Answer:
99.5% Confidence interval = (-0.025, 0.547)
= -0.025 < p < 0.547
Step-by-step explanation:
| A | B | C | Total
Male | 5 | 4 | 17 | 26
Female | 6 | 2 | 15 | 23
Total | 11 | 6 | 32 | 49
If p represent the proportion of all female students who would receive a grade of A on this test. Use a 99.5% confidence interval to estimate p to three decimal places.
All female students = 23
Female students that score an A = 6
p = (6/23) = 0.2608695652 = 0.261
Confidence Interval for the population proportion is basically an interval of range of values where the true population proportion can be found with a certain level of confidence.
Mathematically,
Confidence Interval = (Sample proportion) ± (Margin of error)
Sample proportion = (6/23) = 0.261
Margin of Error is the width of the confidence interval about the mean.
It is given mathematically as,
Margin of Error = (Critical value) × (standard Error)
Critical value at 99.5% confidence interval for sample size of 23 is obtained from the t-tables since information on the population standard deviation is not known.
we first find the degree of freedom and the significance level.
Degree of freedom = df = n - 1 = 23 - 1 = 22.
Significance level for 99.5% confidence interval
(100% - 99.5%)/2 = 0.25% = 0.0025
t (0.0025, 22) = 3.119 (from the t-tables)
Standard error of the mean = σₓ = √[p(1-p)/N]
p = 0.261
N = sample size = 23
σₓ = √(0.261×0.739/23) = 0.091575
99.5% Confidence Interval = (Sample proportion) ± [(Critical value) × (standard Error)]
CI = 0.261 ± (3.119 × 0.091575)
CI = 0.261 ± 0.2856
99.5% CI = (-0.0246, 0.5466)
99.5% Confidence interval = (-0.025, 0.547)
= -0.025 < p < 0.547
Hope this Helps!!!
Copy the problem, mark the givens in the diagram, and write a Statement/Reason proof. Given: CS ≅ HR ∠CHS ≅ ∠HCR ∠CSH ≅ ∠HRC Prove: CR ≅ HS
Answer:
Step-by-step explanation:
Given: CS ≅ HR
∠CHS ≅ ∠HCR
∠CSH ≅ ∠HRC
Prove: CR ≅ HS
ΔCHS ≅ ΔHCR (Angle-Angle-Side, AAS, congruence property)
ΔICR ≅ ΔIHS (congruence property)
IS ≅ IR (similarity property)
CS ≅ HR (given)
Thus,
IC = IS + SC (addition property)
IH = IR + RH (addition property)
IC ≅ IH
Then,
CR ≅ HS (similarity property of triangles SCH and RHC)
Leslie buys a large circular pizza that is divided into eight equal slices. She measures along the outer edge of the crust from one piece and finds it to be 5.5 inches. What is the diameter of the pizza to the nearest inch?
Answer:
i believe it's 4.5
Step-by-step explanation:
Answer:
14 in. hope this helps!!:)
Step-by-step explanation:
4 (5 points)
What is the range of y =|3x + 1)?
a) {y\y >0}
b) {y\y > 1}
8
c) {all real numbers)
d) {y|y23]
Answer:
[0, infinity)
Step-by-step explanation:
clarence, I believe you meant y = |3x + 1|. The absolute value of 3x + 1 is never less than 0, so the range of the given function (above) is [0, infinity).
21.65 to 1 decimal place
Answer:
21.7
Step-by-step explanation:
When anything is 5 or above in a decimal place you round up to the next number for example
2.35 this would round up to be 2.4
21.65
Place value of 1 = ones place
Face value of 1 = 1
Note : The face value of a number will not change at all
Hope it helps you..If it's wrong plz say and I'll try to recorrect it :)
PLS PLSPLS HELPPP------
Answer:
Total Area = [tex]104+16\,\sqrt{13}[/tex]
Step-by-step explanation:
If T.A. stands for Total Area, then we need to add the area of two equal right angle triangles of base 6' and height 4', which give : 2 * (6' * 4'/2) = 24 square feet. tothe area of three rectangles (the lateral faces of this triangular base prism):
[tex](8')*(4')+(8')*(6')+(8')*(\sqrt{6^2+4^2})= 32+48+8\,\sqrt{52} =80+8\,*\,2\,\sqrt{13}=80+16\,\sqrt{13}[/tex]
Therefore the total area of the prism is:
[tex]24+80+16\,\sqrt{13} =104+16\,\sqrt{13}[/tex]
WILL MARK BRAINLIEST If Alan and Zack can clean a room in 30 minutes when working together, and Alan cleans twice as fast as Zack, how long would it take Alan to clean the room by himself?
Answer:
45 min
Step-by-step explanation:
Here,
the we take the work as W and Alan's speed as A and Zack's speed as Z.
A = 2Z
W = 30 ( A+Z)
if the time for Alan to done cleaning alone is t then t = W ÷ A
t = ( 30 (A+(A÷2)))÷ A
t = 45 min
I am done .
At time, t=0, Billy puts 625 into an account paying 6% simple interest. At the end of year 2, George puts 400 into an account paying interest at a force of interest, δt=16+t for t≥2. If both accounts continue to earn interest indefinitely at the levels given above, the amounts in both accounts will be equal at the end of year n. Calculate n.
Answer:
26
Step-by-step explanation:
Given that:
At time, t=0, Billy puts 625 into an account paying 6% simple interest
At the end of year 2, George puts 400 into an account paying interest at a force of interest, 1/(6+t), for all t ≥ 2.
If both accounts continue to earn interest indefinitely at the levels given above, the amounts in both accounts will be equal at the end of year n. Calculate n.
In order to calculate n;
Let K constant to be the value of time for both accounts
At time, t=0, the value of time K when Billy puts 625 into an account paying 6% simple interest is:
[tex]K = 625 \times (1+ 0.06 K)[/tex]
[tex]K = 625 +37.5 K[/tex]
At year end 2; George amount of 400 will grow at a force interest, then the value of [tex]K = 400 \times e^{\int\limits^2_k {\dfrac{1}{6+t}} \, dx }[/tex]
[tex]K =400 \times \dfrac{6+K}{6+2}[/tex]
[tex]K =400 \times \dfrac{6+K}{8}[/tex]
[tex]K =50 \times ({6+K})[/tex]
[tex]K =300+50K[/tex]
Therefore:
If K = K
Then:
625 + 37.5 = 300 +50 K
625-300 = 50 K - 37.5 K
325 = 12.5K
K = 325/12.5
K = 26
the amounts in both accounts at the end of year n = K = 26
Please help. I’ll mark you as brainliest if correct!
Answer:
Quantity (lbs) of type 1 candy x = 8
Quantity (lbs) of type 2 candy y = 17,5
Step-by-step explanation:
Let´s call "x" quantity (in pounds) of candy type 1 in the mixture, and "y" quantity (in pounds ) of candy type 2, then according to the problem statement.
x + y = 25,5
2,20*x + 7,30*y = 5,70 * 25,5 ⇒ 2,20*x + 7,30*y = 145,35
Then we have a two equation system
x + y = 25,5 ⇒ y = 25,5 - x
2,20*x + 7,30*y = 145,35 ⇒ 2,20*x + 7,30* (25,5 - x ) = 145,35
2,20*x + 186,15 - 7,30*x = 145,35
5,1*x = 40,8
x = 40,8/5,1
x = 8 lbs
And y = 25,5 - 8
y = 17,5 lbs
In a simple regression analysis for a given data set, if the null hypothesis β = 0 is rejected, then the null hypothesis ρ = 0 is also rejected. This statement is ___________ true. always
Answer:
Null hypothesis: [tex]\rho =0[/tex]
Alternative hypothesis: [tex]\rho \neq 0[/tex]
The statistic to check the hypothesis is given by:
[tex]t=\frac{r \sqrt{n-2}}{\sqrt{1-r^2}}[/tex]
And is distributed with n-2 degrees of freedom
And the statistic to check the significance of a coeffcient in a regression is given by:
[tex] t_1 = \frac{\hat{\beta_1} -0}{S.E (\hat{\beta_1})}[/tex]
For this case is importantto remember that t1 and p value for test of slope coefficient is the same test statistic and p value for the correlation test so then the answer would be:
Always
Step-by-step explanation:
In order to test the hypothesis if the correlation coefficient it's significant we have the following hypothesis:
Null hypothesis: [tex]\rho =0[/tex]
Alternative hypothesis: [tex]\rho \neq 0[/tex]
The statistic to check the hypothesis is given by:
[tex]t=\frac{r \sqrt{n-2}}{\sqrt{1-r^2}}[/tex]
And is distributed with n-2 degrees of freedom
And the statistic to check the significance of a coeffcient in a regression is given by:
[tex] t_1 = \frac{\hat{\beta_1} -0}{S.E (\hat{\beta_1})}[/tex]
For this case is importantto remember that t1 and p value for test of slope coefficient is the same test statistic and p value for the correlation test so then the answer would be:
Always
A 60-watt light bulb advertises that it will last 1500 hours. The lifetimes of these light bulbs is approximately normally distributed with a mean of 1550 hours and a standard deviation of 57 hours. What proportion of these light bulbs will last less than the advertised time
Answer:
The proportion of these light bulbs that will last less than the advertised time is 18.94% or 0.1894
Step-by-step explanation:
The first thing to do here is to calculate the z-score
Mathematically;
z-score = (x - mean)/SD
= (1500-1550)/57 = -50/57 = -0.88
So the proportion we will need to find is;
P( z < -0.88)
We shall use the standard score table for this and our answer from the table is 0.1894 which is same as 18.94%
Anyone Willing To Hell Out?
Z=
37
39
51
the answer is 36.36 but the closest to it is 37
Solve tan theta +1=-2tan theta
Answer:
[tex]\boxed{135\°,315\°}[/tex]
Step-by-step explanation:
Solve the trigonometric equation by isolating the function and then taking the inverse. Use the period to find the full set of all solutions.
[tex]\theta = 135+180n[/tex]
[tex]n[/tex] is any integer value.
The value of [tex]n[/tex] cannot exceed 1 or be less than 0, because the value of [tex]\theta[/tex] must be between 0 and 360 degrees.
[tex]\theta = 135+180(0)[/tex]
[tex]\theta = 135[/tex]
[tex]\theta = 135+180(1)[/tex]
[tex]\theta = 315[/tex]
Susan and Mark are given the same amount of money. Mark spends $5 and susan spends $20. If Mark now has twice as much money as Susan , how many dollars did they each have originally ?
so amnt of money is x
x - 5 is Mark's remaining amnt
x - 20 is Susan's remaining amount
x - 5 = 2( x - 20) as he has twice the amnt of Susan
x - 5 = 2x - 40
40 - 5 = 2x - x
35 = x
the original amnt is $35
Find the distance between a point (–7, –19) and a horizontal line at y = 3. Question 18 options: A) 13 B) 22 C) –16 D) 16
Answer: B) 22
Step-by-step explanation:
y coordinate of line = 3
y coordinate of point = -19
On a number line, distance between 3 & -19 = 22
Chapter Reference
b
A board 65 inches long is sawed into two pieces, so that one piece is 7 inches shorter than twice the length of the other piece ? Find the length of the two pieces .
Step-by-step explanation:
It is given that,
Total length of a board is 65 inches
It is sawed into two pieces such that one piece is 7 inches shorter than twice the length of the other piece.
Let x is the length of other piece and y is the length of first piece such that,
y = 2x-7 ....(1)
Also,
x+y = 65 .....(2)
Put the value of y from equation (1) to equation (2) such that,
x+2x-7 = 65
3x=65+7
3x=72
x = 24 inches
Put the value of x in equation (1)
y = 2(24)-7
y = 41 inches
So, the length of first piece is 41 inches while the length of other piece is 24 inches.
Daddy's annual salary is $42603.00. If he gets the same salary
each month and a monthly travelling allowance of $1250.00,
what is his monthly earning?
Answer:
$4800.25
Step-by-step explanation:
$42603 is a yearly salary.
There are 12 months in 1 year.
Monthly salary:
$42603/12 = $3550.25
Monthly travelling allowance: $1250
Total amount earned in 1 month:
$3550.25 + $1250 = $4800.25
which values will only have one zero??
If it has a single zero that means it has to be just touching the x-axis with its tip.
We know that if it has only one zero, the discriminant equals 0.
So,
[tex]D=b^2-4ac=0\implies (-k)^2-4(1)(9)=0[/tex]
Solving for k,
[tex]k=\pm\sqrt{36}=\boxed{\pm{6}}[/tex].
Hope this helps.
A family paid $28,500 as a down payment for a home. If this represents 15% of the price of the home, what is the price of the home.
Answer:
.15* house price = 28,500
house price = 28,500 / .15
house price = 190,000
Step-by-step explanation:
Answer: 190,000
Step-by-step explanation:
the equation looks like this - .15x=28,500. then you divide both sides by .15 and get x=190,000
Salaries of 43 college graduates who took a statistics course in college have a mean,66,000 , of . Assuming a standard deviation, 18908 , of $, construct a %99 confidence interval for estimating the population mean .
Answer:
$[58543.42; 73456.58]
Step-by-step explanation:
Hello!
For the variable
X: salary of a college graduate that took a statistics course
Out of n= 43 students, the calculated mean is [tex]\frac{}{X}[/tex]= $66000
The population standard deviation is δ= $18908
There is no information about the variable distribution, but since the sample size is big enough (n≥30), you can apply the CLT and approximate the distribution of the sample mean to normal [tex]\frac{}{X}[/tex]≈N(μ;σ²/n)
Then you can apply the approximation of the standard normal distribution to calculate the 99% CI
[tex]\frac{}{X}[/tex] ± [tex]Z_{1-\alpha /2}[/tex] * [tex]\frac{Singma}{\sqrt{n} }[/tex]
[tex]Z_{1-\alpha /2}= Z_{0.995}= 2.586[/tex]
[tex]\frac{Singma}{\sqrt{n} }= \frac{18908}{\sqrt{43} }= 2883.44[/tex]
[66000±2.586*2883.44]
$[58543.42; 73456.58]
With a 99% confidence level you'd expect that the interval $[58543.42; 73456.58] will include the average salary of college graduates that took a course of statistics.
I hope this helps!
A square mesaures 80 yd on a side. Bob and Rob begin running from the same corner. Bob runs along a side to an adjacent corner, and Rob runs along a diagonal to an opposite corner. They arrive at their respective corners at the same time. If Bob's speed was 8mi/h, what was Rob's speed? Express your answer as a decimal to the nearest tenth.
Answer:
c = 11.3 mi/h
Step-by-step explanation:
Since Square has all of the same sides, hence bobs speed will be the same for all of the sides.
All of the sides are equal in a square
=> Let's consider the two sides along with the diagonal a right angled triangle
=> [tex]c^2 = a^2 + b^2[/tex]
Where c is the speed of Rob along the diagonal and b and c is the speed of Bob along the side
=> [tex]c^2 = 8^2+8^2[/tex]
=> [tex]c^2 = 64+64[/tex]
=> [tex]c^2 = 128\\[/tex]
Taking sq root on both sides
=> c = 11.3 mi/h
A first number plus twice a second number is 14. Twice the first number plus the second totals 10. Find the numbers.
Answer:
first number(x) = 2 second number(y)= 6
Step-by-step explanation:
This is an example of a simultaneous equation.
First write this word problem as equations, where x is the "first number" that you've mentioned and y is the "second number".
x + 2y = 14 (equation 1)
2x + y = 10 (equation 2)
This is solved using the elimination method.
We need to make one of the coefficients the same - in this case we can make y the same. In order to do this we need to multiply equation 2 by 2, so that y becomes 2y.
2x + y = 10 MULTIPLY BY 2
4x + 2y = 20 (this is now our new equation 2 with the same y coefficient)
Now subtract equation 1 from equation 2.
4x - x + 2y - 2y = 20 - 14 (2y cancels out here)
3x = 6
x = 2
Now we substitute our x value into equation 1 to find the value of y.
2 + 2y = 14
2y = 12
y = 6
Hope this has answered your question.
Answer:
6 and 2
Step-by-step explanation:
Let the first number =a
Let the second number =b
A first number plus twice a second number is 14.
a+2b=14Twice the first number plus the second totals 10.
2a+b=10We solve the two equations simultaneously
[tex]a+2b=14 \implies a=14-2b\\$Substitute into the second equation$\\2(14-2b)+b=10\\28-4b+b=10\\-3b=10-28\\-3b=-18\\b=6[/tex]
Recall:
a=14-2b
=14-2(6)
=14-12
a=2
The two numbers are 6 and 2.
Please answer this correctly without making a mistake I need a correct answer
Answer: 45.5
Step-by-step explanation:
Im in 6th grade and all you had to do was add 18.3 and 27.2 and you’ll get 45.5
Answer:
The garbage dump is 58.3 miles west of the hotel, and the hotel is 57.1 miles west of the hardware store. The hardware store is 44.8 miles west of the library. The hardware store is 57.9 miles north of the office supply store, and the office supply store is 55.5 miles north of the science lab.
Step-by-step explanation:
Someone help me please
Answer:
31Option D is the correct option.
Step-by-step explanation:
Given: 3 boxes with volumes 1331 , 1331 , 729
To find : Height of stacked boxes
[tex]h {1}^{3} = 1331 = h1 = \sqrt[3]{1331} = 11[/tex]
[tex]h {2}^{3} = 1331 = h2 = \sqrt[3]{1331} = 11[/tex]
[tex]h {3}^{3} = 729 = h3 = \sqrt[3]{729} = 9[/tex]
Now,
[tex]h = h1 + h2 + h3[/tex]
[tex] = 11 + 11 + 9[/tex]
[tex] = 31[/tex]
Hope this helps...
Good luck on your assignment...
Please help Each statement describes a transformation of the graph of f(x) = x. Which statement correctly describes the graph of g(x) if g(x) = f(x) - 3
Answer:
C
Step-by-step explanation:
It is the graph of f(x) translated 3 units down. Think about in numerical terms,
if y = 5 y-1 = 5- 1 = 4, so that's what is happening with all numbers on the y axis. You have y = f(x) and you do y-3 = f(x)-3, so, all "y" points are translated 3 units down
Which linear inequality is represented by the graph?
Answer:
A. y ≤ 1/2x + 2
Step-by-step explanation:
Well look at the graph,
It is a solid line with it shaded down,
meaning it is y ≤,
So we can cross out B. and D.
So the y intercept is 2, we know this because the y intercept is the point on the line that touches the y axis.
now the slope can be found by seeing how far away each points are from each other,
Hence, the answer is A. y ≤ 1/2x + 2
When do you reject the null hypothesis?
You reject the Null Hypothesis when you have a small P-Value. Here is an example! Also we never accept the null hypothesis, think of it like this if we bring someone to court you wouldn't say their innocent of a crime, you only know that if they do not get convicted of the crime they are not guilty in the eyes of the law. Same thing applies here, since there could be several answers that satisfy our assumptions made, we can not be certain that 1 of those assumptions is the REAL answer it's just AN answer.
What is the point-slope form of a line that has a slope of 3 and passes through point (1, 4)?
BRE
BE
y-4=3(x-1)
1-y=3(x-4)
Y,-4 = 3(1-x)
1-Y, = 3(4-x,)
Answer:
Option (1)
Step-by-step explanation:
Equation of a line passing through [tex](x_1,y_1)[/tex] having slope 'm' is represented as,
[tex]y-y_1=m(x-x_1)[/tex]
If a line passes through (1, 4) and having slope = 3,
By substituting the values in the equation of the line,
y - 4 = 3(x- 1)
Therefore, equation of the line will be,
y - 4 = 3(x - 1)
Option (1) will be the answer.
Part of the proceeds from a garage sale was $440 worth of $10 and $20 bills. If there were 2 more $10 bills than $20 bills, find the number of each denomination.
Hey there! I'm happy to help!
Let's set this up a system of equations where x represents the number of 10 dollar bills and y represents the number of 20 dollar bills.
10x+20y=440
x=y+2
We see that x has a value of y+2, so we can replace the x in the first equation with y+2 so we can solve for y.
10(y+2)+20y=440
We use distributive property to undo the parentheses.
10y+20+20y=440
We combine like terms.
30y+20=440
We subtract 20 from both sides.
30y=420
y=14
Since there are 2 more $10 bills, there would be 16 of those.
Therefore, there are 16 $10 bills and 14 $20 bills.
Have a wonderful day! :D
Rafael made 20,000 in taxable income last year. Suppose the income tax rate is 15% for the first 8000 plus 17% for the amount over 8000. How much must Rafael pay in income tax for the last year?
The answer is 3,240
Explanation:
To calculate the total income tax, it is necessary to calculate what is the 15% of 8000, and 17% for the remaining money, which is 12.000 (20,000 - 8,000= 12,000). Considering the statement specifies the 15% is paid for the first 8,000 and from this, the 17% is paid. Now to know the percentages you can use a simple rule of three, by considering 8000 and 12000 as the 100%. The process is shown below:
1. Write the values
[tex]8000 = 100[/tex]
[tex]x = 15[/tex] (the percentage you want to know)
2. Use cross multiplication
[tex]x =\frac{8000 x 15 }{100}[/tex]
[tex]x = 1200[/tex]
This means for the first 8000 the money Rafael needs to pay is 1,200
Now, let's repeat the process for the remaining money (12,000)
[tex]12000 = 100\\\\[/tex]
[tex]x = 17[/tex]
[tex]x = \frac{12000 x 17}{100}[/tex]
[tex]x = 2040[/tex]
Finally, add the two values [tex]1200 + 2040 = 3240[/tex]
Find the slope and y-intercept of the equation. y= 2/3x + 1
A. 2/3; 1
B. 1; 2/3
C. 2/3; -1
Answer:
The answer is A.
Step-by-step explanation:
In a linear equation, y = mx + b, m is represented as gradient (slope) and b is the y-intercept.
So for this question, m is 2/3 and b is 1.