Answer:
3.0 x 10 and the exponent on ten is 5.
Explanation:
You are moving the decimal point over to the left 5 times, making the exponent a positive 5 and then you would put a decimal after 3. Making it 3.0 x 10, and the exponent 5.
The speed of x-rays in scientific notation is 3.0 x 10⁶ m/s.
The given parameters;
speed of the x-ray, v = 300,000 m/s
The standard form of the given number represents the scientific notation of the number.
To represent a number in standard form, multiply the number in terms of power or exponent of 10. The value of the exponent represents the number of available zeros present.In scientific notation the speed of the x-ray can be expressed as follows;
300,000 m/s = 3.0 x 10⁶ m/s
Thus, the speed of x-rays in scientific notation is 3.0 x 10⁶ m/s.
Learn more here: https://brainly.com/question/17093969
Three different groups each measured the diameter of a CD three times (the actual diameter of a CD is 12.00cm). The class data is shown in the table. Which group(s) was the most accurate in their measurements? Group 1 only Group 1 only Group 2 only Group 2 only Group 3 only Group 3 only Groups 1 & 3 were equally accurate
What is the speed of an ocean wave if it’s wavelength is 5.0 m and it’s frequency is 3/s?
Answer:
15 m/s
Explanation:
We know that [tex]v = f * d[/tex] where f = frequency & d = wavelength .
So here.
Wavelength = 5 m
Frequency = 3 s⁻¹
Hence Speed = 5 * 3 = 15 m/s
Describing the Motion of an Object
SARE
Use the information from the graph to answer the
question.
What is the acceleration of the object?
m/s2
Velocity vs. Time
Velocity (m/s)
45
40
35
30
25
20
10
5
0
0
2
10
12
4. 6 8
Time (s)
Answer:
i actually dont know im so sorry but i will keep trying to find the answerr
Use the exact values you enter to make later calculations. Jack and Jill are on two different floors of their high rise office building and looking out of their respective windows. Jack sees a flower pot go past his window ledge and Jill sees the same pot go past her window ledge a little while later. The time between the two observed events was 4.0 s. Assume air resistance is negligible. (a) If the speed of the pot as it passes Jill's window is 60.0 m/s, what was its speed when Jack saw it go by
The part B of the question is missing and it is;
b) What is the height between the two window ledges?
Answer:
A) 20.76 m/s
B) 161.52 m
Explanation:
A) To calculate the initial speed we use the formula from Newton's first law of motion:
v = u + at
Making u the subject gives;
u = v - at
Where;
v is the final velocity which is the speed when Jill sees the pot = 60 m/s
u is the initial velocity which is the speed when Jack sees the pot go by
t is the time between the two observed events = 4 s
a in this question is acceleration due to gravity = 9.81 m/s².
Plugging in the relevant values into the initial velocity equation gives;
u = 60 - (9.81 × 4)
u = 20.76 m/s
B) To get the height difference, we will use the formula;
(y1 - y0) = ut + ½at²
Thus, plugging in the relevant values, we have;
y1 - y0 = (20.76 × 4) + (½ × 9.81 × 4²)
(y1 - y0) = 161.52 m
Which phrase describes a scientific law?
A. A statement that matter cannot be created or destroyed
B. A claim that experiments cannot verify whether matter has been
destroyed
O C. An explanation for why matter cannot be created or destroyed
D. A prediction of how much matter exists in the universe
SUBMIT
In
Answer:
C- An explanation for why matter cannot be created or destroyed
Explanation:
Answer: A. A statement that matter cannot be created or destroyed.
Explanation:
Apex
how are weak and strong forces different
Answer:
What is the difference between the electrons in the nucleus and the ones in orbit around the nucleus? ... The Strong Nuclear Force is an attractive force between protons and neutrons that keep the nucleus together and the Weak Nuclear Force is responsible for the radioactive decay of certain nuclei
Explanation:
the two forces acting on a boat or some other floating object _______are and gravity
Answer:
The two forces acting on a boat or some other floating object are buoyancy and gravity
Answer: buoyant forceExplanation:two forces acting on a boat or some other floating object are buoyant force and gravityhi friend your answerI hope it will be helpful for you
mark as brainest answer
thank you
Which of the following statements about slope is NOT true?
Explanation:
did you upload a picture?
Which of the following is the best description of a gaseous substance?
It's the result of a chemical reaction involving two or more elements.
It has no definite shape or volume and will expand indefinitely.
It holds its shape without outside restraint.
It has no shape of its own but has a definite volume.
The best description of a gaseous substance is : (B). It has no definite shape or volume and will expand indefinitely.
Meaning of a gaseous substanceA gaseous substance can be defined as a substance that is gaseous in nature or exhibit gaseous properties
A gaseous substance is just like a gas that its particles have unrestricted movement and the force of attraction between the particles are very weak or negligible.
In conclusion, The best description of a gaseous substance is : (B). It has no definite shape or volume and will expand indefinitely.
Learn more about gaseous substance: https://brainly.com/question/1771154
#SPJ1
Suppose a fast-pitch softball player does a windmill pitch, moving her hand through a circular arc with her arm straight. She releases the ball at a speed of 21.3 m/s21.3 m/s (about 47.6 mph47.6 mph ). Just before the ball leaves her hand, the ball's radial acceleration is 871 m/s2871 m/s2 . What is the length of her arm from the pivot point at her shoulder?
Answer:
R = 52.08 cm
Explanation:
given data
tangential velocity v = 21.3 m/s
radial acceleration aR = 871 m/s²
solution
we will get here length of her arm from the pivot point at her shoulder so
here we know aR = [tex]\frac{v^2}{R}[/tex] ........................1
so put here value and we get
871 = [tex]\frac{21.3^2}{R}[/tex]
R = 0.5208840 m
R = 52.08 cm
Answer:
Explanation:
linear speed of ball v = 21.3 m /s
radial acceleration = 871 m /s²
radial acceleration = v² / R
where R is length of arm which acts as radius of circular path of the ball .
Putting the values
21.3² / R = 871
R = .52 m.
Q1. My brakes stop me at -5.5m/s^2 when I lock them up. A puppy runs in front of my car, and I stop just in time 3.5 seconds later. How far did I skid? Q2. I floor the pedal and accelerate from 7.0m/s to 35m/s over a fouth of a mile (0.40km). What is my accelleration?
please explain step by step, much thanks :)
Explanation:
Q1. Given:
v = 0 m/s
a = -5.5 m/s²
t = 3.5 s
Find: Δx
Δx = vt − ½ at²
Δx = (0 m/s) (3.5 s) − ½ (-5.5 m/s²) (3.5 s)²
Δx ≈ 33.7 m
Q2. Given:
Δx = 400 m
v₀ = 7.0 m/s
v = 35 m/s
Find: a
v² = v₀² + 2aΔx
(35 m/s)² = (7.0 m/s)² + 2a (400 m)
a = 1.47 m/s²
An electronic line judge camera captures the impact of a 57.0-g tennis ball traveling at 32.2 m/s with the side line of a tennis court. The ball rebounds with a speed of 21.6 m/s and is seen to be in contact with the ground for 3.94 ms. What is the magnitude of the average acceleration of the ball during the time it is in contact with the ground
Answer:
average acceleration is 1.365 × [tex]10^{4}[/tex] m/s²
Explanation:
given data
initila speed u = -32.2 m/s
final speed v = 21.6 m/s
time taken t = 0.00394 s
solution
we get here average acceleration that will be express as
v = u + at ..........................1
put here value and we get
21.6 = -32.2 + a × 0.00394
solve it we get
a = 1.365 × [tex]10^{4}[/tex] m/s²
so average acceleration is 1.365 × [tex]10^{4}[/tex] m/s²
You stand at the top of a cliff while your friend stands on the ground below you. You drop a ball from rest and see that it takes 1.7s for the ball to hit the ground below. Your friend then picks up the ball and throws it up to you, such that it just comes to rest in your hand. What is the speed with which your friend threw the ball
Answer:
16.7m/s
Explanation:
Using v= u+ at
V = final velocity. U = initial velocity
So since the two movements are the same they will return with the same speed they went up
Then final velocity v= 0
So
0:= u +-9.8 x 1.7
U= 16.7m/s