Answer/Step-by-step explanation:
Common ratio of a sequence can be gotten by dividing any of the consecutive term in a sequence, by the term before it.
Thus,
For the sequence, [tex] 3, 9, 27. . . [/tex] : [tex] a_1 = 3 [/tex]
[tex] r = \frac{9}{3} = 3 [/tex]
For the sequence, [tex] 8, 4, 2, 1. . . [/tex] : [tex] a_1 = 8 [/tex]
[tex] r = \frac{4}{8} = \frac{1}{2} [/tex]
For the sequence, [tex] -16, 64, -256 . . [/tex] : [tex] a_1 = -16 [/tex]
[tex] r = \frac{64}{-16} = -4 [/tex]
Drag a statement or reason to each box to complete this proof.
If -5(x + 8) = -25, then x =
-3
Please answer this question now
Answer:
r = 7.27Step-by-step explanation:
[tex]Opposite = r\\Hypotenuse = 13\\\alpha = 34\\Using SOHCAHTOA\\Sin \alpha = \frac{opp}{hyp} \\Sin 34 = \frac{r}{13} \\0.559 = \frac{r}{13} \\Cross \: Multiply\\r = 0.559\times 13\\r = 7.267\\r = 7.27[/tex]
f(x)=x^2. What is g(x)?
Answer:
A
Step-by-step explanation:
With this one, you can just plug in 3 into each of the equations until the answer is 1.
When u plug 3 into x for solution A.
(1/3)×3=1
1^2=1
Answer:
[tex]\boxed{ \mathrm{A} }[/tex]
Step-by-step explanation:
The point is given (3, 1)
x = 3
y = 1
y = (1/3x)²
Plug x as 3 and y as 1.
The equation should be equal.
1 = (1/3(3))²
1 = 1²
1 = 1 True
Find the volume in cubic meters, of the 3-Dimensional composite
figure.
8m
5m
Answer:
890 m^3 to the nearest whole number.
Step-by-step explanation:
Volume = volume of the cylinder + volume of the hemisphere:
= π r^2 h + 1/2 * 4/3 π r^3
= π*5^2 * 8 + 1/2 * 4/3 π 5^3
= 890.12
How many solutions does this system have? y = 3 x minus 5. y = negative x + 4. one two an infinite number no solution
Answer:
One
Step-by-step explanation:
It is given that,
y = 3x-5 ....(1)
y = -x+4 .....(2)
We can solve the above equations using substitution method. Put the value of y from equation (1) to equation (2) such that,
[tex]3x-5 = -x+4\\\\3x+x = 5+4\\\\4x = 9\\\\x=\dfrac{9}{4}[/tex]
Put the value of x in equation (1) we get :
[tex]y = 3x-5\\\\y = 3\times \dfrac{9}{4}-5\\\\y=\dfrac{7}{4}[/tex]
It means that the value of x is [tex]\dfrac{9}{4}[/tex] and the value of y is [tex]\dfrac{7}{4}[/tex]. Hence, the given equations has only one solution.
Answer:
1
Step-by-step explanation:
please tell me the method and answer of 2nd question
Answer:
see explanation
Step-by-step explanation:
In a trapezium the lower base angle is supplementary to the upper bas angle on the same side, thus
4x + 91 - 9x + 59 = 180, that is
- 5x + 150 = 180 ( subtract 150 from both sides )
- 5x = 30 ( divide both sides by - 5 )
x = - 6
Thus
∠ N = - 9x + 59 = - 9(- 6) + 59 = 54 + 59 = 113°
∠ K = 4x + 91 = 4(- 6) + 91 = - 24 + 91 = 67°
In a local ice sculpture contest, one group sculpted a block into a rectangular based pyramid. The dimensions of the base were 3 m by 5 m, and the pyramid was 3.6 m high. Calculate the amount of ice needed for this sculpture.
Answer:
18m square
Step-by-step explanation:
Formula for rectangular- based pyramid is L x W x H divided by 3
= 3 x 5 x 3.6 divided by 3 = 18
So you would need 18 m square for the sculpture
Which of the points listed is the same distance from the y-axis as the point (−4, 7.5)?
Answer:
(-4, y) and (4, y), where y is any real number.
Step-by-step explanation:
The point (-4; 7.5) is 4 units from the y axis.
All points that lie on the line x = -4 and the line x = 4 have the same distance from the y-axis of 4 units.
ese
i). nx n2 =343 (2mks)
I
Answer:
Are you asking what the value of x is if [tex]n^{x} * n^2 = 343[/tex] ?
Step-by-step explanation:
In a survey men in a certain country (ages 20-29), the mean height was 62.8 inches with a standard deviation of 2.8 inches, what height represents the 99th percentile?
Answer:
the height that represents the 99th percentile is 69.324 inches
Step-by-step explanation:
Given that :
the mean height = 62.8 inches
standard deviation = 2.8 inches
For 99th percentile;
Let X be the random variable;
SO, P(Z≤ z) = 0.99
From the standard normal z tables
P(Z )= 2.33
The standard z score formula is :
[tex]z = \dfrac{X- \mu}{\sigma}[/tex]
[tex]2.33 = \dfrac{X- 62.8}{2.8}[/tex]
2.33 × 2.8 = X - 62.8
6.524 = X - 62.8
6.524 +62.8 = X
69.324 = X
X = 69.324
Therefore; the height that represents the 99th percentile is 69.324 inches
I promise I will mark as brainiest
There are 18 rectangles inside the playing field. And if you include the fence around the field, that makes 19.
7 3/8 + (-4 1/2) ÷ (-5 2/3) Please Explain
Answer:
7 3/8 + (-4 1/2) ÷ (-5 2/3) = 8 23/136
Step-by-step explanation:
1) First I turned all the mix numbers into improper fractions:
7 3/8 ----> ( 7(8)+3/8) = 59/8, 4 1/2 ----> (4(2)+1/2) = 9/2, 5 2/3 ----> (5(3)+2/3) = 17/3
So now it should look like this: 59/8 + (-9/2)÷(-17/3)
2) Now our goal is to divide both of the improper fractions (-9/2)÷(-17/3),
- We first apply our fraction rule: -a/-b = a/b (when we have two negatives they cancel out each other and make a positive)
Our Case, From this:-9/2 ÷ -17/3 = To This: 9/2 ÷ 17/3
3) Now we can divide the fractions using this rule: a/b ÷ c/d = a times d / b times
Our Case, From This: 9/2 ÷ 17/3 To This: 9(3)/2(17) Which Gives Us: 27/34
(9 x 3 = 27, 2 x 17= 34)
So now it looks like this: 59/8 +27/34
4) Our look goal is to have the same denominator (which is the bottom part of the fraction) which are 8 and 34
To find it we find the LCM or Least Common Multiple of 8 and 34
(The LCM of a, b is the smallest positive number that is divisible by both a and b) which in this case a and b are 8 and 34
LCM is 136
5) We adjust our two fractions based on the LCM,
(Multiply each numerator ( top part of the fraction) by the same amount of needed to multiply its corresponding denominator to turn it to the LCM 136.
From This: 59/8 and 27/34 To This: 1003/136 and 108/36 ( 59(17)/8 (17) = 1003/136, 27(4)/34(4) = 108/306
6) Finally we can add the numerator (1003 and 108) together: 1003+108= 1111 and now we are left with 1111/136
Then we turn our improper fraction back into a mix number: 1111/138= 8 23/136
Answer:
[tex]\frac{1111}{136} = 8 \frac{23}{136}[/tex]
Step-by-step explanation:
We want to simplify:
[tex]7 \frac{3}{8} + \frac{ -4 \frac{1}{2} }{ -5 \frac{2}{3} }[/tex]
First, convert all the fractions to improper fractions:
[tex]\frac{59}{8} + \frac{ - \frac{9}{2} }{ - \frac{17}{3} } \\\\= \frac{59}{8} + \frac{27}{34}[/tex]
Find the LCM of the denominators:
[tex]\frac{(17 * 59) + (4 * 27)}{136} \\\\ = \frac{1003 + 108}{136}\\ \\= \frac{1111}{136} \\\\= 8 \frac{23}{136}[/tex]
If f(x)= x/2 -2 and g(x) = 2x² + x - 3, find (f + g)(x).
O A. x²-6
O B. 2x²+ 3/2x +1
O C. 2x² - x/2 +1
O D. 2x² + 3/2 x-5
Answer:
Step-by-step explanation:
Its d
A circle with center A and radius three inches is tangent at C to a circle with center B, as shown. If point B is on the small circle, what is the area of the shaded region? Express your answer in terms of \pi.
Answer:
27π Sq in.
Step-by-step explanation:
Circle A is equal to 9π sq inches. (Radius squared times Pi), Segment BC is a radii of Circle B and the diameter of Circle A. Meaning Circle B's radius is 6 inches. The area of circle B would be 36π sq inches. Now we subtract Circle A's area from Circle B's area(36π sq in. - 9π sq in.), the area of the shaded region is 27π sq in.
2.) Evaluate 6a² if a = 4
Answer:
96
Step-by-step explanation:
We simply need to plug in a = 4 so 6a² = 6 * 4² = 6 * 16 = 96.
What is the slope of the line shown below? (-2,3) (-4,-9)
Answer:
6Step-by-step explanation:
Let the points be A and B
A ( - 2 , 3 ) -------> ( x1 , x2 )
B ( -4 , -9 ) -------> ( x2 , y2 )
Now, finding the slope:
[tex]slope \: (m) = \frac{y2 - y1}{x2 - x1} [/tex]
Plug the values
[tex] = \frac{ - 9 - 3}{ - 4 - ( - 2)} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 4 - ( - 2)} [/tex]
When there is a (-) in front of an expression in parentheses , change the sign of each term in expression
[tex] = \frac{ - 12}{ - 4 + 2} [/tex]
Calculate
[tex] = \frac{ - 12}{ - 2} [/tex]
Reduce the fraction with -2
[tex] = 6[/tex]
Hope this helps..
Best regards!!
What is the value of discontinuity of x^2+8x+4/x^2-x-6? Choices:
Answer:
-2
Step-by-step explanation:
Hello,
First of all, let's check the denominator.
[tex]x^2-x-6 \ \ \text{ *** How to factorise it ...? ***}\\\\\text{*** The product of the roots is -6=-2*3 and their sum is 1 ***}\\\\x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x+2)(x-3)[/tex]
Now, let's see the numerator.
[tex]x^2+8x+4 \ \text{ *** -2 is not a zero as ***}\\\\(-2)^2+8*(-2)+4=4-16+8=-4\\\\\text{*** 3 is not a zero as ***}\\\\3^2+8*3+4=9+24+4=37\\[/tex]
So we cannot factorise the numerator with (x+2) or (x-3)
Then, -2 and 3 are the the discontinuities of the expression.
There is only -2 in the list, this is the correct answer.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
How many real solutions In this problem
Answer:
D
Step-by-step explanation:
Given
y = x² + 1
y = x
Equating gives
x² + 1 = x ( subtract x from both sides )
x² - x + 1 = 0
Consider the discriminant Δ = b² - 4ac
with a = 1, b = - 1 and c = 1
b² - 4ac = (- 1)² - (4 × 1 × 1) = 1 - 4 = - 3
Since b² - 4ac < 0 then there are no real solutions
Write each of the following expressions without using absolute value. 7m–56|, if m<8
Answer:
[tex]|7m- 56| = 56 - 7m[/tex]
Step-by-step explanation:
Given
[tex]|7m- 56|[/tex]
[tex]m < 8[/tex]
Required
Rewrite the expression without absolute values
The first step is to check if the expression in |...| is positive or negative;
The question says m < 8,
This means the value of m could be 7, 6 ...
Let's assume m is 7
[tex]7m - 56 = 7 * 7 - 56 = 49 - 56 = -7[/tex]
This means that the expression [tex]|7m- 56|[/tex] will give a negative value if [tex]m < 8[/tex]
So,
[tex]|7m- 56| = -(7m - 56)[/tex]
Open bracket
[tex]|7m- 56| = -7m + 56[/tex]
Rearrange
[tex]|7m- 56| = 56 - 7m[/tex]
The expression can't be further simplified
a
simplified form of -3 + 2(x - 1)?
8. Which expression
a. -X + 1
b. 2x-5
c. 2x - 4
d. -X-1
Answer:
2x -5
Step-by-step explanation:
-3 + 2(x - 1)
Distribute
-3 +2x -2
Combine like terms
2x -5
Answer:
5x -2
Step-by-step explanation:
PLs help ASAP will make you brainist
Answer:
c.18
Step-by-step explanation:
32/24=1.33333333333
40/30=1.33333333333
24/1.33333333333=18
Side ST correlates to side BC. Let's use these two sides to find the scale factor between the two triangles
[tex]\text{Scale Factor}=\dfrac{30}{40}=\dfrac{3}{4}[/tex]
Triangle ABC has side lengths are the 3/4 smaller than that of RTS. The value of x is the length of side AC, which correlates with side RS
Multiply 24 by 3/4 to find the value of x
[tex]x=\dfrac{3}{4}\times24=18[/tex]
This is answer choice C. Let me know if you need any clarifications, thanks!
Two choises! Pick the right one!
Answer:
The function has a maximum value of 3 that occurs at x = 1.
Step-by-step explanation:
First, note that the leading coefficient is negative. This means that the parabola will curve downwards. Because of this, the function has a maximum. The maximum value will simply be the vertex.
The formula for the x-coordinate of the vertex is -b/2a.
a=-3, b=6, c=0
Plug in the numbers:
x=-(6)/2(-3)
=-6/-6=1
Now, plug 1 back into the original function:
-3x^2+6x
-3(1)^2+6(1)
=-3(1)+6
=-3+6
=3
Natasha and her two dogs were walking on a perfectly straight road when her two dogs ran away from her in opposite directions. Her beagle is now \dfrac{25}{4} 4 25 start fraction, 25, divided by, 4, end fraction meters directly to her right, and her labrador is \dfrac{51}{20} 20 51 start fraction, 51, divided by, 20, end fraction meters directly to her left. Which of the following expressions represents how far apart the two dogs are?
Answer:
[tex]\dfrac{74}{20}=3.7 meters[/tex]
Step-by-step explanation:
Hello!
1) Since no other data has been given. Suppose Natasha is in the center and the beagle is to the right.
[tex]\dfrac{25}{4} \:meters[/tex]
2) The labrador is [tex]\dfrac{51}{20}\: to\: the\: left.[/tex]
[tex]\dfrac{25}{4} -\dfrac{51}{20} =\dfrac{(5*25)-51}{20} \\\dfrac{(125-51}{20} =\dfrac{74}{20}[/tex]
Answer:
The answer is B :D hope this helps
Step-by-step explanation:
Find the mean and standard deviation. Show all work. 1. X 0 1 2 3 4 P(x) .07 .38 .22 .13
Answer:
Mean = 2.14
Standard deviation = 2.40
Step-by-step explanation:
The calculation of mean and standard deviation is shown below:-
[tex]X = .07\times0 + 0.20\times 1 + 0.38\times 2 + 0.22\times 3 + 0.13\times 4\\\\ = 0 + 0.2 + 0.76 + 0.66 + 0.52[/tex]
= 2.14
So, the mean is 2.14
Now, For computing the standard deviation first we need to find out the variance which is shown below:-
Variance is
[tex]Var(X) = P(X^2) - [P(X)]^2\\\\ P(X^2) = .07\times (0^2) + .20\times (0^1) + .38\times (0^2) + .22\times (0^3) +0.13\times (0^4)[/tex]
After solving the above equation we will get
= 5.78
Now, the standard deviation is [tex]= \sqrt{Variance}[/tex]
[tex]= \sqrt{5.78}[/tex]
= 2.404163056
or
= 2.40
EXPLANATION NEEDED:
In right triangle ABC, ∠ B is a right angle and sin ∠ C = x. cos ∠ A =
a. √x² - 1
b. √1 - x²
c. x
d. √x² + 1
e. x²
Answer:
C. xStep-by-step explanation:
AC denotes the length of the hypotenuse and AB and BC denote the lengths of the other two sides, so:
[tex]\cos(\angle A)=\dfrac{AB}{AC}=\sin(\angle C)=x[/tex]
In a circle PQ & RS are two chords bisecting each other,prove that the two parts of one chord are equal to the two parts of the other.
Answer:
see proof below
Step-by-step explanation:
Let
p1,p2 = half lengths of chord p
q1,q2 = half length of chord q
By the intersecting chord theorem,
p1*p2 = q1*q2, substituting p1=p2, q1=q2
p1^2 = q1*2
Take square-roots and reject negative roots
p1 = q1
therefore
p1=p2 = q1=q2, or
two parts of one chord are equal to the two parts of the other.
In a local town, 54,000 families have incomes less than $25,000 per year. This number of families is 60% of the families that had this income level 12 years ago. What was the number of families who had incomes less than 25,000 per year 12 years ago
Answer: 90,000
Step-by-step explanation:
From the question, we are informed that in a local town, 54,000 families have incomes less than $25,000 per year. We are further told that this number of families is 60% of the families that had this income level 12 years ago.
To calculate the number of families who had incomes less than 25,000 per year 12 years ago goes thus:
Let the the number of families who had incomes less than 25,000 per year 12 years ago be represented by x.
Since we are told that this number of families is 60% of the families that had this income level 12 years ago. This means that:
60% of x = 54,000
60/100 × x = 54,000
0.6 × x = 54,000
0.6x = 54,000
Divide by 0.6
0.6x/0.6 = 54000/0.6
x = 90,000
The number of families who had incomes less than 25,000 per year 12 years ago was 90,000.
Find the least number which must be subtracted from the following numbers to make it a perfect square i) 2361 ii) 26535 iii)16160 iv) 4401624
Please answer it now in two minutes
Answer:
y = 4
Step-by-step explanation:
Using the tangent ratio in the right triangle and the exact value
tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then
tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{y}{4\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )
y × [tex]\sqrt{3}[/tex] = 4[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )
y = 4
Answer:
y=4
Step-by-step explanation:
If we have a triangle with angles A, B, and C. The law of sines says that the proportion between the sin of angle A and its opposite side is equal to the proportion between the sin of angle B and its opposite side and it is equal to the proportion between the sin of angle C and its opposite side.
So, by the law of sines we can say that:
[tex]\frac{sen(60)}{4\sqrt{3} } =\frac{sen(30)}{y}[/tex]
Solving for y, we get:
[tex]sin(60)*y=4\sqrt{3}*sin(30)\\\frac{\sqrt{3} }{2}y=4\sqrt{3}*0.5\\ \frac{1}{2} y=4*0.5\\y = 4[/tex]
In the figure, ABC is mapped onto XYZ by a 180° rotation. Angle B corresponds to which angle in XYZ?
Answer:
x
Step-by-step explanation: