James wants to have earned $6,180 amount of interest in 28 years. Currently he finds
that his annual interest rate is 6.12%. Calculate how much money James needs to invest
as his principal in order to achieve this goal.
Answer:
$3606.44
Step-by-step explanation:
The question asks us to calculate the principal amount that needs to be invested in order to earn an interest of $6180 in 28 years at an annual interest rate of 6.12%.
To do this, we need to use the formula for simple interest:
[tex]\boxed{I = \frac{P \times R \times T}{100}}[/tex],
where:
I = interest earned
P = principal invested
R = annual interest rate
T = time
By substituting the known values into the formula above and then solving for P, we can calculate the amount that James needs to invest:
[tex]6180 = \frac{P \times 6.12 \times 28}{100}[/tex]
⇒ [tex]6180 \times 100 = P \times 171.36[/tex] [Multiplying both sides by 100]
⇒ [tex]P = \frac{6180 \times 100}{171.36}[/tex] [Dividing both sides of the equation by 171.36]
⇒ [tex]P = \bf 3606.44[/tex]
Therefore, James needs to invest $3606.44.
PLEASE HELP
Suppose that the functions fand g are defined for all real numbers x as follows.
f(x) = 5x
g(x)=4x-4
Write the expressions for (g.f)(x) and (g-f)(x) and evaluate (g+f)(2).
(g•f)(x) =
(g-f)(x) =
(g+r) (2)=
The height h(x), of an object is given by the function h(x) = -16x + 176x + 65
where x is time in seconds and h(x) is height in feet. When does the object reach its maximum height? Round your answer to two decimal places.
To find an object's maximum height, we need to find the vertex of this quadratic equation.
Answer: 5.50 seconds
Terms to know:
Quadratic function: A quadratic function is a polynomial function of degree 2, which means the highest power of the variable in the equation is 2.
Vertex: The vertex of a quadratic function is the point on the graph where the function reaches its highest or lowest point. In the case of a quadratic function in the form f(x) = ax^2 + bx + c, the vertex is given by the coordinates (x, f(x)).
Step-by-step explanation:
The vertex of a quadratic equation can be represented as [tex](\frac{-b}{2a}, f(\frac{-b}{2a})[/tex]
Since we only are looking at the time it takes to reach maximum height we will only look at the x value.
[tex]x= \frac{-176}{2(-16)}[/tex]
[tex]x= 5.50[/tex]
The product of 3, and a number increased by -7, is -36
┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
✦ The number is - 5
┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈
[tex]\begin{gathered} \; \sf{\color{pink}{Let \; the \; other \; number \; be \; (x)::}} \\ \end{gathered}[/tex]
Atq,,
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3 \times \bigg \lgroup \: x + ( - 7) \bigg \rgroup = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3 \times \bigg \lgroup \: x - 7 \bigg \rgroup = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x - 21 = - 36} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x = - 36 + 21} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{3x = - 15} \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{skyblue} :\dashrightarrow \: \tt{x = \dfrac{\cancel{ - 15}}{\cancel{ \: 3}}} \qquad \bigg \lgroup \sf{Cancelling \: by \: 3} \bigg \rgroup \\ \\ \end{gathered}[/tex]
[tex]\begin{gathered} \; \color{pink} :\dashrightarrow \underline{\color{pink}\boxed{\colorbox{black}{x = - 5}}} \: \pmb{\bigstar} \\ \\ \end{gathered}[/tex]
The answer is:
z = -5Work/explanation:
The product means we multiply two numbers.
Here, we multiply 3 and a number increased by -7; let that number be z.
So we have
[tex]\sf{3(z+(-7)}[/tex]
simplify:
[tex]\sf{3(z-7)}[/tex]
This equals -36
[tex]\sf{3(z-7)=-36}[/tex]
[tex]\hspace{300}\above2[/tex]
[tex]\frak{solving~for~z}[/tex]
Distribute
[tex]\sf{3z-21=-36}[/tex]
Add 21 on each side
[tex]\sf{3z=-36+21}[/tex]
[tex]\sf{3z=-15}[/tex]
Divide each side by 3
[tex]\boxed{\boxed{\sf{z=-5}}}[/tex]
An isosceles triangle has two angles both equal to x. The third angle is 45 degrees bigger than either of these. Find the value of x.
Let's use the fact that the sum of the angles of a triangle is always 180 degrees to solve this problem. Let the two equal angles be x, then the third angle is x + 45.Let's add all the angles together:x + x + x + 45 = 180Simplifying this equation, we get:3x + 45 = 180Now, we need to isolate the variable on one side of the equation. We can do this by subtracting 45 from both sides of the equation:3x = 135Finally, we can solve for x by dividing both sides of the equation by 3:x = 45Therefore, the value of x is 45 degrees.
Answer:
45°
Step-by-step explanation:
An isosceles triangle has two angles both equal to x. The third angle is 45 degrees bigger than either of these. Find the value of x.Let's turn the question into an equation
180 = x + x + x + 45
180 - 45 = 3x
135 = 3x
x = 135 : 3
x = 45°
------------------
check
180 = 45 + 45 + 45 + 45
180 = 180
same value the answer is good
How would you describe the difference between the graphs of f (x) = 3x²
and g(x) = -2² ?
OA. g(x) is a reflection of f(x) over the line y = x.
B. g(x) is a reflection of f(x) over the line y = -1.
C. g(x) is a reflection of f(x) over the x-axis.
D. g(x) is a reflection of f(x) over the y-axis.
Comparing the characteristics of the two functions, we can conclude that the graph of g(x) = -2² is a reflection of the graph of f(x) = 3x² over the x-axis (option C).
The given functions are f(x) = 3x² and g(x) = -2².
To understand the difference between their graphs, let's examine the characteristics of each function individually:
Function f(x) = 3x²:
The coefficient of x² is positive (3), indicating an upward-opening parabola.
The graph of f(x) will be symmetric with respect to the y-axis, as any change in x will result in the same y-value due to the squaring of x.
The vertex of the parabola will be at the origin (0, 0) since there are no additional terms affecting the position of the graph.
Function g(x) = -2²:
The coefficient of x² is negative (-2), indicating a downward-opening parabola.
The negative sign will reflect the graph of f(x) across the x-axis, resulting in a vertical flip.
The vertex of the parabola will also be at the origin (0, 0) due to the absence of additional terms.
Comparing the characteristics of the two functions, we can conclude that the graph of g(x) = -2² is a reflection of the graph of f(x) = 3x² over the x-axis (option C). This means that g(x) is obtained by taking the graph of f(x) and flipping it vertically. The reflection occurs over the x-axis, causing the parabola to open downward instead of upward.
Therefore, the correct answer is option C: g(x) is a reflection of f(x) over the x-axis.
For more such questions on functions visit:
https://brainly.com/question/25638609
#SPJ8
What else would need to be congruent to show that ABC=AXYZ by SAS?
A
B
OA. ZB=LY
B. BC = YZ
OC. C= LZ
OD. AC = XZ
с
X
Z
Given:
AB XY
BC=YZ
What is needed to be congruent to show that ABC=AXYZ is AC ≅ XZ. option D
How to determine the statementGiven that in ΔABC and ΔXYZ, ∠X ≅ ∠A and ∠Z ≅ ∠C.
We are to select the correct condition that we will need to show that the triangles ABC and XYZ are congruent to each other by ASA rule..
ASA Congruence Theorem: Two triangles are said to be congruent if two angles and the side lying between them of one triangle are congruent to the corresponding two angles and the side between them of the second triangle.
In ΔABC, side between ∠A and ∠C is AC,
in ΔXYZ, side between ∠X and ∠Z is XZ.
Therefore, for the triangles to be congruent by ASA rule, we must have AC ≅ XZ.
Learn more about triangles at: https://brainly.com/question/14285697
#SPJ1
What is the z score for Brazil?
The z-score for Brazil is given as follows:
Z = 0.87.
What is the z-score formula?The z-score formula is defined as follows:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
In which:
X is the measure.[tex]\mu[/tex] is the population mean.[tex]\sigma[/tex] is the population standard deviation.The parameters for this problem are given as follows:
[tex]X = 6.24, \mu = 4.8, \sigma = 1.66[/tex]
Hence the z-score for Brazil is given as follows:
Z = (6.24 - 4.8)/1.66
Z = 0.87.
More can be learned about z-scores at https://brainly.com/question/25800303
#SPJ1
A company Charting its profits notices that the relationship between the number of units sold,x, and the profit,P, is a linear. If 170 units sold results in $20 profit and 220 units sold results in $2820 profit, write the profit function for this company.
P=
Find the marginal profit
$
Step-by-step explanation:
a linear relationship or function is described in general as
y = f(x) = ax + b
Because the variable term has the variable x only with the exponent 1, this makes this a straight line - hence the name "linear".
here f(x) is P(x) :
P(x) = ax + b
now we are using both given points (ordered pairs) to calculate a and b :
20 = a×170 + b
2820 = a×220 + b
to eliminate first one variable we subtract equation 1 from equation 2 :
2800 = a×50
a = 2800/50 = 280/5 = 56
now, we use that in any of the 2 original equations to get b :
20 = 56×170 + b
b = 20 - 56×170 = 20 - 9520 = -9500
so,
P(x) = 56x - 9500
Let N be the greatest number that will divide 1305,4665 and 6905 leaving the same remainder in each case. What is the sum of the digits in N.
Answer:
4
Step-by-step explanation:
You want the sum of digits of the largest number that divides 1305, 4665, and 6905 with the same remainder.
Largest divisorWe can look at 4665/1305 ≈ 3.57 and 6905/1305 ≈ 5.29 for a clue as to the divisor of interest. These quotients tell us that one possibility is the value that would give quotients of 4 and 6 after the remainder is subtracted from each of the numbers.
For 1305 and 4665, if r is the remainder, we require ...
4(1305 -r) = 4665 -r
5220 -4665 = 4r -r
555/3 = r = 185
If 185 is the remainder in this scenario, then 1305 -185 = 1120 is the divisor. Checking the remainder with 6905, we find ...
6905/1120 = 6 r 185
Sum of digitsThe sum of digits of this divisor is 1 + 1 + 2 + 0 = 4.
The sum of the digits in N is 4.
After long study, tree scientists conclude that a eucalyptus tree will
3
grow at the rate of +
ft. per years, where t is time in years. Find the
5 (t+1)³
number of feet the tree will grow in the first year. Be sure to use the proper
units of measure.
After a long study, tree scientists conclude that a eucalyptus tree will grow at the rate of 3ft per year, where t is time in years. So, the tree will grow 5 feet in the first year.
We have to find the number of feet the tree will grow in the first year, given that 5(t + 1)³. The rate of growth of a tree is given as 3ft/year. Therefore, in the first year, the tree will grow 3 feet.
To find the number of feet the tree will grow in the first year, we substitute t = 0 in the given expression.
5(t + 1)³ = 5(0 + 1)³= 5(1)³= 5(1)= 5. Therefore, the tree will grow 5 feet in the first year.
For more questions on: scientists
https://brainly.com/question/9523340
#SPJ8
A rectangular pyramid is sliced. The slice passes through line segment AB and is parallel to the base.
Which two-dimensional figure represents the cross section?
A. A rectangle the same size as the base
B. A rectangle that is smaller than the base
C. A quadrilateral that is not a rectangle
D. A triangle with a height the same as the pyramid
Answer:
Step-by-step explanation:
The correct answer is A. A rectangle the same size as the base.
When a rectangular pyramid is sliced parallel to the base, the resulting cross-section is a rectangle that is the same size as the base. The parallel slicing ensures that the cross-section maintains the same dimensions as the base of the pyramid. Therefore, option A, a rectangle the same size as the base, represents the cross-section.
which of the following are like radicals? Check all
of the boxes that apply.
3x√√xy
-12x√√xy
-2x√√xj
x-√4x2²
-x√x²y
2√xy
Answer:
the first 2
Step-by-step explanation:
let me know if it is wrong
Dylan's mom told him that she would replace each one of his dimes with a quarter. If he uses all of his coins, determine if Dylan would then have enough money to buy a game priced at $20.98 if he must also pay an 8% sales tax.
the population of a certain state can be estimated by the equation p=80.7t+18,312.3, where p represents the population of the state in thousands of people t years since 2010
The estimated population of the state in the year 2022 is 19,280,700 people.
The given equation represents the population of a certain state as a function of time, where p is the population in thousands of people and t is the number of years since 2010.
The equation is given as p = 80.7t + 18,312.3.
To estimate the population of the state, we substitute the value of t into the equation. For example, if we want to estimate the population in the year 2022 (12 years since 2010), we substitute t = 12 into the equation:
p = 80.7(12) + 18,312.3
= 968.4 + 18,312.3
= 19,280.7.
The estimated population of the state in the year 2022 is 19,280,700 people.
We can estimate the population for any given year by substituting the corresponding value of t into the equation.
It's important to note that the population is given in thousands of people, so we multiply the final result by 1,000 to obtain the population in actual numbers.
For more such questions on population
https://brainly.com/question/30396931
#SPJ8
NEED NOW PLEASE HELP OUT
Answer:
x=50
Step-by-step explanation:
Make this equal to 180.
x+3x-35+x-35 = 180
5x = 180 + 70
5x=250
x=50
45% of the Walton High School student body are male. 90% of Walton females love math, while only 60% of the males love math. What percentage of the student body loves math?
Approximately 76.5% of the student body at Walton High School loves math.
To determine the percentage of the student body that loves math, we need to consider the proportions of males and females in the Walton High School student body and their respective percentages of loving math.
Given that 45% of the student body are males, we can deduce that 55% are females (since the total percentage must add up to 100%). Now let's calculate the percentage of the student body that loves math:
For the females:
55% of the student body are females.
90% of the females love math.
So, the percentage of females who love math is 55% * 90% = 49.5% of the student body.
For the males:
45% of the student body are males.
60% of the males love math.
So, the percentage of males who love math is 45% * 60% = 27% of the student body.
To find the total percentage of the student body that loves math, we add the percentages of females who love math and males who love math:
49.5% + 27% = 76.5%
As a result, 76.5% of Walton High School's student body enjoys maths.
for such more question on percentage
https://brainly.com/question/24877689
#SPJ8
Qué porcentaje de 200 es 164
what best describes the relationship between the computed mean of 52.4 and the actual mean of 52.7
The computed mean of 52.4 and the actual mean of 52.7 suggest a close relationship in terms of central tendency.
A computed mean is a statistical measure calculated by summing up a set of values and dividing by the number of observations. In this case, the computed mean of 52.4 implies that when the values are averaged, the result is 52.4.
The actual mean of 52.7 refers to the true average of the population or data set being analyzed. Since it is higher than the computed mean, it indicates that the sample used for computation might have slightly underestimated the true population mean.
However, the difference between the computed mean and the actual mean is relatively small, with only a 0.3 unit discrepancy.
Given the proximity of these two values, it suggests that the computed mean is a reasonably accurate estimate of the actual mean.
However, it's important to note that without additional information, such as the sample size or the variability of the data, it is difficult to draw definitive conclusions about the relationship between the computed mean and the actual mean.
For more such questions on mean
https://brainly.com/question/1136789
#SPJ8
how can you write the expression with a rationalized denominator?
3 sqrt 2 / 3 sqrt 6
see photo attached for answers
The expression (3√2) / (3√6) with a rationalized denominator is 3√9 / 6. Option C is the correct answer.
To rationalize the denominator in the expression (3√2) / (3√6), we can multiply both the numerator and denominator by the conjugate of the denominator. The conjugate of √6 is -√6, so we multiply the expression by (-√6) / (-√6):
(3√2 / 3√6) * (-√6 / -√6)
This simplifies to:
-3√12 / (-3√36)
Further simplifying, we have:
-3√12 / (-3 * 6)
-3√12 / -18
Finally, we can cancel out the common factor of 3:
- 3√9 / - 6.
Simplifying further, we get:
3√9 / 6.
Option C is the correct answer.
For such more question on denominator:
https://brainly.com/question/29618306
#SPJ8
A village P is 12 km from village Q. It takes 3 hours 20 minutes to travel from Q to P and back to Q by a boat. If the boat travels at a speed of 6 km/h from P to Q and (6 + x) km/h back to P, find the value of x.
Answer:
Hope this helps and have a nice day
Step-by-step explanation:
To find the value of x, we can use the formula:
Time = Distance / Speed
Let's calculate the time taken to travel from Q to P and back to Q.
From Q to P:
Distance = 12 km
Speed = 6 km/h
Time taken from Q to P = Distance / Speed = 12 km / 6 km/h = 2 hours
From P to Q:
Distance = 12 km
Speed = (6 + x) km/h
Time taken from P to Q = Distance / Speed = 12 km / (6 + x) km/h
Given that the total time taken for the round trip is 3 hours 20 minutes, we can convert it to hours:
Total time = 3 hours + (20 minutes / 60) hours = 3 + (1/3) hours = 10/3 hours
According to the problem, the total time is the sum of the time from Q to P and from P to Q:
Total time = Time taken from Q to P + Time taken from P to Q
Substituting the values:
10/3 hours = 2 hours + 12 km / (6 + x) km/h
Simplifying the equation:
10/3 = 2 + 12 / (6 + x)
Multiply both sides by (6 + x) to eliminate the denominator:
10(6 + x) = 2(6 + x) + 12
60 + 10x = 12 + 2x + 12
Collecting like terms:
8x = 24
Dividing both sides by 8:
x = 3
Therefore, the value of x is 3.
Answer:
x = 3
Step-by-step explanation:
speed = distance / time
time = distance / speed
Total time from P to Q to P:
T = 3h 20min
P to Q :
s = 6 km/h
d = 12 km
t = d/s
= 12/6
t = 2 h
time remaining t₁ = T - t
= 3h 20min - 2h
= 1 hr 20 min
= 60 + 20 min
= 80 min
t₁ = 80/60 hr
Q to P:
d₁ = 12km
t₁ = 80/60 hr
s₁ = d/t₁
[tex]= \frac{12}{\frac{80}{60} }\\ \\= \frac{12*60}{80}[/tex]
= 9
s₁ = 9 km/h
From question, s₁ = (6 + x)km/h
⇒ 6 + x = 9
⇒ x = 3
Find the limit (if the limit exists). Solve in two different ways.
The limit of the trigonometric expression is equal to 0.
How to determine the limit of a trigonometric expression
In this problem we find the case of a trigonometric expression, whose limit must be found. This can be done by means of algebra properties, trigonometric formula and known limits. First, write the entire expression below:
[tex]\lim_{\Delta x \to 0} \frac{\cos (\pi + \Delta x) + 1}{\Delta x}[/tex]
Second, use the trigonometric formula cos (π + Δx) = - cos Δx to simplify the resulting formula:
[tex]\lim_{\Delta x \to 0} \frac{1 - \cos \Delta x}{\Delta x}[/tex]
Third, use known limits to determine the result:
0
The limit of the trigonometric function [cos (π + Δx) + 1] / Δx evaluated at Δx → 0 is equal to 0.
To learn more on limits of trigonometric functions: https://brainly.com/question/14580202
#SPJ1
Similar Triangles
Determine whether the triangles are similar. If so, write a similarity statement. If not, what would be sufficient to
prove the triangles similar? Explain your reasoning.
I need help on number 1 and 2
The equivalent ratio of the corresponding sides and the triangle proportionality theorem indicates that the similar triangles are;
1. ΔAJK ~ ΔSWY according to the SAS similarity postulate
2. ΔLMN ~ ΔLPQ according to the AA similarity postulate
3. ΔPQN ~ ΔLMN
LM = 12, QP = 8
4. ΔLMK~ΔLNJ
NL = 21, ML = 14
What are similar triangles?
Similar triangles are triangles that have the same shape but may have different sizes.
1. The ratio of corresponding sides between the two triangles circumscribing the congruent included angle are;
24/16 = 3/2
18/12 = 3/2
The ratio of each of the two sides in the triangle ΔAJK to the corresponding sides in the triangle ΔSWY are equivalent and the included angle, therefore, the triangles ΔAJK and ΔSWY are similar according to the SAS similarity rule.
2. The ratio of the corresponding sides in each of the triangles are;
MN/LN = 8/10 = 4/5
PQ/LQ = 12/(10 + 5) = 12/15 = 4/5
The triangle proportionality theorem indicates that the side MN and PQ are parallel, therefore, the angles ∠LMN ≅ ∠LPQ and ∠LNM ≅ ∠LQP, which indicates that the triangles ΔLMN and ΔLPQ are similar according to the Angle-Angle AA similarity rule
3. The alternate interior angles theorem indicates;
Angles ∠PQN ≅ ∠LMN and ∠MLN ≅ ∠NPQ, therefore;
ΔPQN ~ ΔLMN by the AA similarity postulate
LM/QP = (x + 3)/(x - 1) = 18/12
12·x + 36 = 18·x - 18
18·x - 12·x = 36 + 18 = 54
6·x = 54
x = 54/6 = 9
LM = 9 + 3 = 12
QP = x - 1
QP = 9 - 1 = 8
4. The similar triangles are; ΔLMK and ΔLNJ
ΔLMK ~ ΔLNJ by AA similarity postulate
ML/NL = (6·x + 2)/(6·x + 2 + (x + 5)) = (6·x + 2)/((7·x + 7)
ML/NL = LK/LJ = (24 - 8)/24
(24 - 8)/24 = (6·x + 2)/((7·x + 7)
16/24 = (6·x + 2)/(7·x + 7)
16 × (7·x + 7) = 24 × (6·x + 2)
112·x + 112 = 144·x + 48
144·x - 112·x = 32·x = 112 - 48 = 64
x = 64/32 = 2
ML = 6 × 2 + 2 = 14
NL = 7 × 2 + 7 = 21
MN = 2 + 5 = 7
Learn more on similar triangles here: https://brainly.com/question/2644832
#SPJ1
Given the function f(x) = 4 – 2x, find f(3r – 1).
Answer:
f(3r - 1) = -6r + 6
Step-by-step explanation:
To find f(3r - 1), we substitute 3r - 1 for x in the expression for f(x) and simplify:
f(x) = 4 - 2x
f(3r - 1) = 4 - 2(3r - 1)
= 4 - 6r + 2
= -6r + 6
So, f(3r - 1) = -6r + 6.
Trent has an 8-foot tall tent in the shape of square based pyramid with a base length of 14 feet. If one bottle of waterproof spray covers 76 square feet, how many bottles will he need to waterproof his tent.
Trent will need approximately 2.86 bottles of waterproof spray to cover his tent.
To calculate the number of bottles of waterproof spray Trent will need to cover his tent, we first need to find the surface area of the tent.
The surface area of a square-based pyramid is given by the formula:
Surface Area = Base Area + (0.5 x Perimeter of Base x Slant Height)
The base of the pyramid is a square with a side length of 14 feet, so the base area is:
Base Area = (Side Length)^2 = 14^2 = 196 square feet
To find the slant height of the pyramid, we can use the Pythagorean theorem. The slant height is the hypotenuse of a right triangle formed by one side of the base, the height of the pyramid, and the slant height. The height of the pyramid is given as 8 feet, and half the length of the base is 7 feet.
Using the Pythagorean theorem:
[tex]Slant Height^2 = (Half Base Length)^2 + Height^2[/tex]
[tex]Slant Height^2 = 7^2 + 8^2Slant Height^2 = 49 + 64Slant Height^2 = 113Slant Height ≈ √113 ≈ 10.63 feet[/tex]
Now we can calculate the surface area of the tent:
Surface Area = 196 + (0.5 x 4 x 10.63)
Surface Area = 196 + (2 x 10.63)
Surface Area = 196 + 21.26
Surface Area ≈ 217.26 square feet
Since each bottle of waterproof spray covers 76 square feet, we can divide the total surface area of the tent by the coverage of each bottle to find the number of bottles needed:
Number of Bottles = Surface Area / Coverage per Bottle
Number of Bottles = 217.26 / 76
Number of Bottles ≈ 2.86
Therefore, Trent will need approximately 2.86 bottles of waterproof spray to cover his tent. Since we can't have a fraction of a bottle, he will need to round up to the nearest whole number. Therefore, Trent will need 3 bottles of waterproof spray to fully waterproof his tent.
for more such question on bottles visit
https://brainly.com/question/28855819
#SPJ8
GEOMETRY 100POINTSSS
Find x
Answer:
5.9
Step-by-step explanation:
sin Θ = opp/hyp
sin 36° = x/10
x = 10 × sin 36°
x = 5.88
Answer: 5.9
Diseases tend to spread according to the exponential growth model. In the early days of AIDS, the growth factor (i.e. common ratio; growth multiplier) was around 1.9. In 1983, about 1600 people in the U.S. died of AIDS. If the trend had continued unchecked, how many people would have died from AIDS in 2003?
Graph the function f(x)= 3+2 in x and its inverse from model 1.
The graph of the function and its inverse is added as an attachment
Sketching the graph of the function and its inverseFrom the question, we have the following parameters that can be used in our computation:
f(x) = 3 + 2ln(x)
Express as an equation
So, we have
y = 3 + 2ln(x)
Swap x and y in the above equation
x = 3 + 2ln(y)
Next, we have
2ln(y) = x - 3
Divide by 2
ln(y) = (x - 3)/2
Take the exponent of both sides
[tex]y = e^{\frac{x - 3}{2}}[/tex]
Next, we plot the graphs
The graph of the functions is added as an attachment
Read more about functions at
brainly.com/question/2456547
#SPJ1
14x^(2n+1)+7x^(n+3)-21^(n+2)
100 points will be awarded
Answer:
Step-by-step explanation:
The given expression is: 14x^(2n+1) + 7x^(n+3) - 21^(n+2)
Unfortunately, it seems there is a missing exponent for the term "21" in the expression. Please provide the correct exponent for 21, and I'll be happy to help you further simplify the expression.
The physician’s order reads to administer Lasix 80 mg PO STAT. You have Lasix 20 mg tablets on hand. How many tablets will you administer to the patient ?
The nurse should administer 4 Lasix 20 mg tablets to the patient to achieve the prescribed dose of 80 mg.
To determine the number of Lasix 20 mg tablets that should be administered to the patient, we need to calculate how many tablets are equivalent to the prescribed dose of 80 mg.
Given that each Lasix tablet contains 20 mg of the medication, we can divide the prescribed dose (80 mg) by the dosage strength of each tablet (20 mg) to find the number of tablets needed.
Number of tablets = Prescribed dose / Dosage strength per tablet
Number of tablets = 80 mg / 20 mg
Number of tablets = 4 tablets
Therefore, the nurse should administer 4 Lasix 20 mg tablets to the patient to achieve the prescribed dose of 80 mg.
It is important to note that this calculation assumes that the Lasix tablets can be divided or split if necessary. However, it is crucial to follow the specific instructions provided by the prescribing physician or consult with a pharmacist if there are any concerns about the appropriate administration of the medication.
Additionally, it is important to consider any additional instructions, such as the frequency and timing of administration, as specified by the physician's order.
For more such questions on administer visit:
https://brainly.com/question/29458949
#SPJ8