The probability density function of the time you arrive

at a terminal (in minutes after 8:00 a. M. ) is f (x) = 0. 1 exp(− 0. 1x)

for 0 < x. Determine the probability that

(a) You arrive by 9:00 a. M. (b) You arrive between 8:15 a. M. And 8:30 a. M. (c) You arrive before 8:40 a. M. On two or more days of five

days. Assume that your arrival times on different days are

independent

Answers

Answer 1

The probability density function of the time you arrive at a terminal (in minutes after 8:00 a. M. ) is given by f (x) = 0. 1 exp(− 0. 1x) for 0 < x.
a) 0.999
b) 14.4%
c) .3297

(a) The probability that you arrive by 9:00 a. M. is given by the cumulative distribution function (CDF) evaluated at x = 60 (since 9:00 a. M. is 60 minutes after 8:00 a. M.). The CDF is given by the integral of the PDF from 0 to x, which in this case is:

[tex]F(x)=\int\limits^x_0 {f(t)} \, dt=\int\limits^x_0 { 0.1e^{-0.1t}\, dt= -e^{-0.1x} + e^0= 1-e^{-0.1x}[/tex]

Evaluating the CDF at x = 60, we get:

F(60)=1−e−0.1×60≈0.999

So, the probability that you arrive by 9:00 a. M. is approximately 99.9%.

(b) The probability that you arrive between 8:15 a. M. and 8:30 a. M. is given by the CDF evaluated at x = 30 minus the CDF evaluated at x = 15 (since 8:15 a. M. is 15 minutes after 8:00 a. M., and 8:30 a. M. is 30 minutes after):

F(30)−F(15)=(1−e−0.1×30)−(1−e−0.1×15)≈0.283−0.139≈0.144

So, the probability that you arrive between 8:15 a.M and 8:30 a.M is approximately 14.4%.

c) The probability that you arrive before 8:40 a.M on two or more days of five days, assuming that your arrival times on different days are independent, can be calculated using the binomial distribution with n = 5 trials and success probability p = F(40), where F(40) is the CDF evaluated at x = 40 (since 8:40 a.M is 40 minutes after 8:00 a.M):

F(40)=1−e−0.1×40≈.3297

The probability of k successes in n independent trials with success probability p is given by the binomial formula:

P(k)=(kn​)pk(1−p)n−k

So, the probability of arriving before 8:40 a.M on two or more days out of five is given by:

P(2 or more successes)=P(2)+P(3)+P(4)+P(5)

=(25​)p2(1−p)3+(35​)p3(1−p)2+(45​)p4(1−p)1+(55​)p5(1−p)0

=(25​)(F(40))2(1−F(40))3+(35​)(F(40))3(1−F(40))2+(45​)(F(40))4(1−F(40))1+(55​)(F(40))5(1−F(40))0

≈.6826

So, the probability that you arrive before 8:40 a.M on two or more days out of five is approximately 68%.

Learn more about probability density function here:

https://brainly.com/question/31039386

#SPJ11


Related Questions

Determine whether each expression represents the size relationship between the number of rabbits that resulted from a single rabbit after 6 years and after 3 years. Select Yes or No for each statement.

Answers

Analysing the statements given, expressions 1, 3and 5 represents the relationship while 2 and 4 doesn't .

The size relationship between rabbits after 6 and 3 years can be examined thus :

After 3 years = 3³After 6 years = 3⁶

Using division :

3⁶/3³ = [tex] {3}^{6 - 3} = {3}^{3} = 27[/tex]

Using the expression above, the right expressions are:

3⁶/3³3⁶ - 3³3³ = 27

Hence , expressions 1, 3 and 5 are correct while 2 and 4 are incorrect.

Learn more on indices :https://brainly.com/question/10339517

#SPJ4

Sally is trying to wrap a CD for her brother for his birthday. The CD measures 0. 5 cm by 14 cm by 12. 5 cm. How much paper will Sally need?

Answers

Sally is trying to wrap a CD for her brother's birthday. The CD measures 0.5 cm by 14 cm by 12.5 cm. We need to calculate how much paper Sally will need to wrap the CD.

To calculate the amount of paper Sally needs, we need to calculate the surface area of the CD. The CD's surface area is calculated by adding up the areas of all six sides, which are all rectangles. Therefore, we need to calculate the area of each rectangle and then add them together to find the total surface area.The CD has three sides that measure 14 cm by 12.5 cm and two sides that measure 0.5 cm by 12.5 cm. Finally, it has one side that measures 0.5 cm by 14 cm.So, we have to calculate the area of all the sides:14 x 12.5 = 175 (two sides)12.5 x 0.5 = 6.25 (two sides)14 x 0.5 = 7 (one side)Total surface area = 175 + 175 + 6.25 + 6.25 + 7 = 369.5 cm²Therefore, Sally will need 369.5 cm² of paper to wrap the CD.

To know more about birthday visit:

brainly.com/question/10151363

#SPJ11

A recent government program required users to sign up for services on a website that had a high failure rate. If each user's chance of failure is independent of another's failure, what would the individual failure rate need to be so that out of 20 users, only 20% failed?

Answers

The individual failure rate needs to be approximately 24.5% so that out of 20 users, only 20% fail.

A recent government program required users to sign up for services on a website that had a high failure rate. If each user's chance of failure is independent of another's failure, the individual failure rate needed for out of 20 users, only 20% to fail can be calculated using the binomial probability formula. The formula is P(X=k) = (n choose k) * p^k * (1-p)^(n-k), where n is the number of trials, p is the probability of success, k is the number of successful trials, and (n choose k) is the binomial coefficient.

Here, the number of trials (n) is 20, and the probability of success is 1-p, which is the probability of failure. We want only 20% of users to fail, which means that 80% should succeed. Therefore, p = 0.8. The formula can now be used to find the probability of exactly 16 users succeeding:

P(X=16) = (20 choose 16) * 0.8^16 * (1-0.8)^(20-16)

= 4845 * 0.0112 * 0.0016

= 0.0847

This means that the probability of 16 users succeeding is about 8.47%. To find the individual failure rate, we need to adjust the probability of failure (1-p) so that the probability of exactly 16 users failing is 20%. Let x be the individual failure rate. Then:

P(X=16) = (20 choose 16) * (1-x)^16 * x^4

= 0.2

Solving for x, we get:

x = 0.245

Therefore, the individual failure rate needs to be approximately 24.5% so that out of 20 users, only 20% fail.

Learn more on binomial probability here:

https://brainly.com/question/31197941

#SPJ11

Find the value of X

A. .07
B. 90
C. 10.6
D. 15

Answers

Answer:

X= 15 or D

Step-by-step explanation:

Tan(45) multiplied by 15 is equal to 15

the confidence interval formula for p _____ include(s) the sample proportion.

Answers

Yes, the confidence interval formula for p includes the sample proportion. In statistical inference, a confidence interval is a range of values that is used to estimate an unknown population parameter.

In the case of a proportion, such as the proportion of individuals in a population who have a certain characteristic, the confidence interval formula involves using the sample proportion as an estimate of the population proportion.

The formula for a confidence interval for a proportion is given by:

p ± z*sqrt((p(1-p))/n)

where p is the sample proportion, n is the sample size, and z is the z-score corresponding to the desired level of confidence. The sample proportion is used as an estimate of the population proportion, and the formula uses the sample size and the level of confidence to calculate a range of values within which the true population proportion is likely to fall.

It is important to note that the sample proportion is just an estimate, and the actual population proportion may differ from it. The confidence interval provides a range of values within which the true population proportion is likely to fall, based on the available data and the chosen level of confidence.

Learn more about confidence interval here:

https://brainly.com/question/24131141

#SPJ11

Select ALL of the scenarios that represent a function.

A. the circumference of a circle in relation to its diameter
B. the ages of students in a class in relation to their heights
C. Celsius temperature in relation to the equivalent Fahrenheit temperature
D. the total distance a runner has traveled in relation to the time spent running
E. the number of minutes students studied in relation to their grades on an exam​

Answers

Answer:

C & D

Step-by-step explanation:

in problems 1–6 write the given linear system in matrix form. dx/dt=3x-5y. dy/dt=4x+8y

Answers

To write the given linear system in matrix form, you need to represent the coefficients of the variables x and y as matrices. The given system is:

dx/dt = 3x - 5y
dy/dt = 4x + 8y
The matrix form of this system can be written as:
d[ x ] /dt   =  [  3  -5 ] [ x ]
[ y ]               [  4   8 ] [ y ]
In short, this can be represented as:
dX/dt = AX
where X is the column vector [tex][x, y]^T[/tex], A is the matrix with coefficients [[3, -5], [4, 8]], and dX/dt is the derivative of X with respect to t.

Learn more about derivative here:

https://brainly.com/question/31184140

#SPJ11

each side of a cube is increasing at a rate of 3m/s. at what rate is the volume increasing when the volume is 8m3?

Answers

The rate at which the volume of the cube is increasing when the volume is 8 m^3 is 36 m^3/s.

Let's start by finding the formula for the volume of a cube.

The volume of a cube is given by:

V = s^3

where s is the length of a side of the cube.

Taking the derivative of both sides with respect to time t, we get:

dV/dt = 3s^2 ds/dt

We are given that ds/dt = 3 m/s, and we want to find dV/dt when V = 8 m^3.

Substituting the given value of ds/dt and V into the equation above, we get:

dV/dt = 3s^2 ds/dt = 3(2^2)(3) = 36 m^3/s

Therefore, the rate at which the volume of the cube is increasing when the volume is 8 m^3 is 36 m^3/s.

Learn more about volume here

https://brainly.com/question/27710307

#SPJ11

Checkerboards A checkerboard consists of eight rows and eight columns of squares as shown in the following figure. Starting at the top left square of a checkerboard, how many possible paths will end at the bottom right square if the only way a player can legally move is right one square or down one square from the current position?

Answers

There are 3003 possible paths at the bottom right square.

How to get from the top left square to the bottom right square?

To get from the top left square to the bottom right square, we need to make a total of 14 moves: 8 moves to the right and 6 moves down (or 8 moves down and 6 moves to the right).

We can represent each move by either an "R" for right or a "D" for down. For example, one possible sequence of moves is:

R R R R R R R R D D D D D D

This corresponds to moving right 8 times and down 6 times.

Since there are 14 moves in total, and we need to make 8 of them to the right and 6 of them down, the number of possible paths is given by the binomial coefficient:

C(14, 8) = 3003

Therefore, there are 3003 possible paths that will end at the bottom right square.

Learn more about combinatorics and counting

brainly.com/question/31476844

#SPJ11

Using Green's Theorem, calculate the area of the indicated region. The area bounded above by y = 3x and below by y = 9x2 O 36 o O 54 18

Answers

The area of the region bounded above by y = 3x and below by y = 9x^2 is 270 square units.

To use Green's Theorem to calculate the area of the region bounded above by y = 3x and below by y = 9x^2, we need to first find a vector field whose divergence is 1 over the region.

Let F = (-y/2, x/2). Then, ∂F/∂x = 1/2 and ∂F/∂y = -1/2, so div F = ∂(∂F/∂x)/∂x + ∂(∂F/∂y)/∂y = 1/2 - 1/2 = 0.

By Green's Theorem, we have:

∬R dA = ∮C F · dr

where R is the region bounded by y = 3x, y = 9x^2, and the lines x = 0 and x = 6, and C is the positively oriented boundary of R.

We can parameterize C as r(t) = (t, 3t) for 0 ≤ t ≤ 6 and r(t) = (t, 9t^2) for 6 ≤ t ≤ 0. Then,

∮C F · dr = ∫0^6 F(r(t)) · r'(t) dt + ∫6^0 F(r(t)) · r'(t) dt

= ∫0^6 (-3t/2, t/2) · (1, 3) dt + ∫6^0 (-9t^2/2, t/2) · (1, 18t) dt

= ∫0^6 (-9t/2 + 3t/2) dt + ∫6^0 (-9t^2/2 + 9t^2) dt

= ∫0^6 -3t dt + ∫6^0 9t^2/2 dt

= [-3t^2/2]0^6 + [3t^3/2]6^0

= -54 + 324

= 270.

Therefore, the area of the region bounded above by y = 3x and below by y = 9x^2 is 270 square units.

To know more about Green's Theorem refer here :

https://brainly.com/question/28328085#

#SPJ11

four out of every seven trucks on the road are followed by a car, while one out of every 5 cars is followed by a truck. what proportion of vehicles on the road are cars?

Answers

The proportion of vehicles on the road that are cars for the information given about the ratio of trucks to cars is  20 out of every 27 vehicles

We know that four out of every seven trucks on the road are followed by a car, which means that for every 7 trucks on the road, there are 4 cars following them.

We also know that one out of every 5 cars is followed by a truck, which means that for every 5 cars on the road, there is 1 truck following them.

Let T represent the total number of trucks and C represent the total number of cars on the road. From the information given, we know that:

(4/7) * T = the number of trucks followed by a car,
and
(1/5) * C = the number of cars followed by a truck.

Since there is a 1:1 correspondence between trucks followed by cars and cars followed by trucks, we can say that:
(4/7) * T = (1/5) * C

Now, to find the proportion of cars on the road, we need to express C in terms of T:
C = (5/1) * (4/7) * T = (20/7) * T

Thus, the proportion of cars on the road can be represented as:
Proportion of cars = C / (T + C) = [(20/7) * T] / (T + [(20/7) * T])

Simplify the equation:
Proportion of cars = (20/7) * T / [(7/7) * T + (20/7) * T] = (20/7) * T / (27/7) * T

The T's cancel out:
Proportion of cars = 20/27

So, approximately 20 out of every 27 vehicles on the road are cars.

Know more about the proportion

https://brainly.com/question/1496357

#SPJ11

Let sin (60)=3/2. Enter the angle measure (0), in degrees, for cos (0)=3/2 HELP URGENTLY

Answers

There is no angle measure (in degrees) for which cos(θ) = 3/2 because the cosine function only takes values between -1 and 1.

Now, let's solve for the angle measure (θ) in degrees for which cos(θ) = 3/2.

The cosine function has a range of -1 to 1. Since 3/2 is greater than 1, there is no real angle measure (in degrees) for which cos(θ) = 3/2.

In trigonometry, the values of sine and cosine are limited by the unit circle, where the maximum value for both sine and cosine is 1 and the minimum value is -1. Therefore, for real angles, the cosine function cannot have a value greater than 1 or less than -1.

So, in summary, there is no angle measure (in degrees) for which cos(θ) = 3/2 because the cosine function only takes values between -1 and 1.

Learn more about cosine function here:

https://brainly.com/question/3876065

#SPJ11

Can someone PLEASE help me ASAP?? It’s due today!! i will give brainliest if it’s correct!!

please do part a, b, and c!!

Answers

Answer:

a = 10.5  b = 8  

Step-by-step explanation:

a). Range = Biggest no. - Smallest no.

= 10.5 - 0 = 10.5

b). IQR = 8 - 0 = 8

c). MAD means mean absolute deviation.

If a 9% coupon bond that pays interest every 182 days paid interest 112 days ago, the accrued interest would bea. $26.77.b. $27.35.c. $27.69.d. $27.98.e. $28.15.

Answers

The accrued interest on a $1,000 face value 9% coupon bond that paid interest 112 days ago is $1.11. However, none of the answer choices match this amount.  

To calculate the accrued interest on a bond, we need to know the coupon rate, the face value of the bond, and the time period for which interest has accrued.

In this case, we know that the bond has a coupon rate of 9%, which means it pays $9 per year in interest for every $100 of face value.

Since the bond pays interest every 182 days, we can calculate the semi-annual coupon payment as follows:

Coupon payment = (Coupon rate * Face value) / 2
Coupon payment = (9% * $100) / 2
Coupon payment = $4.50

Now, let's assume that the face value of the bond is $1,000 (this information is not given in the question, but it is a common assumption).

This means that the bond pays $45 in interest every year ($4.50 x 10 payments per year).

Since interest was last paid 112 days ago, we need to calculate the accrued interest for the period between the last payment and today.

To do this, we need to know the number of days in the coupon period (i.e., 182 days) and the number of days in the current period (i.e., 112 days).

Accrued interest = (Coupon payment / Number of days in coupon period) * Number of days in the current period
Accrued interest = ($4.50 / 182) * 112
Accrued interest = $1.11

Therefore, the accrued interest on a $1,000 face value 9% coupon bond that paid interest 112 days ago is $1.11. However, none of the answer choices match this amount.

Know more about the interest here:

https://brainly.com/question/25720319

#SPJ11

Let S = {P, P1, P2, P3} and Q = {P1, P2, P3} where, p=2-1+x?; P1 =1+x, P2 = 1+r?, P3 = x +22 (a) Do the vectors of S form a linearly independent set? Show all of your work or explain your reasoning. (b) Do the vectors of Q form a linearly independent set? Show all of your work or explain your reasoning. (c) Is S a basis for P,? Recall that P, is the vector space of polynomials of degree < 2. Circle YES or NO and Explain Briefly. (d) Is Q a basis for P2? Circle YES or NO and Explain Briefly. = (e) Find the coordinate vector of p relative to the set Q = {P1, P2, P3}. That is express p as a linear combination of the vectors in S. p = 2-2 +2?; P1 =1+r, P2 = 1+x2, P3 = 1+

Answers

The only solution to the equation aP + bP1 + cP2 + dP3 = 0 is the trivial one a = b = c = d = 0. Therefore, the vectors of S form a linearly independent set.

(a) To determine whether the vectors of S form a linearly independent set, we need to check if the equation aP + bP1 + cP2 + dP3 = 0 has only the trivial solution a = b = c = d = 0.

Substituting the given vectors into the equation, we get:

a(2 - 1 + x) + b(1 + x) + c(1 + r) + d(x + 22) = 0

Simplifying, we get:

ax + bx + c + cr + dx + 2d = 0

Rearranging and grouping the terms by powers of x, we get:

x(a + b + d) + (c + cr + 2d) = 0

Since this equation must hold for all values of x, we can set x = 0 and x = 1 to get two equations:

c + cr + 2d = 0 (when x = 0)

a + b + d = 0 (when x = 1)

We can also set x = -1 to get another equation:

-2a + 2b - d = 0 (when x = -1)

Now we have a system of three equations:

c + cr + 2d = 0

a + b + d = 0

-2a + 2b - d = 0

Solving this system, we get:

a = 2d/3

b = d/3

c = -cr - 4d/3

Since c must be zero (since there is no x term in P), we get:

cr + 4d/3 = 0

If c is not zero, then the vectors of S are linearly dependent. However, since this equation holds for all r and d, we must have c = 0 as well.

Thus, the only solution to the equation aP + bP1 + cP2 + dP3 = 0 is the trivial one a = b = c = d = 0. Therefore, the vectors of S form a linearly independent set.

To know more about vectors refer here:

https://brainly.com/question/29740341

#SPJ11

Consider the function
f(x)=2x^3+27x^2−60x+4 with−10≤x≤2
This function has an absolute minimum at the point ____________
and an absolute maximum at the point ________________
Note: both parts of this answer should be entered as an ordered pair, including the parentheses, such as (5, 11).

Answers

This function has an absolute minimum at the point (1,-27)

and an absolute maximum at the point (-10,324).

For the absolute minimum and maximum of the function, we first need to find its critical points and endpoints. Taking the derivative of the function and setting it equal to zero, we get:

f'(x) = 6x^2 + 54x - 60 = 6(x^2 + 9x - 10) = 6(x + 10)(x - 1) = 0

This gives us critical points at x = -10 and x = 1. We also need to check the endpoints of the given interval, which are x = -10 and x = 2.

Now, we evaluate the function at these four points:

f(-10) = 324

f(1) = -27

f(-10) = 324

f(2) = 60

Therefore, the absolute minimum occurs at (1,-27), and the absolute maximum occurs at (-10,324).

To know more about absolute minimum and absolute maximum refer here :

https://brainly.com/question/31406170#

#SPJ11

evaluate the following limit using any method. this may require the use of l'hôpital's rule. (if an answer does not exist, enter dne.) lim x→0 x 2 sin(x)

Answers

The limit is 0.

We can use L'Hôpital's rule to evaluate the limit. Taking the derivative of both the numerator and denominator, we get:

lim x→0 x^2 sin(x) = lim x→0 (2x sin(x) + x^2 cos(x)) / 1

(using product rule and the derivative of sin(x) is cos(x))

Now, substituting x = 0 in the numerator gives 0, and substituting x = 0 in the denominator gives 1. Therefore, we get:

lim x→0 x^2 sin(x) = 0 / 1 = 0

Hence, the limit is 0.

To know more about limits refer here:

https://brainly.com/question/8533149

#SPJ11

Four years ago, Sam invested in Grath Oil. She bought three of its $1,000 par value bonds at a market price of 93. 938 and with an annual coupon rate of 6. 5%. She also bought 450 shares of Grath Oil stock at $44. 11, which has paid an annual dividend of $3. 10 for each of the last ten years. Today, Grath Oil bonds have a market rate of 98. 866 and Grath Oil stock sells for $45. 55 per share. Use the scenario above to consider which statement best describes the relative risk between investing in stocks and bonds. A. It is equally likely that the company would suspend paying interest on the bonds and dividends on the stock. B. Both the coupon rate and the dividend rate are fixed and cannot change. C. The market price of the bonds is more stable than the price of the company's stock. D. The amount of money received annually in interest (on the bonds) and in dividends (on the stocks) depends on the current market prices. Please select the best answer from the choices provided A B C D.

Answers

option is C. The market price of the bonds is more stable than the price of the company's stock.

The relative risk between investing in stocks and bonds can be described in the scenario given. Sam invested in Grath Oil by buying three of its $1,000 par value bonds at a market price of 93.938 with an annual coupon rate of 6.5% and also bought 450 shares of Grath Oil stock at $44.11.

The stock has paid an annual dividend of $3.10 for each of the last ten years. Today, Grath Oil bonds have a market rate of 98.866 and Grath Oil stock sells for $45.55 per share.

Both bonds and stocks have their own set of risks. Bonds carry a lesser risk than stocks, but they may offer lower returns than stocks. Stocks carry more risk than bonds, but they may offer higher returns than bonds. Sam bought three of Grath Oil's $1,000 par value bonds at a market price of 93.938 with an annual coupon rate of 6.5%.

Today, Grath Oil bonds have a market rate of 98.866. This means that the value of the bonds has increased. On the other hand, the price of the company's stock has increased from $44.11 to $45.55 per share.

Hence, the relative risk between investing in stocks and bonds can be explained by the scenario above. The market price of the bonds is more stable than the price of the company's stock.

The amount of money received annually in interest (on the bonds) and in dividends (on the stocks) depends on the current market prices. So, the correct option is C. The market price of the bonds is more stable than the price of the company's stock.

To know more about market price visit:

brainly.com/question/31964955

#SPJ11

-
19. higher order thinking to find
357 - 216, tom added 4 to each number
and then subtracted. saul added 3 to each
number and then subtracted. will both
ways work to find the correct answer?
explain.

Answers

Both Tom's and Saul's methods will work to find the correct answer for the subtraction problem of 357 - 216. Adding a constant value to each number before subtracting does not change the relative difference between the numbers, ensuring the same result.

In the given problem, Tom adds 4 to each number (357 + 4 = 361, 216 + 4 = 220) and then subtracts the adjusted numbers (361 - 220 = 141). Similarly, Saul adds 3 to each number (357 + 3 = 360, 216 + 3 = 219) and then subtracts the adjusted numbers (360 - 219 = 141).
Both methods yield the same result of 141. This is because adding a constant value to each number before subtracting does not affect the relative difference between the numbers. The difference between the original numbers (357 - 216) remains the same when the same constant is added to both numbers.
Therefore, both Tom's and Saul's methods will work to find the correct answer. Adding a constant to each number before subtracting does not alter the result as long as the same constant is added to both numbers consistently.

Learn more about subtraction problem here
https://brainly.com/question/15420409



#SPJ11

PLEASE HELP ASAP! 100 PTS!


In a bag of candy, the probability that an orange candy is chosen is 0. 55 and the probably that a green is chosen is 0. 45. A person reaches into the bag of candy and chooses two. If X is the number of green candy pieces chosen, find the probability that has 0, 1, or 2 green pieces chosen

Answers

The probability that has 0, 1, or 2 green pieces chosen is the sum of probabilities when X=0, X=1, and X=2.P(X=0)+P(X=1)+P(X=2)= 0.2025 + 0.495 + 0.3025 = 1.

Given,The probability that an orange candy is chosen is 0.55.The probability that a green is chosen is 0.45.We have to find the probability of X, the number of green candy pieces chosen when a person reaches into the bag of candy and chooses two.To find the probability of X=0, X=1, and X=2, let's make a chart as follows: {Number of Green candy Pieces (X)} {Number of Orange candy Pieces (2-X)} {Probability} X=0 2-0=2 P(X=0)=(0.45)(0.45)=0.2025 X=1 2-1=1 P(X=1)= (0.45)(0.55)+(0.55)(0.45) =0.495 X=2 2-2=0 P(X=2)=(0.55)(0.55)=0.3025

Know more about  here:

https://brainly.com/question/32036514

#SPJ11

two players each toss a coin three times. what is the probability that they get the same number of tails? answer correctly in two decimal places

Answers

Answer:

0.31

Step-by-step explanation:

The first person can toss:

HHH

HHT

HTH

HTT

THH

THT

TTH

TTT

The second person can toss the same, so the total number of sets of tosses of the first person and second person is 8 × 8 = 64.

Of these 64 different combinations, how many have the same number of tails for both people?

First person              Second person

HHH                               HHH                              0 tails

HHT                                HHT, HTH, THH           1 tail

HTH                                HHT, HTH, THH           1 tail

HTT                                HTT, THT, TTH            2 tails

THH                               HHT, HTH, THH            1 tail

THT                                HTT, THT, TTH            2 tails

TTH                                HTT, THT, TTH            2 tails

TTT                                 TTT                               3 tails

                                    total: 20

There are 20 out of 64 results that have the same number of tails for both people.

p(equal number of tails) = 20/64 = 5/16 = 0.3125

Answer: 0.31

use the laplace transform to solve the given system of differential equations. dx dt = 4y et dy dt = 9x − t x(0) = 1, y(0) = 1 x(t) = _____ y(t) = _____

Answers

The solution of the given system of differential equations is:

x(t) = [1/2 + 3/2e^t + e^t(t-2)]e^t

y(t) = [1/2 + 3/2e^t - 2e^t(t+1)]e^t

We are given the system of differential equations as:

dx/dt = 4y e^t

dy/dt = 9x - t

with initial conditions x(0) = 1 and y(0) = 1.

Taking the Laplace transform of both the equations and applying initial conditions, we get:

sX(s) - 1 = 4Y(s)/(s-1)

sY(s) - 1 = 9X(s)/(s^2) - 1/s^2

Solving the above two equations, we get:

X(s) = [4Y(s)/(s-1) + 1]/s

Y(s) = [9X(s)/(s^2) - 1/s^2 + 1]/s

Substituting the value of X(s) in Y(s), we get:

Y(s) = [36Y(s)/(s-1)^2 - 4/(s(s-1)) - 1/s^2 + 1]/s

Solving for Y(s), we get:

Y(s) = [(s^2 - 2s + 2)/(s^3 - 5s^2 + 4s)]/(s-1)^2

Taking the inverse Laplace transform of Y(s), we get:

y(t) = [1/2 + 3/2e^t - 2e^t(t+1)]e^t

Similarly, substituting the value of Y(s) in X(s), we get:

X(s) = [(s^3 - 5s^2 + 4s)/(s^3 - 5s^2 + 4s)]/(s-1)^2

Taking the inverse Laplace transform of X(s), we get:

x(t) = [1/2 + 3/2e^t + e^t(t-2)]e^t

Hence, the solution of the given system of differential equations is:

x(t) = [1/2 + 3/2e^t + e^t(t-2)]e^t

y(t) = [1/2 + 3/2e^t - 2e^t(t+1)]e^t

Learn more about  equations here:

https://brainly.com/question/29657983

#SPJ11

Consider the following two successive reactionsC-->MM-->Х If the percent yield of the first reaction is 66.9% and the percent yield of the second reaction is 31,6%, what is the overall percent yield for C-->X?a. 10.9% b. 17.3% c. 11.3% d. 21.1% e.16.8%

Answers

The overall percent yield for C --> X is approximately 21.1% (answer choice d).

A chemical reaction's efficiency is gauged by its percent yield. It is the theoretical yield—the greatest quantity of product that could be obtained if the reaction proceeded to completion—to the actual yield, the amount of product that was received from the reaction, represented as a percentage. Reaction conditions, contaminants, and incomplete reactions are only a few of the variables that can have an impact on the percent yield.

To find the overall percent yield for the successive reactions C --> M and M --> X, you need to multiply the percent yields of each reaction together and then divide by 100.

First, let's identify the percent yield for each reaction:
Reaction 1 (C --> M): 66.9%
Reaction 2 (M --> X): 31.6%

Now, multiply the percent yields together:
(66.9/100) * (31.6/100)

Then, multiply the result by 100 to convert back to a percentage:
(0.669 * 0.316) * 100

Calculate the result:
21.13364

The overall percent yield for C --> X is approximately 21.1% (answer choice d).

Learn more about percent yield here:

https://brainly.com/question/31603690


#SPJ11

let an = 3n 7n 1 . (a) determine whether {an} is convergent. convergent divergent (b) determine whether [infinity] an n = 1 is convergent.

Answers

The series [infinity]an n = 1 diverges.

To determine whether the sequence {an} is convergent or divergent, we need to evaluate the limit as n approaches infinity of the sequence. In this case, as n approaches infinity, the value of 3n and 7n grows without bound, while the value of 1 remains constant. Therefore, the sequence {an} diverges.

To determine whether the series [infinity]an n = 1 is convergent, we need to evaluate the sum of the sequence from n = 1 to infinity. The formula for the sum of an arithmetic series is Sn = n(a1 + an)/2, where Sn is the sum of the first n terms, a1 is the first term, and an is the nth term.

In this case, we have an = 3n + 7n + 1, so a1 = 3 + 7 + 1 = 11 and an = 3n + 7n + 1 = 11n + 1. Thus, the sum of the first n terms is Sn = n(11 + (11n + 1))/2 = (11n^2 + 11n)/2 + n/2 = (11/2)n^2 + 6n/2. As n approaches infinity, the dominant term in the sum is the n^2 term, which grows without bound.

To learn more about : series

https://brainly.com/question/24644930

#SPJ11

The length of the curve y=sinx from x=0 to x=3π4 is given by(a) ∫3π/40sinx dx

Answers

The length of the curve y = sin(x) from x = 0 to x = 3π/4 is (√2(3π - 4))/8.

The length of the curve y = sin(x) from x = 0 to x = 3π/4 can be found using the arc length formula:

[tex]L = ∫(sqrt(1 + (dy/dx)^2)) dx[/tex]

Here, dy/dx = cos(x), so we have:

L = ∫(sqrt(1 + cos^2(x))) dx

To solve this integral, we can use the substitution u = sin(x):

L = ∫(sqrt(1 + (1 - u^2))) du

We can then use the trigonometric substitution u = sin(theta) to solve this integral:

L = ∫(sqrt(1 + (1 - sin^2(theta)))) cos(theta) dtheta

L = ∫(sqrt(2 - 2sin^2(theta))) cos(theta) dtheta

L = √2 ∫(cos^2(theta)) dtheta

L = √2 ∫((cos(2theta) + 1)/2) dtheta

L = (1/√2) ∫(cos(2theta) + 1) dtheta

L = (1/√2) (sin(2theta)/2 + theta)

Substituting back u = sin(x) and evaluating at the limits x=0 and x=3π/4, we get:

L = (1/√2) (sin(3π/2)/2 + 3π/4) - (1/√2) (sin(0)/2 + 0)

L = (1/√2) ((-1)/2 + 3π/4)

L = (1/√2) (3π/4 - 1/2)

L = √2(3π - 4)/8

Thus, the length of the curve y = sin(x) from x = 0 to x = 3π/4 is (√2(3π - 4))/8.

Learn more about curve   here:

https://brainly.com/question/31154149

#SPJ11

Given two coordinate systems A(a1,a2,a3) and B(b1,b2,b3). Coordinate system B was obtained from A via 3-3-1 sequence with angles 30◦, 45◦, and 15◦. A vector X is defined in a mixed coordinate system as X= 1a1+ 6a3+ 4b2−7b1. What are the components of X in coordinate system A and B?

Answers

The components of the vector X in coordinate systems A and B are obtained.

Given two coordinate systems A(a1, a2, a3) and B(b1, b2, b3), we need to find the components of vector X in both coordinate systems. The vector X is given as X = 1a1 + 6a3 + 4b2 - 7b1.

Coordinate system B was obtained from A via a 3-3-1 sequence with angles 30°, 45°, and 15°. First, let's find the rotation matrices R1, R2, and R3 corresponding to the 3-3-1 sequence. R1 = [cos(30°) 0 sin(30°); 0 1 0; -sin(30°) 0 cos(30°)] R2 = [1 0 0; 0 cos(45°) -sin(45°); 0 sin(45°) cos(45°)] R3 = [cos(15°) -sin(15°) 0; sin(15°) cos(15°) 0; 0 0 1] Now, multiply the matrices to obtain the transformation matrix R that converts vectors from coordinate system A to coordinate system B: R = R1 * R2 * R3.

Next, to express vector X in terms of coordinate system B, use the transformation matrix R: X_A = [1; 0; 6] X_B = R * X_A Finally, to find the components of X in coordinate system A and B, substitute the values of X_A and X_B into the given mixed coordinate system: X = 1a1 + 6a3 + 4b2 - 7b1 = X_A + 4b2 - 7b1

Hence, the components of the vector X in coordinate systems A and B are obtained.

Learn more about   coordinate here:

https://brainly.com/question/16634867

#SPJ11

The following table lists the ages (in years) and the prices (in thousands of dollars) by a sample of six houses.
Age Price
27 165
15 182
3 205
35 161
7 180
18 161
1. By hand, determine the standard deviation of errors for the regression of y on x, rounded to three decimal places, is
2. The coefficient of determination for the regression of y on x, rounded to three decimal places, is

Answers

1. The standard deviation of errors for the regression of y on x is 15.187 thousand dollars (rounded to three decimal places).

2. The coefficient of determination for the regression of y on x is 0.307 (rounded to three decimal places). This indicates a weak correlation.

The standard deviation of errors for the regression of y on x measures the average distance between the actual values of y and the predicted values of y based on the regression line. To calculate the standard deviation of errors, we first need to find the regression line for the given data, which we did using the formulas for slope and y-intercept.

Then, we calculated the errors for each data point by finding the difference between the actual value of y and the predicted value of y based on the regression line. Finally, we calculated the standard deviation of errors using the formula that involves the sum of squared errors and the degrees of freedom.

In this case, the standard deviation of errors for the regression of y on x is 15.187 thousand dollars (rounded to three decimal places). This value indicates how much the actual prices of houses deviate from the predicted prices based on the regression line.

The coefficient of determination, also known as R-squared, measures the proportion of the total variation in y that is explained by the variation in x through the regression line. In this case, the coefficient of determination for the regression of y on x is 0.307 (rounded to three decimal places), indicating a weak correlation between age and price.

This means that age alone is not a good predictor of the price of a house, and other factors may need to be considered to make more accurate predictions.

for such more question on standard deviation

https://brainly.com/question/475676

#SPJ11

let l be a linear transformation on p2, given by l(p(x)) = x2pn(x) - 2xp'(x) find the kernel and range of l

Answers

the range of l is the span of the vectors 0, x^2, and 2x^3 - 4x. This can be written as the set of all polynomials of the form ax^2 + bx^3, where a and b are constants.

To find the kernel of l, we need to find all the polynomials p(x) such that l(p(x))=0. So, we have:

\begin{align*}

l(p(x)) &= x^2p(x) - 2x p'(x) \

&= x^2(a_0 + a_1 x + a_2 x^2) - 2x(a_1 + 2a_2 x) \

&= a_0 x^2 + (a_1 - 2a_2)x^3 - 2a_1 x \

\end{align*}

So, we need to solve the equation a_0 x^2 + (a_1 - 2a_2)x^3 - 2a_1 x = 0 for all x. Since x=0 is always a solution, we can assume x\neq 0 and divide both sides by x:

[tex]a_{0} x+(a_{1}-2a_{2} )x^{2} -2a_{1} =0[/tex]

This is a quadratic equation in $x$, and it must hold for all $x$. This means the coefficients of $x$ and $x^2$ must be zero, so we have:

\begin{align*}

a_0 &= 0 \

a_1 - 2a_2 &= 0

\end{align*}

Solving for a_1 and a_2, we get $a_1=2a_2$ and $a_0=0$. So, the kernel of $l$ is the set of all polynomials of the form $p(x) = a_2 x^2$, where $a_2$ is a constant.

To find the range of l, we need to determine the set of all possible values of $l(p(x))$ as $p(x)$ varies over all of $p_2$. Since $l$ is a linear transformation, we can find its range by considering the span of the images of the basis vectors for $p_2$. Let $p_0(x) = 1$, $p_1(x) = x$, and $p_2(x) = x^2$ be the basis vectors for $p_2$. Then we have:

\begin{align*}

l(p_0(x)) &= -2x(0) = 0 \

l(p_1(x)) &= x^2(1) - 2x(0) = x^2 \

l(p_2(x)) &= x^2(2x) - 2x(2) = 2x^3 - 4x

\end{align*}

To learn more about polynomials visit:

brainly.com/question/11536910

#SPJ11

find ∬rf(x,y)da where f(x,y)=x and r=[4,6]×[−2,−1]

Answers

The value of the double integral ∬rf(x,y)da where f(x,y)=x and                   r=[4,6]×[−2,−1] is 7.

To determine the value of  ∬rf(x,y)da where f(x,y) = x and r = [4,6]×[−2,−1] we can use the formula for the double integral over a rectangular region:

∬rf(x,y)da = ∫∫f(x,y) dA

where dA = dxdy is the area element.

Substituting f(x,y) = x and the limits of integration for r, we get:

∬rf(x,y)da = ∫_{-2}^{-1} ∫_4^6 x dxdy

Evaluating the inner integral with respect to x, we get:

∬rf(x,y)da = ∫_{-2}^{-1} [(1/2)x^2]_{x=4}^{x=6} dy

∬rf(x,y)da = ∫_{-2}^{-1} [(1/2)(6^2 - 4^2)] dy

∬rf(x,y)da = ∫_{-2}^{-1} 7 dy

∬rf(x,y)da = [7y]_{-2}^{-1}

∬rf(x,y)da = 7(-1) - 7(-2)

∬rf(x,y)da = 7

Therefore, the value of the double integral is 7.

Know more about integral here:

https://brainly.com/question/30094386

#SPJ11

the base of the triangle is 4 more than the width. the area of the rectangle is 15. what are the dimensions of the rectangle?

Answers

If the area of the rectangle is 15, the dimensions of the rectangle are l = √(15) and w = √(15).

The question is referring to a rectangle, we can use the formula for the area of a rectangle, which is A = lw, where A is the area, l is the length, and w is the width.

We are given that the area of the rectangle is 15, so we can set up an equation:

l * w = 15

We are not given any information about the length, so we cannot solve for l and w separately. However, if we assume that the rectangle is a square (i.e., l = w), then we can solve for the dimensions:

l * l = 15

l² = 15

l = √(15)

To learn more about rectangle click on,

brainly.com/question/13129748

#SPJ1

Other Questions
analysis shows that there are 2.50 moles of h2, 1.35 10-5 mole of s2, and 8.70 moles of h2s present in a 12.0 l flask. calculate the equilibrium constant kc for the reaction. The reaction of an aldehyde or a ketone with phmgbr followed by acidic workup is an example of a/an:________ A torus-shaped space station has an outer radius of 9. 3 m. Determinethe speed, period and frequency of rotation that allows the astronautsto feel half of their normal weight on Earth. a diploid individual carrying two identical alleles at a given gene locus is called What is the pH of a 0.0050 M solution of Ba(OH)2(aq) at 25 C? (A) 2.00 (B) 2.30 (C) 11.70 (D) 12.00 which particles in the nuclei of atoms are used to arrange the elements a single slit of width 0.030 mm is used to project a diffraction pattern of 500 nm light on a screen at a distance of 2.00 m from the slit. what is the width of the central maximum? 5. When rewriting an expression in the form log, n by using the change of base formula, isit possible to use logarithms with bases other than those of the common logarithm ornatural logarithm? Would you want to do so? Explain your reasoning. The sine curve y = a sin(k(x b)) has amplitude _____, period ______, and horizontal shift ______. The sine curve y = 2 sin 7 x 4 has amplitude _____, period ______, and horizontal shift ________. evaluate the indefinite integral. (use c for the constant of integration.) x11 sin(3 x13/2) dx What is the output of: scramble("xy", )? Determine your answer by manually tracing the code, not by running the program. Check Show answer 2) You wish to generate all possible 3-letter subsets from the letters in an N-letter word (N>3). Which of the above recursive functions is the closest (just enter the function's name)? Check Show answer Feedback? a former ta for this class studied caterpillar life cycles. she encountered the following equation in her research Modify the program to print the U. S. Presidential election years since 1792 to present day, knowing such elections occur every 4 years. Don't forget to use Medication order: Garamycin 80 mg IVPB over 30 minutes.Available: Garamycin (gentamicin sulfate) 80 mg in 50 mL of D5W.Calculate the flow rate in mL/hr. The components of the behavioral skills training procedure are generally used: a) together in a training session b) with individuals who have severely limited abilities c) individually to teach different behaviors d) A and B seaborgium (sg, element 106) is prepared by the bombardment of curium-248 with neon-22, which produces two isotopes, 265sg and 266sg. Discuss technologies and Revolution by means of production, consumption and regulation Consider the following relations. Student (zno, sname, age) Enroll (zno, cno Course (cno, ename, semester) Given the following SQL, which one is the best index to improve the query performance. SELECT FROM WHERE AND AND S.sname, C.cname, C.semester Student S, Enroll E, Course C S.zno E zno AND E.cno - Cicno S.age BETWEEN 10 AND 90 Sizno 1: Hash Index for (age) None of the above Hash Index for (zno) B+ Index for (zno, name) B+ Index for (age) If solutions of the following electrolytes all have the same concentration, which solution would have the lowest boiling point?a. KNO3b. AlCl3c. Li2CO3d. H2SO4 compound t (c5h8o) has a strong ir absorption band at 1745 cm-1. the broad-band proton decoupled 13c spectrum of t shows three signals at 220 (c), 23 (ch2), and 38 (ch2). propose a structure for t.