output. reducing costs and increasing profit. having a higher profit margin and selling a larger quantity. gaining market share and reducing costs. The probability density function of the time you arriveat a terminal (in minutes after 8:00 a. M. ) is f (x) = 0. 1 exp( 0. 1x)for 0 < x. Determine the probability that(a) You arrive by 9:00 a. M. (b) You arrive between 8:15 a. M. And 8:30 a. M. (c) You arrive before 8:40 a. M. On two or more days of fivedays. Assume that your arrival times on different days areindependent HELP PLEASE!! In circle D, AB is a tangent with point A as the point of tangency and M(angle)CAB =105 degreesWhat is mCEA the lifetime of a certain type of automobile tire (in thousands of miles) is normally distributed with mean = 39 and standard deviation = 6. use the ti-84 plus calculator to answer the following. Please answer using Java. Use the options given below to write Java code that does exactly the same as the following code.Optional> of = Optional.ofNullable(filter); x = of.map(f -> f.passFilter(v)).orElse(false); x = true; filter = x; x = f.passFilter(v); x = filter.passFilter(false); Filter of = new Filter0 x = f.pass Filter(false): if (x == false) { x = filter.passFilter(v); if (filter == false) { if (x == null) { x = f.passFilter(nul); }; } } else { return false; x = f.passFilter(filter, v); x = false; x = filter.passFilter(null); public boolean passFilter(Tv) x = f.passfilter/filter, v,false); if (f - null) { if (filter == null) { if (v == null) { X = V; if (v == false) { According to the us census, the proportion of adults in a certain city who exercise regularly is 0.59. an srs of 100 adults in the city found that 68 exercise regularly. which calculation finds the approximate probability of obtaining a sample of 100 adults in which 68 or more exercise regularly? help me please im stuck 1. a population of rabbits may be brown (the dominant phenotype) orwhite (the recessive phenotype). brown rabbits have the genotype bbor bb. white rabbits have the genotype bb. the frequency of the bbgenotype is .38.*please show the work