Answer:
300%
Step-by-step explanation:
Let the production of rice in 1995 be x.
From 1995 to 1996, the production increased by 50%
This implies that the production of rice is now:
(100 + 50) / 100 * x = 150/100 * x = 1.5x
It means the production is now 1.5 that of 1995.
We want the production in 1997 to be 6 times that in 1995, that is 6x, this implies that we have to find the percentage increase from 1996 to 1997:
(100 + P) / 100 * 1.5x = 6x
By cross-multiplying:
100 + P = 6x * 100 / 1.5x
100 + P = 400
P = 400 - 100
P = 300%
Therefore, the production must be increased by 300%.
PLZ HELP, AND PLZ EXPLAIN
Answer:
C
Step-by-step explanation:
To make it easy let's start by organizing our information :
AC=12 AND BD=8 ABCD is a rhombus K and L are the midpoints of sides AD and CD we notice that the rhombus ABCD is divided into four right trianglesWhat do you think of when you hear a right triangle ?
The pythagorian theorem !AC and BD are khown so let's focus on them .
If we concentrated we can notice that AB and BD are cossing each other in the midpoints . why ?
Simply because they are the diagonals of a rhombus .
ow let's apply the pythagorian theorem :
(AC/2)² + (BD/2)² = BC² 6²+4²=52BC²= 52⇒[tex]\sqrt{52}[/tex]=BCNow we khow that : AB=BC=CD=AD=[tex]\sqrt{52}[/tex]
This isn't enough . Let's try to figure out a way to calculate the length of KL wich is the base of the triangle
KL is parallel to AC k is the midpoint of AD and L of DCI smell something . yes! Thales theorem
KL/AC=DL/DC=DK/AD WE4LL TAKE OLY ONE KL/12=[tex]\sqrt{52}[/tex]/2*[tex]\sqrt{52}[/tex] KL/12=1/2⇒ KL=6Now we have the length of the base kl
Now the big boss the height :
notice that you khow the length of KL BD crosses kl from its midpoint and DL = [tex]\sqrt{52}[/tex] /2What I want to do is to apply the pythgorian thaorem to khow the lenght of that small part that is not a part of the height of the triangle . I will call it D
DL²=(KL/2)²+D²52/4= 9+ D² D² = 52/4-9 +4 SO D=2now the height of the trigle is H= BD-D= 8-2=6
NOw the area of the triangle is :
A=(KL*H)/2 ⇒ A= (6*6)/2=18THE ANSWER IS 18 SQ.UN
Simplify expression 1/4 •3(8a-5b-4)-(4a+1)+4b
Answer:
(8a+b-16)/4
Step-by-step explanation:
1/4×3(8a-5b-4)-(4a+1)+4b
Simplify:
-4a-1+4b+1/4×3×8a-1/4×3×5b-1/4×3×4
=1/4xax24-4a-1/4bx15+4b-1/4×12-1
=1ax24/4 -4a - 1bx15/4 +4b -1×12/4 -1
=ax24/4 -4a -bx15/4 + 4b -12/4 -1
= -4a + 24a/4 + 4b - 15b/4 -1 -3
= -4a + 6a + 4b - 15b/4 - 4
= 2a + 4b - 15b/4 - 4
= 8a + 16b - 15b - 16 / 4
= (8a + b - 16) / 4
= 8a + b - 16 / 4
the length of rectangle exceeds its breadth by 4 cm if the length and breadth is increased by 3 cm the area of the new rectangle will be 81 squares more than that of the given rectangle find the length and breadth of the given rectangle check your solution.
Answer:
The length and breadth are 14 cm and 10 cm
the value of x is and the value of y is
Answer:
x = 60, y = 50
Step-by-step explanation:
60 + 50 = 110 + 70 = 180.
50 + 70 = 120 + 6 = 180.
Therefore 50 + 70 + x = 60
Therefore 70 + 60 + y = 50
Answer:
x = 60°y = 50°Step-by-step explanation:
Angles in a triangle add up to 180 degrees.
x + 70 + 50 = 180
x + 120 = 180
x = 60
The other triangle's missing angle:
180 - 60 - 50 = 70
Angles on a straight line add up to 180 degrees.
70 + x + y = 180
We know the value of x.
70 + 60 + y = 180
Solve for y.
130 + y = 180
y = 180 - 130
y = 50
A survey of 900 randomly selected high school students determined that 422 play organized sports. (a) What is the probability that a randomly selected high school student plays organized sports? (b) Interpret this probability.
Answer:
P = 0.4688 = 46.88%
The probability that a randomly selected high school student plays organized sports is 0.4688.
Step-by-step explanation:
We are given that a survey of 900 randomly selected high school students determined that 422 play organized sports.
(a) What is the probability that a randomly selected high school student plays organized sports?
We know that the probability of an event is given by
P = Number of desired outcomes/total number of outcomes
For the given case, the desired outcomes are those students who play organized sports and the total number of outcomes are 900 randomly selected high school students who were surveyed.
So the probabilty is
P = 422/900
P = 0.4688
P = 46.88%
(b) Interpret this probability
There is a 46.88% chance of randomly selecting a high school student who plays organized sports or in other words, if we randomly choose a high school student then there is a 46.88% probability that the selected student plays organized sports.
The graph of y=h(x)y=h(x)y, equals, h, left parenthesis, x, right parenthesis is a line segment joining the points (1,9)(1,9)left parenthesis, 1, comma, 9, right parenthesis and (3,2)(3,2)left parenthesis, 3, comma, 2, right parenthesis. Drag the endpoints of the segment below to graph y=h^{-1}(x)y=h −1 (x)y, equals, h, start superscript, minus, 1, end superscript, left parenthesis, x, right parenthesis.
Answer:
End points of the this segment are (9,1) and (2,3).
Step-by-step explanation:
The given function is
[tex]y=h(x)[/tex]
End points of the this segment are (1,9) and (3,2).
If a function is defined as
[tex]f=\{(a,b),a\in R,b\in R\}[/tex] then
[tex]f^{-1}=\{(b,a),a\in R,b\in R\}[/tex]
It means, we have to interchange x and y-coordinates of the end points.
So, end points of the this segment are (9,1) and (2,3).
Plot these point and join them by a line segment.
The inverse of the function will be a line segment joining the points (9,1) and (2,3). See the graph.
Given information:
The function y=h(x) is a line segment joining the points (1,9) and (3,2).
So, the endpoints of the function y=h(x) can be written as,
[tex]y=h(x)=\{(1,9),(3,2)\}[/tex]
The inverse of a function is simply the opposite relation. In the inverse, the range and domain interchange themselves.
So, the inverse of the given function can be written as,
[tex]y=h^{-1}(x)=\{(9,1),(2,3)\}[/tex]
Refer to the graph of the function for more details.
For more details, refer to the link:
https://brainly.com/question/10300045
Marcel used the multiplication table below to determine that 72:24 is equivalent to 6:18. A multiplication table. In the row labeled 3, the numbers 3, 6, 9, 12, 15, 18, 21, 23, and 27 are highlighted. In the row labeled 9, the numbers 9, 18, 27, 36, 45, 54, 63, 72, and 81 are highlighted. What was Marcel’s error? Marcel did not look at the correct rows in highlighted columns. Marcel did not choose numbers from the highlighted columns. Marcel did not put the first and second terms in the same order. Marcel did not use numbers from the same row to create each ratio.
Answer:
The correct option is;
Marcel did not put the first and second term in the same order
Step-by-step explanation:
From the multiplication table the equivalent ratios of two numbers can be found given that the two numbers have the same factors which is true if the numbers are on the same column in the multiplication table
Therefore, having the numbers ratio presented in the form 72:24 which are on the row labelled 3 and the row labelled 9, we have that the 72 is on row 9 while the 24 is on row 3, for which on the second column, we have 6:18
However the ordering of the ratio gives the value on the 9th column first before the value on the 3rd column, so that the correct result should be 18:6
The error was that Marcel did not put the first and second term in the same order.
Answer:
C
Step-by-step explanation:
If you vertically stretch the quadratic parent function, f(x) = 2^x, by a factor of 3, what is the equation of the new function?
If you stretch on the y-axis then you are increasing/decreasing values at a every x.
The new function is therefore:
[tex]g(x)=3\cdot2^x[/tex]
Hope this helps.
What is the measure of angle EFD? 37.5° 45° 47.5° 55°
Answer:
Step-by-step explanation:
Please try reposting with a picture so brainly users can help answer this question :)
The measure of angle < EFD = 47.5 degrees.
Option C is correct.
What is an Arc?An "arc" in mathematics is a straight line that connects two endpoints. An arc is typically one of a circle's parts. In essence, it is a portion of a circle's circumference.
As, we know
The angle that an arc subtends at its centre is double that of its circumference.
In other words, the angle at the centre is twice as large as the angle at the perimeter.
So, <EFD = 95/2
or, <EFD = 47.5 degrees.
Learn more about Arc here:
https://brainly.com/question/18741430
#SPJ5
What does C represent in this equation (-9c)-4=-25
Answer:
[tex]c=2\frac{1}{3}[/tex]
Step-by-step explanation:
[tex](-9c)-4=-25\\(-9c)=-21\\9c=21\\c=21/9=2\frac{1}{3}[/tex]
ASAP!! Please help me. I will not accept nonsense answers, but will mark as BRAINLIEST if you answer is correctly with solutions.
Hello!
Answer:
(x + 1).
Step-by-step explanation:
Begin by using the rational root theorem to find possible factors of this equation.
We get the following:
±1, ±3, ±1/2, ± 3/2
We can use synthetic division to check numbers to see if they are a factor of the equation. After checking the possible numbers, -1 was found to produce a remainder of 0 when calculated:
-1 | 2 1 -4 -3
+ -2 1 3
2 -1 -3 0
Therefore, x = -1 is a possible root of this equation. Writing this as a factor would become:
x = -1
x + 1 = 0
(x + 1) is the factor.
I hope this helped you!
Can I get help with this problem?
Answer:
area of sector:
[tex] \frac{theta}{360} \times \pi \: {r}^{2} [/tex]
[tex] \frac{165}{360} \times \frac{22}{7} ( {8}^{2} )[/tex]
[tex] \frac{11}{24} \times \frac{1408}{7} [/tex]
[tex] \frac{1936}{21} [/tex]
[tex]92.19 \: {in}^{2} [/tex]
Answer:
the area of the sector can be rounded to [tex]92.2\,\,in^2[/tex]
Step-by-step explanation:
Use the fraction of the area of the circle associated with the red sector. Use a proportion to find the appropriate fraction knowing that a full circle [tex](360^o)[/tex] corresponds to the area:
[tex]Area=\pi\,R^2=\pi\, (8\,in)^2= 64\, \pi\,\,in^2[/tex]
then the proportion goes like:
[tex]\frac{64\,\pi\,\,in^2}{360^o} =\frac{sector}{165^o} \\ sector=\frac{64\,\pi\,165^o}{360^o}\,\,in^2\\sector\approx 92.15\,\,in^2[/tex]
Therefore, the area of the sector can be rounded to [tex]92.2\,\,in^2[/tex]
Hiiii someone please help me I'm confused please helppp
If the length of the bases of right triangle GHI are 9 units and 15 units respectively, what is the length of the hypotenuse of GHI?
Answer:
17.5 units
Step-by-step explanation:
a² + b²= c²
9² + 15² = c²
81 + 225 = c²
c² = 306
c = √306
c = 17.5
I NEED HELP ASAP!!! LIKE RIGHT NOW RIGHT NOW ILL GIVE THE MOST BRAINLIEST
Answer:
see below
Step-by-step explanation:
We know that the center is (0,0) and the radius is |3 - 0| = 3.
Standard form of a circle: (x - h)² + (y - k)² = r² where (h, k) is the center and r is the radius. Plugging in h = 0, k = 0 and r = 3 gives us x² + y² = 9.
Answer:
See below.
Step-by-step explanation:
The equation for a circle is:
[tex](x-h)^2+(y-k)^2=r^2[/tex]
Where (h,k) is the center and r is the radius.
From the graph, we can see that (0,0) is the center.
Thus, h=0 and k=0:
[tex]x^2+y^2=r^2[/tex]
From the graph, we can also see that the radius is 3 as (-3,0) and (3,0) are points on the circle.
Thus, r=3, and r^2=9.
The equation is:
[tex]x^2+y^2=9[/tex]
not sure what to do here
Answer:
P(-2 ≤ x ≤ 2) = .6
Step-by-step explanation:
Given
The data in the above table
Required
Find P(-2 ≤ x ≤ 2)
To solve for P(-2 ≤ x ≤ 2); we have to consider the boundary covered by the interval
The interval -2 ≤ x ≤ 2 according to the table is -2 , 0 and 2
Solving further;
P(-2 ≤ x ≤ 2) = P(-2) + P(0) + P(2) ----- (1)
From the table;
P(-2) = .33
P(0) = .16
P(2) = .11
Substitute these values in (1) above
P(-2 ≤ x ≤ 2) = P(-2) + P(0) + P(2) becomes
P(-2 ≤ x ≤ 2) = .33 + .16 + .11
P(-2 ≤ x ≤ 2) = .6
This month the company reported an increase in profit of 25%. If the company made $45,000 last month, how much did they make this month? A. $5,400 B. $5,625 C. $54,000 D. $56,250
Answer:
D. $56,250
Step-by-step explanation:
Calculate the increase.
45000 × (1 + 25%)
45000 × 1.25
= 56,250
They made $56,250 this month.
Answer:
D
Step-by-step explanation:
The legs of a right triangle are 3 units and 5 units. What is the length of the hypotenuse? Round your answer to the nearest hundredth. 4.00 units 2.83 units 5.83 units 8.00 units
Answer:
5.83units
Step-by-step explanation:
from Pythagoras theorem;
a^2=b^2+c^2
where a is the hypotenuse,b is the opposite and c is the adjacent
b=3 and c=5
a^2=3^2+5^2
a^2=9+25
a^2=34
find the square root of both sides,
√a^2=√34
a=5.83units
Answer:5.83
Step-by-step explanation:
Find the value of x in each case:
Answer:
25.5°
Step-by-step explanation:
the sum of angle NMR and MRS is 180, so
2x + x + x + 78 = 180
4x = 180 - 78
4x = 102
x = 102/4 = 25.5°
The table below shows the possible outcomes of rolling a six-sided number cube and flipping a coin. What is the probability of getting a number less than 3 and a tails?
Answer: the probability of getting a number less than 3 and tails is P 1/6
Step-by-step explanation:
Assuming that the dice and the coin are normal ones, we can expect that the probability for each outcome is about the same.
For the coin we have 2 outcomes, heads and tails, then each outcome has a probability of 1/2
The dice has 6 outcomes, and each outcome has a probability of 1/6.
Then the probability of rolling a number less than 3 is equal to the probability of rolling a 1 plus the probability of rolling a 2.
P1 + P2 = 1/6 + 1/6 = 2/6 = 1/3.
The probability of getting tails with the coin is 1/2.
Now, the joint for both events is equal to the product of the probabilities of each event, this is:
P = (1/3)*(1/2) = 1/6
Answer:
1/6
Step-by-step explanation:
got it right on edge
find the equation of the line shown
Answer:
From the graph, the y-intercept is 9 and the slope is -1 so the equation is y = -x + 9. We know the slope is -1 because when x goes up by 1, y decreases by 1.
Step-by-step explanation:
When we know both the x- and y-intercepts of a line, we can conveniently use the intercept form.
Let
A=x-intercept=9
B=y-intercept=9
the intercept form of the equation is therefore
x/A + y/B =1
substituting numerical values,
x/9 + y/9 =1 ..........................(1)
Factoring the identical denominators
(x+y)/9 = 1
Cross multiply
x+y = 9 ...............................(2)
Both (1) and (2) are valid forms of equation of the given line.
Suppose N coins lie heads up on a table. In one turn, you can turn over any (N−1) coins. Is it possible that N coins could lay tails up in any number of turns, if a N=15 ?
Answer:
The answer is no
Step-by-step explanation:
no
A solid is formed by adjoining two hemispheres to the ends of a right circular cylinder. The total volume of the solid is 10 cubic centimeters. Find the radius of the cylinder that produces the minimum surface area. (Round your answer to three decimal places.)
Answer:
1.619
Step-by-step explanation:
We have the formulas for the volume of the sphere and the cylinder:
Vs = (4/3) * pi * (r ^ 3)
Vc = pi * h * (r ^ 2)
Thus:
(4/3) * pi * (r ^ 3) + pi * h * (r ^ 2) = 10
Now, the formula for the surface area of the cylinder and sphere are:
As = 4 * pi * (r ^ 2)
Ac = 2 * pi * r * h + 2 * pi * r ^ 2
Using this equation for the total surface area of the solid, we can see that as "h" increases, so will the surface area. Therefore, the smallest surface area will occur at h = 0.
Thus:
(4/3) * pi * (r ^ 3) + pi * 0 * (r ^ 2) = 10
(4/3) * pi * (r ^ 3) = 10
r ^ 3 = 4 * 10 / (3 * 3.14)
r ^ 3 = 4.24
r = 1.619
so the radius is 1.619
Which figures have more than one base? Select three options.
O cone
cylinder
rectangular prism
rectangular pyramid
triangular prism
Answer:
cylinderrectangular prismtriangular prismStep-by-step explanation:
The figures that come to a point (cone, pyramid) only have one base. The others have two:
cylinder
rectangular prism
triangular prism
Answer:
B-cylinder
C-rectangular prism
E-triangular prism
Step-by-step explanation:
Got it right on edge unit test
First, he needs to run to the store. To get to the store from his apartment, he can walk 1.2 miles North and 0.5 miles East along the sidewalks. Or, he can cut through the city to get from his apartment to the store along a single straight line. Walking on the sidewalks, Henry walks 6 miles/hour. Cutting through the city, Henry can only walk 3.5 miles/hour.
Answer:
If Henry walks along the sidewalks, he will walk 1.7 miles in total. It will take him 17 minutes to reach the store and another 17 minutes to come back.
If Henry cuts through the city, he will walk √(1.2² + 0.5²) = 1.3 miles in total. It will take him 22.3 minutes to reach the store and another 22.3 minutes to come back.
Even though Henry will need to walk a longer distance if he walks along the sidewalks, he will be able to reach the store and back back in a shorter time than if he cuts through the city.
What is the shape of the cross section of a sphere?
Rectangle
triangle
ellipse
circle
Answer:
the correct answer is circles
Step-by-step explanation:.
On a map, 1 cm represents 4 km.
The real-life distance between two towns is 28 km.
What is the distance between these two towns on a map?
The conversion rate is 1cm to 4km, or 1:4.
Because we know the conversion rate, we can use this ratio to calculate the map distance.
If the distance between the two towns is 28km, then we can use the conversion rate to calculate the distance on the map.
28 / 4 = 7
Therefore, the distance between the two towns on a map is 7cm.
Hope this helped! :)
Answer:
7 cmStep-by-step explanation:
1cm……..4km
x…………28km
x=28km*1cm/4km
x=7cmHelp with this plz! Please❤️
Answer:
1) Qs= 24.4 cm
2) Perimeter= 72.8 m
Step-by-step explanation:
1).let qs= qos
Op is the height of the the triangle
Op= ,6.8cm
Angle ops = 180-(90+50)
Angle ops = 180-140
Angle ops = 40
Os/sin ops= op/sin pso
Os/sin 40= 6.8/sin 50
Os = sin 40(6.8)/sin50
Os= 0.6428(6.8)/0.7660
Os= 5.71
Angle oqp = 180-(90+70)
Angle oqp = 180-160.
Angle oqp = 20
Oq/sin qpo = op/sin oqp
Oq/sin 70=6.8/sin 20
Oq= sin70(6.8)/sin20
Oq= 0.9397(6.8)/0.3420
Oq= 18.68
Qs= os +oq
Qs= 5.71+18.68
Qs= 24.39
Qs= 24.4 cm
2). The other angle of the triangle
=180-90-53
= 37
Sin90 = 1
Let the length and breadth be x and y
X /sin 53 = 26
X= 26(sin53)
X= 26(0.7986)
X= 20.7636
Y/sin 37 = 26
Y= 26(0.6018)
Y= 15.6468
Perimeter= 2(x+y).
Perimeter= 2( 20.7636+15.6468)
Perimeter= 2(36.4104)
Perimeter= 72.8208 m
Perimeter= 72.8 m
Evaulate 9^sqrt{3} in it to the nearest ten thousandth
Answer:
44.957
Step-by-step explanation:
All we can do is estimate √3 and then exponent 9 by it.
Alternatively, plug it into a calc and calculate.
ABCDEFGHI is a regular 9-sided polygon.
B
Diagram NOT
accurately drawn
H
o
G
D
F
E
The vertices B and E are joined with a straight line.
Work out the size of angle BEF.
(4 marks)
angle BEF
Answer:
angle BEF = 100 degrees
Step-by-step explanation:
For a regular 9-sided polygon (nonagon),
each exterior angle = 360/9=40 degrees
each interior angle = 180-40 = 140 degrees.
Referring to diagram, in the trapezoid (trapezium) BCDE, the base angles are 180-140 = 40 degrees.
Therefore angle DEB = 40 degrees
that leaves BEF = 140-40 = 100 degrees
-5(p+3/5)=-4 solve for p
Answer:
p=1/5
remove brackets
-5p-3=-4
move constant to right
-5p=-4+3
-5p=-1
divide both sides by -5
p=1/5
Answer:
1/5
Step-by-step explanation:
We can use solving for variables here.
-5(p+3/5)=-4
-5p+-3=-4
p=1/5