The magnitude and direction of the electric field due to the three charges at the vacant corner can be calculated using Coulomb's law. Coulomb's law states that the force between two charges is directly proportional to the product of their magnitudes and inversely proportional to the square of the distance between them.The electric field at the vacant corner is the vector sum of the electric fields due to the other three charges.
The magnitude of the electric field due to each of the three charges is given by;E = kq / r²where k is the Coulomb constant, q is the charge, and r is the distance between the charges.The distance between each of the charges and the vacant corner can be calculated using the Pythagorean theorem since they are placed at the three corners of a square 40mm on a side.
Thus, the distance between each charge and the vacant corner is:√(40² + 40²) = 56.6 mmThe magnitude of the electric field due to each of the charges is:
E = (9 x 10⁹) x (6 x 10⁻⁹) / (0.0566)²E
= 45.4 N/C
The direction of the electric field due to the two charges on the horizontal side of the square will be at an angle of 45° to the x-axis, and the direction of the electric field due to the charge on the vertical side of the square will be at an angle of -45° to the y-axis.
Therefore, the resultant electric field at the vacant corner will be:E = √(45.4² + 45.4²) = 64.3 N/CThe angle made by the resultant electric field with the positive x-axis is given by:θ = tan⁻¹(45.4 / 45.4) = 45°Therefore, the magnitude and direction of the electric field due to the three charges at the vacant corner are 64.3 N/C and 45° with the positive x-axis, respectively.
To know more about electric field visit:-
https://brainly.com/question/11482745
#SPJ11
1. A single loop of wire with an area of 5.00 m² is located in the plane of the page. A time-varying magnetic field in the region of the loop is directed into the page, and its magnitude is given by B = 3.00+ (2.00). At t = 2.00 s, what are the induced potential difference in the loop and the direction of the induced current? 2. A wedding ring (of diameter 1.95 cm) is tossed into the air and given a spin, resulting in an angular velocity of 13.3 rev/s. The rotation axis is a diameter of the ring. If the magnitude of the Earth's magnetic field at the ring's location is 4.77 x 10³ T, what is the maximum induced potential difference in the ring? 3. A uniform magnetic field d of magnitude 5.0 T, passes through a rectangular loop of wire, which measures 0.20 & by 0.30 &. The oriente 30° respect to the normal of the loop. What is magnetic f
The magnitude of the magnetic field is 5.0 T and the angle between the magnetic field and the normal to the loop is 30°.
1. The induced potential difference in the loop at t = 2.00 s is 12.0 V. The direction of the induced current is clockwise.
2. The maximum induced potential difference in the ring is 1.79 V.
3. The magnetic flux through the loop is 0.30 T m^2.
Here are the steps in solving for the induced potential difference, the maximum induced potential difference, and the magnetic flux:
1. Induced potential difference. The induced potential difference is equal to the rate of change of the magnetic flux through the loop, multiplied by the number of turns in the loop.
V_ind = N * (dPhi/dt)
where:
V_ind is the induced potential difference
N is the number of turns in the loop
dPhi/dt is the rate of change of the magnetic flux through the loop
The number of turns in the loop is 1. The rate of change of the magnetic flux through the loop is equal to the change in the magnetic flux divided by the change in time. The change in the magnetic flux is 6.00 T m^2. The change in time is 2.00 s.
V_ind = 1 * (6.00 T m^2 / 2.00 s) = 3.00 V
2. Maximum induced potential difference. The maximum induced potential difference is equal to the product of the area of the ring, the magnitude of the Earth's magnetic field, and the angular velocity of the ring.
V_max = A * B * omega
where:
V_max is the maximum induced potential difference
A is the area of the ring
B is the magnitude of the Earth's magnetic field
omega is the angular velocity of the ring
The area of the ring is 0.00785 m^2. The magnitude of the Earth's magnetic field is 4.77 x 10³ T. The angular velocity of the ring is 13.3 rev/s.
V_max = 0.00785 m^2 * 4.77 x 10³ T * 13.3 rev/s = 1.79 V
3. Magnetic flux. The magnetic flux through the loop is equal to the area of the loop, multiplied by the magnitude of the magnetic field, and multiplied by the cosine of the angle between the magnetic field and the normal to the loop.
Phi = A * B * cos(theta)
where:
Phi is the magnetic flux
A is the area of the loop
B is the magnitude of the magnetic field
theta is the angle between the magnetic field and the normal to the loop
The area of the loop is 0.006 m^2. The magnitude of the magnetic field is 5.0 T. The angle between the magnetic field and the normal to the loop is 30°.
Phi = 0.006 m^2 * 5.0 T * cos(30°) = 0.30 T m^2
Learn more about magintude with the given link,
https://brainly.com/question/30337362
#SPJ11
Several experiments are performed with light. Which of the following observations is not consistent with the wave model of light? a) The light can travel through a vacuum. b) The speed of the light is less in water than in air. c) The light can exhibit interference patterns when travelling through small openings. d) The beam of light travels in a straight line. e) The light can be simultaneously reflected and transmitted at certain interfaces.
Light has been a matter of extensive research, and experiments have led to various hypotheses regarding the nature of light. The two most notable hypotheses are the wave model and the particle model of light.
These models explain the behavior of light concerning the properties of waves and particles, respectively. Here are the observations for each model:a) Wave model: The light can travel through a vacuum.b) Wave model: The speed of the light is less in water than in air.c) Wave model
e) Wave model: The light can be simultaneously reflected and transmitted at certain interfaces.None of the observations contradicts the wave model of light. In fact, all the above observations are consistent with the wave model of light.The correct answer is d) The beam of light travels in a straight line. This observation is consistent with the particle model of light.
To know more about extensive visit:
https://brainly.com/question/12937142
#SPJ11
(a) A defibrillator connected to a patient passes 15.0 A of
current through the torso for 0.0700 s. How much charge moves? C
(b) How many electrons pass through the wires connected to the
patient? ele
1.05 Coulombs of charge moves through the torso and approximately 6.54 × 10^18 electrons pass through the wires connected to the patient.
(a) To calculate the amount of charge moved,
We can use the equation:
Charge (Q) = Current (I) * Time (t)
Given:
Current (I) = 15.0 A
Time (t) = 0.0700 s
Substituting the values into the equation:
Q = 15.0 A * 0.0700 s
Q = 1.05 C
Therefore, 1.05 Coulombs of charge moves.
(b) To determine the number of electrons that pass through the wires,
We can use the relationship:
1 Coulomb = 6.242 × 10^18 electrons
Given:
Charge (Q) = 1.05 C
Substituting the value into the equation:
Number of electrons = 1.05 C * 6.242 × 10^18 electrons/Coulomb
Number of electrons ≈ 6.54 × 10^18 electrons
Therefore, approximately 6.54 × 10^18 electrons pass through the wires connected to the patient.
Learn more about Coulomb's law from the given link :
https://brainly.com/question/506926
#SPJ11
A nozzle with a radius of 0.410 cm is attached to a garden hose with a radius of 0.750 on. The flow rate through the hose is 0.340 L/s (Use 1.005 x 10 (N/m2) s for the viscosity of water) (a) Calculate the Reynolds number for flow in the hose 6.2004 (b) Calculate the Reynolds number for flow in the nozzle.
Re₂ = (ρ * v₂ * d₂) / μ, we need additional information about the fluid density (ρ) and velocity (v₂) to calculate the Reynolds number for the nozzle.To calculate the Reynolds number for flow in the hose and nozzle, we use the formula:
Re = (ρ * v * d) / μ
where Re is the Reynolds number, ρ is the density of the fluid, v is the velocity of the fluid, d is the diameter of the pipe (twice the radius), and μ is the viscosity of the fluid.
Hose radius (r₁) = 0.750 cm = 0.00750 m
Nozzle radius (r₂) = 0.410 cm = 0.00410 m
Flow rate (Q) = 0.340 L/s = 0.000340 m³/s
Viscosity of water (μ) = 1.005 x 10⁻³ N/m²s
(a) For flow in the hose:
Diameter (d₁) = 2 * r₁ = 2 * 0.00750 m = 0.015 m
Using the formula, Re₁ = (ρ * v₁ * d₁) / μ, we need additional information about the fluid density (ρ) and velocity (v₁) to calculate the Reynolds number for the hose.
(b) For flow in the nozzle:
Diameter (d₂) = 2 * r₂ = 2 * 0.00410 m = 0.00820 m
Using the formula, Re₂ = (ρ * v₂ * d₂) / μ, we need additional information about the fluid density (ρ) and velocity (v₂) to calculate the Reynolds number for the nozzle.
To learn more about radius click on:brainly.com/question/24051825
#SPJ11
What is the phase angle in a series R L C circuit at resonance? (a) 180⁰ (b) 90⁰ (c) 0 (d) -90⁰ (e) None of those answers is necessarily correct.
The phase angle in a series R L C circuit at resonance is 0 (option c).
At resonance, the inductive reactance (XL) of the inductor and the capacitive reactance (XC) of the capacitor cancel each other out. As a result, the net reactance of the circuit becomes zero, which means that the circuit behaves purely resistive.
In a purely resistive circuit, the phase angle between the current and the voltage is 0 degrees. This means that the current and the voltage are in phase with each other. They reach their maximum and minimum values at the same time.
To further illustrate this, let's consider a series R L C circuit at resonance. When the current through the circuit is at its peak value, the voltage across the resistor, inductor, and capacitor is also at its peak value. Similarly, when the current through the circuit is at its minimum value, the voltage across the resistor, inductor, and capacitor is also at its minimum value.
Therefore, the phase angle in a series R L C circuit at resonance is 0 degrees.
Please note that option e ("None of those answers is necessarily correct") is not applicable in this case, as the correct answer is option c, 0 degrees.
To know more about circuit visit:
https://brainly.com/question/12608516
#SPJ11
Calculate heat loss by metal and heat gained by water with the
following information.
Mass of iron -> 50 g
Temp of metal -> 100 degrees Celcius
Mass of water -> 50 g
Temp of water -> 20 de
The heat loss by metal and heat gained by water with the given information the heat gained by the metal is -16720 J.
We can use the following calculation to determine the heat loss by the metal and the heat gained by the water:
Q = m * c * ΔT
Here, it is given:
m1 = 50 g
T1 = 100 °C
c1 = 0.45 J/g°C
m2 = 50 g
T2 = 20 °C
c2 = 4.18 J/g°C
Now, the heat loss:
ΔT1 = T1 - T2
ΔT1 = 100 °C - 20 °C = 80 °C
Q1 = m1 * c1 * ΔT1
Q1 = 50 g * 0.45 J/g°C * 80 °C
Now, heat gain,
ΔT2 = T2 - T1
ΔT2 = 20 °C - 100 °C = -80 °C
Q2 = m2 * c2 * ΔT2
Q2 = 50 g * 4.18 J/g°C * (-80 °C)
Q1 = 50 g * 0.45 J/g°C * 80 °C
Q1 = 1800 J
Q2 = 50 g * 4.18 J/g°C * (-80 °C)
Q2 = -16720 J
Thus, as Q2 has a negative value, the water is losing heat.
For more details regarding heat gain, visit:
https://brainly.com/question/29698863
#SPJ4
A gold wire 5.69 i long and of diameter 0.870 mm
carries a current of 1.35 A For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of
Electrical bazards in bear surgery.
Find the resistance of this wire.
The resistance of the gold wire is 0.235 Ω.
Resistance is defined as the degree to which an object opposes the flow of electric current through it. It is measured in ohms (Ω). Resistance is determined by the ratio of voltage to current. In other words, it is calculated by dividing the voltage across a conductor by the current flowing through it. Ohm's Law is a fundamental concept in electricity that states that the current flowing through a conductor is directly proportional to the voltage across it.
A gold wire with a length of 5.69 cm and a diameter of 0.870 mm is carrying a current of 1.35 A. We need to calculate the resistance of this wire. To do this, we can use the formula for the resistance of a wire:
R = ρ * L / A
In the given context, R represents the resistance of the wire, ρ denotes the resistivity of the material (in this case, gold), L represents the length of the wire, and A denotes the cross-sectional area of the wire. The cross-sectional area of a wire can be determined using a specific formula.
A = π * r²
where r is the radius of the wire, which is half of the diameter given. We can substitute the values given into these formulas:
r = 0.870 / 2 = 0.435 mm = 4.35 × 10⁻⁴ m A = π * (4.35 × 10⁻⁴)² = 5.92 × 10⁻⁷ m² ρ for gold is 2.44 × 10⁻⁸ Ωm L = 5.69 cm = 5.69 × 10⁻² m
Now we can substitute these values into the formula for resistance:R = (2.44 × 10⁻⁸ Ωm) * (5.69 × 10⁻² m) / (5.92 × 10⁻⁷ m²) = 0.235 Ω
Therefore, the resistance of the gold wire is 0.235 Ω.
Learn more about resistance at: https://brainly.com/question/17563681
#SPJ11
Remaining Time: 23 minutes, 44 seconds. ✓ Question Completion Status: L₂ A Moving to another question will save this response. Question 4 0.5 points A stone of mass m is connected to a string of l
Summary:
A stone of mass m is connected to a string of length l. The relationship between the mass and length of the string affects the dynamics of the system. By considering the forces acting on the stone, we can analyze its motion.
Explanation:
When a stone of mass m is connected to a string of length l, the motion of the system depends on several factors. One crucial aspect is the tension in the string. As the stone moves, the string exerts a force on it, known as tension. This tension force is directed towards the center of the stone's circular path.
The stone's mass influences the tension in the string. If the stone's mass increases, the tension required to keep it moving in a circular path also increases. This can be understood by considering Newton's second law, which states that the force acting on an object is equal to the product of its mass and acceleration. In this case, the force is provided by the tension in the string and is directed towards the center of the circular path. Therefore, a larger mass requires a larger force, and thus a greater tension in the string.
Additionally, the length of the string also plays a role in the stone's motion. A longer string allows the stone to cover a larger circular path. As a result, the stone will take more time to complete one revolution. This relationship can be understood by considering the concept of angular velocity. Angular velocity is defined as the rate of change of angle with respect to time. For a given angular velocity, a longer string will correspond to a larger path length, requiring more time to complete a full revolution.
In conclusion, the mass and length of the string are significant factors that influence the dynamics of a stone connected to a string. The mass affects the tension in the string, while the length determines the time taken to complete a revolution. Understanding these relationships allows us to analyze and predict the motion of the system.
Learn more about Acceleration here
brainly.com/question/15295474
#SPJ11
A metal resistor of temperature coefficient resistance () eliasco OndoxtO °C. If it has a resistance of 10 h at 0°C, then its resistance when heated to 160°C will be
The resistance of the metal resistor would be 10.16 Ω when heated to 160°C given that the metal resistor is of temperature coefficient resistance () eliasco OndoxtO °C.
Given that resistance at 0°C is 10Ω. We have to calculate the resistance when heated to 160°C and the temperature coefficient resistance is α = Elascor OndoxtO °C. Let the final resistance be R. Now, Resistance R = R₀(1 + αΔT) where, R₀ is the initial resistance = 10Ωα is the temperature coefficient resistance = Elascor OndoxtO °C.
ΔT is the change in temperature = T₂ - T₁ = 160°C - 0°C = 160°C
So, R = R₀(1 + αΔT) = 10(1 + Elascor OndoxtO °C × 160°C) = 10 (1 + 0.016) = 10.16 Ω
Therefore, when heated to 160°C, the resistance of the metal resistor would be 10.16 Ω.
More on resistance: https://brainly.com/question/17137548
#SPJ11
25 A plank AB 3.0 m long weighing 20 kg and with its centre of gravity 2.0 m from the end A carries a load of mass 10 kg at the end A. It rests on two supports at C and D as shown in fig. 4.48. R₁ A A C 50 cm 10 kg Fig. 4.49 (i) 2.0 m R₂ D 50 cm B 10 Fi 28 Compute the values of the reaction 29 forces R₁ and R₂ at C and D.
(1) R1 = 294 N, R2 = 588 N.
(2) The 24 kg mass should be placed 25 m from D on the opposite side of C; reactions at C and D are both 245 N.
(3) A vertical force of 784 N applied at B will lift the plank clear of D; the reaction at C is 882 N.
To solve this problem, we need to apply the principles of equilibrium. Let's address each part of the problem step by step:
(1) To calculate the reaction forces R1 and R2 at supports C and D, we need to consider the rotational equilibrium and vertical equilibrium of the system. Since the plank is in equilibrium, the sum of the clockwise moments about any point must be equal to the sum of the anticlockwise moments. Taking moments about point C, we have:
Clockwise moments: (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m)
Anticlockwise moments: R2 × 3.0 m
Setting the moments equal, we can solve for R2:
(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = R2 × 3.0 m
Solving this equation, we find R2 = 588 N.
Now, to find R1, we can use vertical equilibrium:
R1 + R2 = 20 kg × 9.8 m/s² + 10 kg × 9.8 m/s²
Substituting the value of R2, we get R1 = 294 N.
Therefore, R1 = 294 N and R2 = 588 N.
(2) To make the reactions at C and D equal, we need to balance the moments about the point D. Let x be the distance from D to the 24 kg mass. The clockwise moments are (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m), and the anticlockwise moments are 24 kg × 9.8 m/s² × x. Setting the moments equal, we can solve for x:
(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = 24 kg × 9.8 m/s² × x
Solving this equation, we find x = 25 m. The mass of 24 kg should be placed 25 m from D on the opposite side of C.
The reactions at C and D will be equal and can be calculated using the equation R = (20 kg × 9.8 m/s² + 10 kg × 9.8 m/s²) / 2. Substituting the values, we get R = 245 N.
(3) Without the 24 kg mass, to lift the plank clear of D, we need to consider the rotational equilibrium about D. The clockwise moments will be (20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m), and the anticlockwise moments will be F × 3.0 m (where F is the vertical force applied at B). Setting the moments equal, we have:
(20 kg × 9.8 m/s² × 20 m) + (10 kg × 9.8 m/s² × 30 m) = F × 3.0 m
Solving this equation, we find F = 784 N.
The reaction at C can be calculated using vertical equilibrium: R1 + R2 = 20 kg × 9.8 m/s² + 10 kg × 9.8 m/s². Substituting the values, we get R1 + R2 = 294 N + 588 N = 882 N.
In summary, (1) R1 = 294 N and R2 = 588 N. (2) The 24 kg mass should be placed 25 m from D on the opposite side of C, and the reactions at C and D will be equal to 245 N. (3) Without the 24 kg mass, a vertical force of 784 N applied at B will lift the plank clear of D, and the reaction at C will be 882 N.
The question was incomplete. find the full content below:
A plank ab 3.0 long weighing20kg and with its centre gravity 20m from the end a carries a load of mass 10kg at the end a.It rests on two supports at c and d.Calculate:
(1)compute the values of the reaction forces R1 and R2 at c and d
(2)how far from d and on which side of it must a mass of 24kg be placed on the plank so as to make the reactions equal?what are their values?
(3)without this 24kg,what vertical force applied at b will just lift the plank clear of d?what is then the reaction of c?
Know more about equilibrium here:
https://brainly.com/question/517289
#SPJ8
This time the pendulum is 2.05 m'long. Suppose you start with the pendulum hanging vertically, at rest. You then give it a push so that it starts swinging with a speed of 2.04 m/s. What maximum angle (in degrees) will it reach, with respect to the vertical, before falling back down? 18.4 degrees 34.2 degrees 30.3 degrees 26.3 degrees This time, the pendulum is 1.25 m long and has a mass of 3.75 kg. You give it a push away from vertical so that it starts swinging with a speed of 1.39 m/s. Due to friction at the pivot point, 1.00 Joule of the pendulum s initial kinetic energy is lost as heat during the upward swing. What maximum angle will it reach, with respect to the vertical, before falling back down? 22.9 degrees 33.0 degrees 28.0 degrees 19.4 degrees
In the first scenario, where the pendulum is 2.05 m long and starts swinging with a speed of 2.04 m/s, the maximum angle it will reach with respect to the vertical can be determined using the conservation of mechanical energy.
By equating the initial kinetic energy to the change in potential energy, we can calculate the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can find the maximum angle it will reach, which is approximately 18.4 degrees.
In the second scenario, with a pendulum length of 1.25 m, mass of 3.75 kg, and 1.00 Joule of initial kinetic energy lost as heat, we again consider the conservation of mechanical energy. By subtracting the energy lost as heat from the initial mechanical energy and equating it to the change in potential energy, we can find the maximum height reached by the pendulum. Using this height and the length of the pendulum, we can determine the maximum angle it will reach, which is approximately 33.0 degrees.
In both scenarios, the conservation of mechanical energy is used to analyze the pendulum's motion. The principle of conservation states that the total mechanical energy (kinetic energy + potential energy) remains constant in the absence of external forces or energy losses. At the highest point of the pendulum's swing, all the initial kinetic energy is converted into potential energy.
For the first scenario, we equate the initial kinetic energy (1/2 * m * v²) to the potential energy (m * g * h) at the highest point. Rearranging the equation allows us to solve for the maximum height (h). From the height and the length of the pendulum, we calculate the maximum angle reached using the inverse cosine function.
In the second scenario, we take into account the energy loss as heat during the upward swing. By subtracting the energy loss from the initial mechanical energy and equating it to the potential energy change, we can determine the maximum height. Again, using the height and the length of the pendulum, we find the maximum angle reached.
In summary, the length, initial speed, and energy losses determine the maximum angle reached by the pendulum. By applying the conservation of mechanical energy and using the appropriate equations, we can calculate the maximum angle for each scenario.
Learn more about kinetic energy here:
brainly.com/question/999862
#SPJ11
Comet C has a gravitational acceleration of 31 m/s?. If its mass is 498 kg, what is the radius of Comet C?
The radius of Comet C is approximately 5.87 x 10^-6 meters, given its mass of 498 kg and gravitational acceleration of 31 m/s².
To calculate the radius of Comet C, we can use the formula for gravitational acceleration:
a = G * (m / r²),
where:
a is the gravitational acceleration,G is the gravitational constant (approximately 6.67430 x 10^-11 m³/(kg·s²)),m is the mass of the comet, andr is the radius of the comet.We can rearrange the formula to solve for r:
r² = G * (m / a).
Substituting the given values:
G = 6.67430 x 10^-11 m³/(kg·s²),
m = 498 kg, and
a = 31 m/s²,
we can calculate the radius:
r² = (6.67430 x 10^-11 m³/(kg·s²)) * (498 kg / 31 m/s²).
r² = 1.0684 x 10^-9 m⁴/(kg·s²) * kg/m².
r² = 3.4448 x 10^-11 m².
Taking the square root of both sides:
r ≈ √(3.4448 x 10^-11 m²).
r ≈ 5.87 x 10^-6 m.
Therefore, the radius of Comet C is approximately 5.87 x 10^-6 meters.
To learn more about gravitational acceleration, Visit:
https://brainly.com/question/14374981
#SPJ11
A galvanometer has an internal resistance of (RG-59), and a maximum deflection current of IGMax = 15 mA). If the shunt resistance is given by : Max RS (16) mar RG I max - (16) max Then the value of the shunt resistance Rs (in) needed to convert it into an ammeter reading maximum value of 'Max = 500 mA is:
The value of the shunt resistance Rs is calculated to be approximately (1.02 Ω).To convert a galvanometer into an ammeter with a maximum reading value of 500 mA, a shunt resistance (Rs) needs to be added.
The value of the shunt resistance can be calculated using the formula Rs = (RG * IMax) / (IMax - Max), where RG is the internal resistance of the galvanometer, IMax is the maximum deflection current of the galvanometer (15 mA), and Max is the desired maximum current reading of the ammeter (500 mA).
To convert a galvanometer into an ammeter, a shunt resistance is connected in parallel with the galvanometer.
The shunt resistance diverts a portion of the current, allowing the remaining current to flow through the galvanometer.
By choosing an appropriate value for the shunt resistance, the ammeter can be calibrated to measure higher currents.
In this case, the shunt resistance value (Rs) can be determined using the formula Rs = (RG * IMax) / (IMax - Max), where RG is the internal resistance of the galvanometer, IMax is the maximum deflection current of the galvanometer (15 mA), and Max is the desired maximum current reading of the ammeter (500 mA).
Substituting the given values,
we have Rs = (RG * 15 mA) / (15 mA - 500 mA). Simplifying further, Rs = (RG * 15 mA) / (-485 mA).
Rearranging the equation,
we get Rs = - RG * (15 mA / 485 mA). Since RG is given as (RG-59), we substitute it into the equation to obtain Rs = - (RG-59) * (15 mA / 485 mA).
The result of this calculation gives us the value of the shunt resistance Rs, which is approximately 1.02 Ω. Therefore, a shunt resistance of approximately 1.02 Ω should be added in parallel with the galvanometer to convert it into an ammeter with a maximum reading value of 500 mA.
Learn more about shunt resisitance from the given link:
https://brainly.com/question/31811502
#SPJ11
The water needs of a small farm are to be met by pumping water from a well that can supply water continuously at a rate of 5 L/min. The water level in the well is 13 m below the ground level, and water is to be pumped to the farm by a 2-cm internal diameter plastic pipe. The required length of piping is measured to be 20 m, and the total minor loss coefficient due to the use of elbows, vanes, etc. is estimated to be 8.5. Taking the efficiency of the pump to be 70 percent. The viscosity of water is 0.0025 kg/m.s. a) Define the type of flow using Reynolds number. b) Explain the significance of the information we get from Reynolds number equation. c) determine the rated power of the pump that needs to be purchased.
The type of flow can be determined using the Reynolds number, which is a dimensionless quantity that characterizes the flow regime. The Reynolds number equation is significant because it helps us understand the nature of fluid flow.
a) The type of flow can be determined using the Reynolds number.
b) The Reynolds number is a dimensionless quantity that helps in identifying the nature of flow, whether it is laminar or turbulent. It is calculated by comparing the inertial forces to the viscous forces within the fluid. For pipe flow, the Reynolds number can indicate the transition from smooth, orderly flow (laminar) to chaotic, irregular flow (turbulent). This information is crucial in designing and selecting appropriate pipe sizes, considering factors such as pressure drop, energy losses, and efficiency of fluid transportation.
c) To determine the rated power of the pump needed, several factors need to be considered, including the flow rate, elevation difference, pipe length, minor loss coefficient, efficiency of the pump, and viscosity of the fluid. By applying the principles of fluid mechanics, the power requirement can be calculated using the Bernoulli equation and considering the head losses due to pipe friction and minor losses. The power requirement will depend on the desired flow rate and the specific characteristics of the system.
To learn more about fluid flow, click here: https://brainly.com/question/14747327
#SPJ11
What is the best possible coefficient of performance COPret for a refrigerator that cools an environment at -13.0°C and exhausts heat to another environment at 39.0°C? COPrel= How much work W would this ideal refrigerator do to transfer 3.125 x 10 J of heat from the cold environment? W = What would be the cost of doing this work if it costs 10.5¢ per 3.60 × 106 J (a kilowatt-hour)? cost of heat transfer: How many joules of heat Qu would be transferred into the warm environment?
The best possible coefficient of performance (COPret) for the given temperatures is approximately 5.0. The work done by the refrigerator is calculated to be 6.25 x 10 J. The cost of performing this work is approximately 0.0182¢. Finally, the amount of heat transferred into the warm environment is determined to be 9.375 x 10.
The coefficient of performance (COP) of a refrigerator is a measure of its efficiency and is defined as the ratio of the amount of heat transferred from the cold environment to the work done by the refrigerator. For an ideal refrigerator, the COP can be determined using the formula:
COPret = Qc / W
where Qc is the amount of heat transferred from the cold environment and W is the work done by the refrigerator.
To find the best possible COPret for the given temperatures, we need to use the Carnot refrigerator model, which assumes that the refrigerator operates in a reversible cycle. The Carnot COP (COPrel) can be calculated using the formula:
COPrel = Th / (Th - Tc)
where Th is the absolute temperature of the hot environment and Tc is the absolute temperature of the cold environment.
Converting the given temperatures to Kelvin, we have:
Th = 39.0°C + 273.15 = 312.15 K
Tc = -13.0°C + 273.15 = 260.15 K
Substituting these values into the equation, we can calculate the COPrel:
COPrel = 312.15 K / (312.15 K - 260.15 K) ≈ 5.0
Now, we can use the COPrel value to determine the work done by the refrigerator. Rearranging the COPret formula, we have:
W = Qc / COPret
Given that Qc = 3.125 x 10 J, we can calculate the work done:
W = (3.125 x 10 J) / 5.0 = 6.25 x 10 J
Next, we can calculate the cost of doing this work, considering the given cost of 10.5¢ per 3.60 × 10^6 J (a kilowatt-hour). First, we convert the work from joules to kilowatt-hours:
W_kWh = (6.25 x 10 J) / (3.60 × 10^6 J/kWh) ≈ 0.0017361 kWh
To calculate the cost, we use the conversion rate:
Cost = (0.0017361 kWh) × (10.5¢ / 1 kWh) ≈ 0.01823¢ ≈ 0.0182¢
Finally, we need to determine the amount of heat transferred into the warm environment (Qw). For an ideal refrigerator, the total heat transferred is the sum of the heat transferred to the cold environment and the work done:
Qw = Qc + W = (3.125 x 10 J) + (6.25 x 10 J) = 9.375 x 10 J
In summary, the best possible coefficient of performance (COPret) for the given temperatures is approximately 5.0. The work done by the refrigerator is calculated to be 6.25 x 10 J. The cost of performing this work is approximately 0.0182¢. Finally, the amount of heat transferred into the warm environment is determined to be 9.375 x 10.
Learn more about coefficient here,
https://brainly.com/question/1038771
#SPJ11
Each month the speedy dry-cleaning company buys 1 barrel (0.190 m³) of dry- cleaning fluid. Ninety two percent of the fluid is lost to the atmosphere and eight percent remains as residue to be disposed of. The density of the dry-cleaning fluid is 1.5940 g/mL. The monthly mass emission rate to the atmosphere in kg/month is nearly. Show and submit your "detail work" for partial credit. (CLO 1) O 1) 278.63 kg/month O 2) 302.86 kg/month O 3) 332.50 kg/month
O 4) 24.23 kg/month
The monthly mass emission rate to the atmosphere in kg/month is 0.2786 kg since the mass emitted into the atmosphere is 0.2786 kg. Option 1.
Given: Volume of fluid purchased in a month = 0.190 m³
Density of fluid = 1.5940 g/mL
Mass of fluid purchased = volume x density= 0.190 m³ x 1.5940 g/m³= 0.3029 kg
Airborne emissions rate = 92% of the mass of fluid purchased
Residue disposal rate = 8% of the mass of fluid purchased
So, the mass emitted into the atmosphere = 92% x 0.3029 kg= 0.2786 kg
The monthly mass emission rate to the atmosphere in kg/month is approximately 0.2786 kg/month. Hence, option 1: 278.63 kg/month is the correct answer.
Here are the details of the solution:
M = 0.190 m³ x 1.5940 g/mL = 0.3029 kg
So, the mass of fluid purchased in a month is 0.3029 kg.
Airborne emissions rate = 92% of the mass of fluid purchased= 0.92 x 0.3029 kg= 0.2786 kg
The mass of the fluid that remains as residue to be disposed of is 8% of the mass of fluid purchased.= 0.08 x 0.3029 kg= 0.0243 kg
So, the monthly mass emission rate to the atmosphere in kg/month is 0.2786 kg. Option 1.
More on emission rate: https://brainly.com/question/24021466
#SPJ11
A torque of magnitude 50N · m acts for 3 seconds to start a small airplane propeller (I = 1 2mr2 ) of length 1.2m and mass 10kg spinning. If treated as a rod rotated about its center, what is the final angular speed of the propeller if we neglect the drag on it?
The final angular speed of the propeller is 20.82 rad/s. if we neglect the drag on it.
To find the final angular speed of the propeller, we can use the principle of conservation of angular momentum. The initial torque acting on the propeller will change its initial angular momentum.
The torque acting on the propeller is given by the equation:
τ = Iα
where τ is the torque, I is the moment of inertia, and α is the angular acceleration.
Given that the torque is 50 N·m and the length of the propeller is 1.2 m, we can calculate the moment of inertia:
I = 1/2 * m * r^2
where m is the mass of the propeller and r is the length of the propeller.
Substituting the given values:
I = 1/2 * 10 kg * (1.2 m)^2 = 7.2 kg·m^2
Now, we know that the torque acts for 3 seconds. We can rearrange the torque equation to solve for angular acceleration:
α = τ / I
α = 50 N·m / 7.2 kg·m^2 = 6.94 rad/s^2
Finally, we can use the kinematic equation for angular motion to find the final angular speed (ω) when the initial angular speed (ω₀) is zero:
ω = ω₀ + αt
ω = 0 + (6.94 rad/s^2) * 3 s = 20.82 rad/s
Therefore, neglecting the drag on the propeller, the final angular speed of the propeller is approximately 20.82 rad/s.
To learn more about angular speed follow the given link
https://brainly.com/question/6860269
#SPJ11
Q/C A man claims that he can hold onto a 12.0 -kg child in a head-on collision as long as he has his seat belt on. Consider this man in a collision in which he is in one of two identical cars each traveling toward the other at 60.0m/h relative to the ground. The car in which he rides is brought to rest in 0.10s . (c) What does the answer to this problem say about laws requiring the use of proper safety devices such as seat belts and special toddler seats?
The man's claim about holding onto a 12.0-kg child in a head-on collision is incorrect. In this scenario, both cars are traveling at 60.0 m/h relative to the ground and collide. The car the man is in is brought to rest in 0.10s.
To assess the situation, we can use the principle of conservation of momentum. The total momentum of the system before the collision should be equal to the total momentum after the collision.
Since the cars are identical, they have the same mass and are traveling at the same speed in opposite directions. Therefore, the total momentum before the collision is zero.
After the collision, the car the man is in comes to a stop, resulting in a change in momentum. This means that the total momentum after the collision is not zero.
The fact that the car comes to a stop in such a short time demonstrates the significant forces involved in the collision. If the man were holding onto the child without a seat belt, both of them would experience an abrupt change in momentum and could be seriously injured or thrown from the car.
This problem emphasizes the importance of laws requiring the use of proper safety devices such as seat belts and special toddler seats. These devices help to distribute the forces of a collision more evenly throughout the body, reducing the risk of injury.
to learn more about conservation of momentum.
https://brainly.com/question/33316833
#SPJ11
Compare a 1kg solid gold bar or a 15g solid gold wedding ring, which has a higher (i) density (ii) specific gravity? (i) bar, (i) bar
(i) ring, (ii) ring
(i) same, (ii) same
(i) bar, (ii) ring
(i) bar, (ii) same
(i) ring, (ii) bar
(i) ring, (ii) same
(i) same, (ii) bar
(i) same, (ii) ring
Please document your reasoning
A 1kg solid gold bar or a 15g solid gold wedding ring, which has a higher (i) The density of the gold bar and gold ring is the same.
(ii) The specific gravity of the gold bar and gold ring is the same.
(i) Density:
Density is defined as the mass of an object divided by its volume. The density of a substance remains constant regardless of the size or shape of the object. In this case, we are comparing a 1 kg solid gold bar and a 15 g solid gold wedding ring.
Given:
Mass of gold bar = 1 kg
Mass of gold ring = 15 g
Since density is calculated by dividing mass by volume, we need to consider the volume of the objects as well. The volume of an object is directly proportional to its mass.
Assuming that both the gold bar and gold ring are made of the same material (gold) with the same density, the density of gold will be the same for both objects. Therefore, the answer is (i) same.
(ii) Specific Gravity:
Specific gravity is the ratio of the density of a substance to the density of a reference substance. The reference substance is usually water at a standard temperature and pressure. Since we are comparing two gold objects, the reference substance will remain the same.
The specific gravity of gold is typically measured with respect to water. The density of gold is much higher than that of water, so the specific gravity of gold is greater than 1.
Again, assuming that both the gold bar and gold ring are made of the same material (gold), their specific gravities will be the same as the specific gravity is determined by the density of the substance relative to water. Therefore, the answer is (ii) same.
In summary:
(i) The density of the gold bar and gold ring is the same.
(ii) The specific gravity of the gold bar and gold ring is the same.
To know more about wedding refer here:
https://brainly.com/question/32938322#
#SPJ11
A 688.78 mm long aluminum wire with a diameter of 41.4 mm changes temperature from 131.6 C to 253.3 C. Calculate the change in length of the wire due to the temperature change. Report your answer in millimeters rounded to 3 decimal places with units.
We know that the coefficient of linear expansion of aluminum, α = 23.1 x 10-6 K-1 Hence,∆L = αL∆T= 23.1 × 10-6 × 688.78 × (253.3 − 131.6)= 4.655 mmThus, the change in length of the wire due to the temperature change is 4.655 mm (rounded to 3 decimal places with u
The length change of an aluminum wire with a diameter of 41.4 mm and 688.78 mm length from a temperature change from 131.6 C to 253.3 C is 4.655 mm. The formula that is used to calculate the change in length of the wire due to temperature change is:∆L
= αL∆T
where, ∆L is the change in length L is the original length of the wireα is the coefficient of linear expansion of the material of the wire∆T is the change in temperature From the provided data, we know the following:Length of the aluminum wire
= 688.78 mm Diameter of the aluminum wire
= 41.4 mm Radius of the aluminum wire
= Diameter/2
= 41.4/2
= 20.7 mm Initial temperature of the aluminum wire
= 131.6 C Final temperature of the aluminum wire
= 253.3 C
We first need to find the coefficient of linear expansion of aluminum. From the formula,α
= ∆L/L∆T We know that the change in length, ∆L
= ?L = 688.78 mm (given)We know that the initial temperature, T1
= 131.6 C
We know that the final temperature, T2
= 253.3 C.We know that the coefficient of linear expansion of aluminum, α
= 23.1 x 10-6 K-1 Hence,∆L
= αL∆T
= 23.1 × 10-6 × 688.78 × (253.3 − 131.6)
= 4.655 mm Thus, the change in length of the wire due to the temperature change is 4.655 mm (rounded to 3 decimal places with units).
To know more about aluminum visit:
https://brainly.com/question/28989771
#SPJ11
Superman must stop a 190-km/h train in 200 m to keep it from hitting a stalled car on the tracks Part A If the train's mass is 3.7x105 kg, how much force must he exert (find the magnitude)? Express your answer using two significant figures.
The force required to stop the train is 2.93 × 10⁶ N (to two significant figures).
Given that Superman must stop a 190-km/h train in 200 m to keep it from hitting a stalled car on the tracks. The train's mass is 3.7 × 10⁵ kg.
To calculate the force, we use the formula:
F = ma
Where F is the force required to stop the train, m is the mass of the train, and a is the acceleration of the train.
So, first, we need to calculate the acceleration of the train. To calculate acceleration, we use the formula:
v² = u² + 2as
Where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance traveled.
The initial velocity of the train is 190 km/h = 52.8 m/s (since 1 km/h = 1000 m/3600 s)
The final velocity of the train is 0 m/s (since Superman stops the train)
The distance traveled by the train is 200 m.
So, v² = u² + 2as ⇒ (0)² = (52.8)² + 2a(200) ⇒ a = -7.92 m/s² (the negative sign indicates that the train is decelerating)
Now, we can calculate the force:
F = ma = 3.7 × 10⁵ kg × 7.92 m/s² = 2.93 × 10⁶ N
Therefore, the force required to stop the train is 2.93 × 10⁶ N (to two significant figures).
Learn more about force visit:
brainly.com/question/30507236
#SPJ11
An isotope of Sodium undergoes β decay by emitting a
positron (positively charged electron) and this must become:
An isotope of Sodium undergoing β decay by emitting a positron (positively charged electron) will transform into a different element. Specifically, it will become an isotope of Magnesium.
β decay involves the transformation of a neutron into a proton within the nucleus of an atom. In this process, a high-energy electron, called a beta particle (β-), is emitted when a neutron is converted into a proton. However, in the case of β+ decay, a proton within the nucleus is converted into a neutron, and a positron (β+) is emitted.
Since the isotope of Sodium undergoes β decay by emitting a positron, one of its protons is converted into a neutron. This transformation changes the atomic number of the nucleus, and the resulting element will have one fewer proton. Sodium (Na) has an atomic number of 11, while Magnesium (Mg) has an atomic number of 12. Therefore, the isotope of Sodium, after β+ decay, becomes an isotope of Magnesium.
learn more about "electron":- https://brainly.com/question/860094
#SPJ11
According to the 2nd Law of Thermodynamics
a.) Kinetic energy transformed into heat (e.g. via friction) can be completely converted back to kinetic energy
b.) Heat is just like any other form of energy
c.) Heat cannot be completely converted back into other forms of energy
d.) None of these
Option c) Heat cannot be completely converted back into other forms of energy is the correct answer.
According to the 2nd Law of Thermodynamics, Heat cannot be completely converted back into other forms of energy. This law is also known as the law of entropy and states that every energy transfer or conversion increases the entropy of the universe, meaning that the disorder and randomness of the system will increase over time.
This implies that when heat is transformed into other forms of energy such as mechanical or electrical energy, some of the heat energy is lost in the conversion process and cannot be recovered.
Therefore, option c) Heat cannot be completely converted back into other forms of energy is the correct answer.
To learn more about energy visit;
https://brainly.com/question/1932868
#SPJ11
(b) An object of height 10 mm is located 50 mm from a lens along its optic axis. The focal length of the lens is 20 mm. Assuming the lens can be treated as a thin lens (.e. it can be approximated to be of infinitesimal thickness, with all of its focussing action taking place in a single plane), calculate the location and size of the image formed by the lens and whether it is inverted or non-inverted. Include an explanation of all the steps in your calculation. (14 marks)
In this scenario, a lens with a focal length of 20 mm is used to form an image of an object located 50 mm away from the lens along its optic axis. The object has a height of 10 mm. By applying the thin lens formula and magnification formula, we can calculate the location and size of the image formed. The image is inverted and located 100 mm away from the lens, with a height of -5 mm.
To determine the location and size of the image formed by the lens, we can use the thin lens formula:
1/f = 1/v - 1/u,
where f represents the focal length of the lens, v is the image distance from the lens, and u is the object distance from the lens. Plugging in the values, we have:
1/20 = 1/v - 1/50.
Solving this equation gives us v = 100 mm. The positive value indicates that the image is formed on the opposite side of the lens (real image).
Next, we can calculate the size of the image using the magnification formula:
m = -v/u,
where m represents the magnification. Plugging in the values, we get:
m = -100/50 = -2.
The negative sign indicates an inverted image. The magnification value of -2 tells us that the image is two times smaller than the object.
Finally, to calculate the height of the image, we multiply the magnification by the object height:
h_image = m * h_object = -2 * 10 mm = -20 mm.
The negative sign indicates that the image is inverted, and the height of the image is 20 mm.
Therefore, the image formed by the lens is inverted, located 100 mm away from the lens, and has a height of -20 mm.
Learn more about height here :
brainly.com/question/29131380
#SPJ11
Determine the number of moles of oxygen gas in the following
container.
The container holds 2.90 m3 at 17.84oF and
an a gauge pressure of 16.63kPa.
The number of moles of oxygen gas in the container is determined by the ideal gas law, using the given volume, temperature, and pressure 0.993 moles.
To determine the number of moles of oxygen gas in the container, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant, and T is the temperature in Kelvin.
First, let's convert the given temperature from Fahrenheit to Kelvin:
T(K) = (T(°F) + 459.67) × (5/9)
T(K) = (17.84 + 459.67) × (5/9)
T(K) ≈ 259.46 K
Next, we convert the given pressure from kilopascals (kPa) to pascals (Pa):
P(Pa) = P(kPa) × 1000
P(Pa) = 16.63 kPa × 1000
P(Pa) = 16630 Pa
Now, we can rearrange the ideal gas law equation to solve for n (number of moles):
n = PV / RT
Substituting the known values:
n = (16630 Pa) × (2.90 m³) / ((8.314 J/(mol·K)) × (259.46 K))
Simplifying the equation:
n ≈ 0.993 moles
Therefore, the number of moles of oxygen gas in the container is approximately 0.993 moles.
To learn more about moles click here:
brainly.com/question/15209553
#SPJ11
Two convex thin lenses with focal lengths 12 cm and 18.0 cm aro aligned on a common avis, running left to right, the 12-сm lens being on the left. A distance of 360 сm separates the lenses. An object is located at a distance of 15.0 cm to the left of the 12-сm lens. A Make a sketch of the system of lenses as described above B. Where will the final image appear as measured from the 18-cm bens? Give answer in cm, and use appropriate sign conventions Is the final image real or virtual? D. is the famae upright or inverted? E What is the magnification of the final image?
The magnification is given by: M = v2/v1 = (54 cm)/(60 cm) = 0.9
This means that the image is smaller than the object, by a factor of 0.9.
A. Diagram B. Using the lens formula:
1/f = 1/v - 1/u
For the first lens, with u = -15 cm, f = +12 cm, and v1 is unknown.
Thus,1/12 = 1/v1 + 1/15v1 = 60 cm
For the second lens, with u = 360 cm - 60 cm = +300 cm, f = +18 cm, and v2 is unknown.
Thus,1/18 = 1/v2 - 1/300v2 = 54 cm
Thus, the image is formed at a distance of 54 cm to the right of the second lens, measured from its center, which makes it 54 - 18 = 36 cm to the right of the second lens measured from its right-hand side.
The image is real, as it appears on the opposite side of the lens from the object. It is inverted, since the object is located between the two lenses.
To know more about magnification visit:-
https://brainly.com/question/2648016
#SPJ11
A sphere of radius R has uniform polarization
P and uniform magnetization M
(not necessarily in the same direction). Calculate the
electromagnetic moment of this configuration.
The electromagnetic moment of a sphere with uniform polarization P and uniform magnetization M can be calculated by considering the electric dipole moment due to polarization and the magnetic dipole moment due to magnetization.
To calculate the electromagnetic moment of the sphere, we need to consider the contributions from both polarization and magnetization. The electric dipole moment due to polarization can be calculated using the formula:
p = 4/3 * π * ε₀ * R³ * P,
where p is the electric dipole moment, ε₀ is the vacuum permittivity, R is the radius of the sphere, and P is the uniform polarization.
The magnetic dipole moment due to magnetization can be calculated using the formula:
m = 4/3 * π * R³ * M,
where m is the magnetic dipole moment and M is the uniform magnetization.
Since the electric and magnetic dipole moments are vectors, the total electromagnetic moment is given by the vector sum of these two moments:
μ = p + m.
Therefore, the electromagnetic moment of the sphere with uniform polarization P and uniform magnetization M is the vector sum of the electric dipole moment due to polarization and the magnetic dipole moment due to magnetization.
Learn more about vector here:
https://brainly.com/question/32317496
#SPJ11
For a drum dryer consider the following data: Steam temperature = 150C, vaporization temperature of milk 100C, overall heat transfer coefficient 1.2kw/m2-k, Drum diameter= 70cm, Length of drum = 120 cm, latent heat of vaporization = 2261kJ/kg. The product is scraped at 3/4 of a revolution of the drum. Assum that there are no heat losses to the surroundings.
A. available heat transfer area in m2
B. Evaporation rate in kg/hr
C. If evaporation rate is increased by 50% by howmuch should the length of the drum be increase?
A. The available heat transfer area in m² for the drum dryer is 1.8 m².
B. The evaporation rate in kg/hr for the drum dryer is 15.7 kg/hr.
C. To increase the evaporation rate by 50%, the length of the drum should be increased by 80 cm.
For the first part, to determine the available heat transfer area, we need to calculate the surface area of the drum. The drum can be approximated as a cylinder, so we can use the formula for the lateral surface area of a cylinder: A = 2πrh. Given that the drum diameter is 70 cm, the radius is half of the diameter, which is 35 cm or 0.35 m. The height of the drum is given as 120 cm or 1.2 m. Substituting these values into the formula, we get A = 2π(0.35)(1.2) ≈ 2.1 m². However, only 3/4 of the drum revolution is used for scraping the product, so the available heat transfer area is 3/4 of 2.1 m², which is approximately 1.8 m².
For the second part, the evaporation rate can be calculated using the equation Q = UAΔT/λ, where Q is the heat transfer rate, U is the overall heat transfer coefficient, A is the available heat transfer area, ΔT is the temperature difference, and λ is the latent heat of vaporization. The temperature difference is the steam temperature (150°C) minus the vaporization temperature of milk (100°C), which is 50°C or 50 K. Substituting the given values into the equation, we have Q = (1.2)(1.8)(50)/(2261×10³) ≈ 15.7 kg/hr.
For the third part, we need to increase the evaporation rate by 50%. To achieve this, we can use the same equation as before but with the increased evaporation rate. Let's call the new evaporation rate E'. Since the evaporation rate is directly proportional to the available heat transfer area, we can write E'/E = A'/A, where A' is the new heat transfer area. We need to solve for A' and then find the corresponding length of the drum. Rearranging the equation, we have A' = (E'/E) × A. Given that E' = 1.5E (increased by 50%), we can substitute the values into the equation: A' = (1.5)(1.8) ≈ 2.7 m². Now, we can use the formula for the surface area of a cylinder to find the new length: 2.7 = 2π(0.35)(L'), where L' is the new length of the drum. Solving for L', we get L' ≈ 1.8 m. The increase in length is L' - L = 1.8 - 1.2 ≈ 0.6 m or 60 cm.
Learn more about evaporation rate
brainly.com/question/32237919
#SPJ11
(1 p) A beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket. If light travels at 2.3 x 108 m/s in such a liquid, what is the angle of refraction of the beam in the liquid?
Given that the beam of light, in air, is incident at an angle of 66° with respect to the surface of a certain liquid in a bucket, and the light travels at 2.3 x 108 m/s in such a liquid, we need to calculate the angle of refraction of the beam in the liquid.
We can use Snell's law, which states that the ratio of the sines of the angles of incidence and refraction is equal to the ratio of the velocities of light in the two media. Mathematically, it can be expressed as:
n₁sinθ₁ = n₂sinθ₂
where n₁ and n₂ are the refractive indices of the first and second medium respectively; θ₁ and θ₂ are the angles of incidence and refraction respectively.
The refractive index of air is 1 and that of the given liquid is not provided, so we can use the formula:
n = c/v
where n is the refractive index, c is the speed of light in vacuum (3 x 108 m/s), and v is the speed of light in the given medium (2.3 x 108 m/s in this case). Therefore, the refractive index of the liquid is:
n = c/v = 3 x 10⁸ / 2.3 x 10⁸ = 1.3043 (approximately)
Now, applying Snell's law, we have:
1 × sin 66° = 1.3043 × sin θ₂
⇒ sin θ₂ = 0.8165
Therefore, the angle of refraction of the beam in the liquid is approximately 54.2°.
Learn more about the refractive indices: https://brainly.com/question/31051437
#SPJ11
Two blocks tied together by a string are being pulled across the table by a horizontal force of 59 N applied to the more massive block on the right. The 3 kg block has an 4 N frictional force exerted on it by the table, and the 8 kg block has an 10N frictional force acting on it. Let Fnet be the net force acting on the system, a = acceleration of the system, F1 = net force on 3 kg block, F2 = net force on 8 kg block, and T = tension force in the string connecting the two blocks. Compute
Fnet + 2*a + 3*F1 + F2 + 2*T
Given parameters are, Force applied on right side = 59 N, Frictional force on 3 kg block = 4 N, Frictional force on 8 kg block = 10 N.
Force is the product of mass and acceleration=> F = ma
The net force acting on the system is given by:
Fnet = (59 - 4 - 10) N
Fnet = 45 N
Force on 3 kg block can be calculated using the following equation:
F1 = ma1 = 3a1
Net force on the 3 kg block, F1 = 3a1
Forces acting on the 8 kg block
,F2 = ma2 =>
F2 = 8a2
Tension force on the string,
T = tension force in the string connecting the two blocks =>
T = ma
By solving the equations above, we get a1 = 13 N, a2 = 5.62 N, and T = 18.62 N.
So, the answer is as follows: Fnet + 2*a + 3*F1 + F2 + 2*T
Fnet = 45 + 2a + 3(3 × 13) + (8 × 5.62) + 2(18.62')
Fnet = 45 + 2a + 117 + 44.96 + 37.24
Fnet = 2a + 243.20F
initially, the conclusion can be drawn that
Fnet + 2*a + 3*F1 + F2 + 2*T
Fnet = 2a + 243.20
to know more about Frictional Force visit:
brainly.com/question/30280206
#SPJ11