Answer:
The angular momentum (about the same axis) of the object is constant
Explanation:
Torque is the time time derivative of angular momentum.
τ = dL / dt
where;
dL is the change in angular momentum
τ is torque acting on the object
dt is change in time
when net torque acting on an object is zero, then
dL / dt = 0
Change in angular momentum (ΔL) is zero, therefore we can say that the angular momentum (L) is constant.
Thus, the angular momentum (about the same axis) of the object is constant.
Which observation have scientists used to support Einstein's general theory of relativity?
The orbital path of Mercury around the Sun has changed.
O GPS clocks function at the same rate on both Earth and in space.
O The Sun has gotten more massive over time.
Objects act differently in a gravity field than in an accelerating reference frame.
Answer:
Objects act differently in a gravity field than in an accelerating reference frame.
Explanation:
The main thrust of the theory general relativity as proposed by Albert Einstein boarders on space and time as the two fundamental aspects of spacetime. Spacetime is curved in the presence of gravity, matter, energy, and momentum. The theory of general relativity explains gravity based on the way space can 'curve', that is, it seeks to relate gravitational force to the changing geometry of space-time.
The Einstein general theory of relativity has replaced Newton's ideas proposed in earlier centuries as a means of predicting gravitational interactions. This concept is quite helpful but cannot be fitted into the context of quantum mechanics due to obvious incompatibilities.
Answer:
A - The orbital path of mercury around the sun has changed.
Explanation:
got right on edg.
A parallel-plate air capacitor is connected to a constant-voltage battery. If the separation between the capacitor plates is doubled while the capacitor remains connected to the battery, the energy stored in the capacitor
1) drops to one-fourth its previous value.
2) quadruples.
3) becomes six times its previous value.
4) doubles.
5) drops to one-third its previous value.
6) Not enough information is provided.
7) triples.
8) drops to half its previous value.
9) drops to one-sixth its previous value.
10) remains unchanged.
Answer:
Drop to half of the previous value
Explanation:
Energy stored in capacitor is inversly propotional to the distance between the plates.
If the separation between the capacitor plates is doubled while the capacitor remains connected to the battery, the energy stored in the capacitor drops to half its previous value.
What is parallel plate capacitor?The two parallel plates placed at a distance apart used to store charge when electric supply is on.
The capacitance of a capacitor is given by
C = ε₀ A/d
where, ε₀ is the permittivity of free space, A = area of cross section of plates and d is the distance between them.
Capacitance is inversely proportional to the distance between them. So, if distance is doubled, the capacitance decreases to half its original value.
Thus, the correct option is 8.
Learn more about parallel plate capacitor.
https://brainly.com/question/12733413
#SPJ2
Consider a heat engine that inputs 10 kJ of heat and outputs 5 kJ of work. What are the signs on the total heat transfer and total work transfer
Answer:
Total heat transfer is positive
Total work transfer is positive
Explanation:
The first law of thermodynamics states that when a system interacts with its surrounding, the amount of energy gained by the system must be equal to the amount of energy lost by the surrounding. In a closed system, exchange of energy with the surrounding can be done through heat and work transfer.
Heat transfer to a system is positive and that transferred from the system is negative.
Also, work done by a system is positive while the work done on the system is negative.
Therefore, from the question, since the heat engine inputs 10kJ of heat, then heat is being transferred to the system. Hence, the sign of the total heat transfer is positive (+ve)
Also, since the heat engine outputs 5kJ of work, it implies that work is being done by the system. Hence the sign of the total work transfer is also positive (+ve).
An amusement park ride has a vertical cylinder with an inner radius of 3.4 m, which rotates about its vertical axis. Riders stand inside against the carpeted surface and rotate with the cylinder while it accelerates to its full angular velocity. At that point the floor drops away and friction between the riders and the cylinder prevents them from sliding downward. The coefficient of static friction between the riders and the cylinder is 0.87. What minimum angular velocity in radians/second is necessary to assure that the riders will not slide down the wall?
Answer:
The minimum angular velocity necessary to assure that the riders will not slide down the wall is 1.58 rad/second.
Explanation:
The riders will experience a centripetal force from the cylinder
[tex]F_{C}[/tex] = mrω^2 .... equ 1
where
m is the mass of the rider
r is the inner radius of the cylinder = 3.4 m
ω is the angular speed of of the rider
For the riders not to slide downwards, this centripetal force is balanced by the friction between the riders and the cylinder. The frictional force is given as
[tex]F_{f}[/tex] = μR ....equ 2
where
μ = coefficient of friction = 0.87
R is the normal force from the rider = mg
where
m is the rider's mass
g is the acceleration due to gravity = 9.81 m/s
substitute mg for R in equ 2, we'll have
[tex]F_{f}[/tex] = μmg ....equ 3
Equating centripetal force of equ 1 and frictional force of equ 3, we'll get
mrω^2 = μmg
the mass of the rider cancels out, and we are left with
rω^2 = μg
ω^2 = μg/r
ω = [tex]\sqrt{\frac{ug}{r} }[/tex]
ω = [tex]\sqrt{\frac{0.87*9.81}{3.4} }[/tex]
ω = 1.58 rad/second
The minimum angular velocity necessary so that the riders will not slide down the wall is 1.58 rad/s
The riders will experience a centripetal force from the cylinder
[tex]F = mrw^2[/tex]
where m is the mass of the rider
r is the inner radius of the cylinder = 3.4 m
ω is the angular speed of the rider
For the riders not to slide downwards, this centripetal force must be balanced by friction. The frictional force is given as
f = μN
where
μ = coefficient of friction = 0.87
N is the normal force = mg
f = μmg
Equating centripetal force of and frictional force of we'll get
[tex]mrw^2 = umg[/tex]
[tex]rw^2 = ug[/tex]
[tex]w^2 = ug/r[/tex]
[tex]w= \sqrt{ug/r}[/tex]
[tex]w= \sqrt{0.87*9.8/3.4}[/tex]
ω = 1.58 rad/s is the minimum angular velocity needed to prevent the rider from sliding.
Learn more:
https://brainly.com/question/24638181
What is the change in internal energy of an engine if you put 15 gallon of gasoline into its tank? The energy content of gasoline is 1.5 x 106 J/gallon. All other factors, such as the engine’s temperature, are constant. How many hours the engine can work if the power of the engine’s motor is 600 W? (8 marks)
Answer:
ΔU = 2.25 x 10⁸ J
t = 104.17 s
Explanation:
The change in internal energy of the engine can be given by the following formula:
ΔU = (Mass of Gasoline)(Energy Content of Gasoline)
ΔU = (1.5 x 10⁶ J/gallon)(15 gallon)
ΔU = 2.25 x 10⁸ J
Now, for the time of operation, we use the following formula of power.
P = W/t = ΔU/t
t = ΔU/P
where,
t = time of operation = ?
ΔU = Change in internal energy = 2.25 x 10⁸ J
P = Power of motor = 600 W
Therefore,
t = (2.25 x 10⁸ J)/(600 W)
t = (375000 s)(1 h/3600 s)
t = 104.17 s
what is drift speed ? {electricity}
Answer: In physics a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.
Explanation:
A guitar string 0.65 m long has a tension of 61 N and a mass per unit length of 3.0 g/m. (i) What is the speed of waves on the string when it is plucked? (ii) What is the string's fundamental frequency of vibration when plucked? (iii) At what other frequencies will this string vibrate?
Answer:
i
[tex]v = 142.595 \ m/s[/tex]
ii
[tex]f = 109.69 \ Hz[/tex]
iii1 )
[tex]f_2 =219.4 Hz[/tex]
iii2)
[tex]f_3 =329.1 Hz[/tex]
iii3)
[tex]f_4 =438.8 Hz[/tex]
Explanation:
From the question we are told that
The length of the string is [tex]l = 0.65 \ m[/tex]
The tension on the string is [tex]T = 61 \ N[/tex]
The mass per unit length is [tex]m = 3.0 \ g/m = 3.0 * \frac{1}{1000} = 3 *10^{-3 } \ kg /m[/tex]
The speed of wave on the string is mathematically represented as
[tex]v = \sqrt{\frac{T}{m} }[/tex]
substituting values
[tex]v = \sqrt{\frac{61}{3*10^{-3}} }[/tex]
[tex]v = 142.595 \ m/s[/tex]
generally the string's frequency is mathematically represented as
[tex]f = \frac{nv}{2l}[/tex]
n = 1 given that the frequency we are to find is the fundamental frequency
So
substituting values
[tex]f = \frac{142.595 * 1 }{2 * 0.65}[/tex]
[tex]f = 109.69 \ Hz[/tex]
The frequencies at which the string would vibrate include
1 [tex]f_2 = 2 * f[/tex]
Here [tex]f_2[/tex] is know as the second harmonic and the value is
[tex]f_2 = 2 * 109.69[/tex]
[tex]f_2 =219.4 Hz[/tex]
2
[tex]f_3 = 3 * f[/tex]
Here [tex]f_3[/tex] is know as the third harmonic and the value is
[tex]f_3 = 3 * 109.69[/tex]
[tex]f_3 =329.1 Hz[/tex]
3
[tex]f_3 = 4 * f[/tex]
Here [tex]f_4[/tex] is know as the fourth harmonic and the value is
[tex]f_3 = 4 * 109.69[/tex]
[tex]f_4 =438.8 Hz[/tex]
Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
Assuming that the skateboarder's acceleration is gsin 18.0 ∘, find his speed when he reaches the bottom of the ramp in 3.50 s .
Answer:
Explanation:
v= u + at
v is final velocity , u is initial velocity . a is acceleration and t is time
Initial velocity u = 0 . Putting the given values in the equation
v = 0 + g sin 18 x 3.5
= 10.6 m /s
For a skateboarder who starts from the rest, the speed when he reaches the bottom of the ramp will be 10.6 m/s.
What are Velocity and Acceleration?The term "velocity" refers to a vector measurement of the rate and direction of motion. Velocity is the rate of movement in a single direction, to put it simply. Velocity can be used to determine how fast a rocket is heading into space and how fast a car is moving north on a congested motorway.
There are several types of velocity :
Instantaneous velocityAverage VelocityUniform VelocityNon-Uniform VelocityThe pace at which a person's velocity changes is known as acceleration. This implies that an object is accelerating if its velocity is rising or falling. An object that is accelerating won't have a steady change in location every second like an item moving at a constant speed does.
According to the question, the given values are :
Time, t = 3.50 sec
Initial Velocity, u = 0 m/s
Use equation of motion :
v = u+at
v = 0+ g sin 18 × 3.5
v = 10.6 m/s.
So, the final velocity will be 10.6 m/s.
To get more information about Velocity and Acceleration :
https://brainly.com/question/14683118
#SPJ2
Suppose the current in a conductor decreases exponentially with time according to the equation I(t) = I0e-t/τ, where I0 is the initial current (at t = 0), and τ is a constant having dimensions of time. Consider a fixed observation point within the conductor.
Required:
a. How much charge passes this point between t = 0 and t = τ?
b. How much charge passes this point between t = 0 and t = 10 τ?
c. What If ? How much charge passes this point between t = 0 and t = [infinity]?
Answer:
Pls see attached file
Explanation:
A railroad boxcar rolls on a track at 2.90 m/s toward two identical coupled boxcars, which are rolling in the same direction as the first, but at a speed of 1.20 m/s. The first reaches the second two and all couple together. The mass of each is 3.05 ✕ 104 kg.(a)What is the speed (in m/s) of the three coupled cars after the first couples with the other two? (Round your answer to at least two decimal places.)Incorrect: Your answer is incorrect.What is the momentum of the two coupled cars? What is the momentum of the first car in terms of its mass and initial speed? Note all cars are initially traveling in the same direction. Apply conservation of momentum to find the final speed. m/s(b)Find the (absolute value of the) amount of kinetic energy (in J) converted to other forms during the collision.J
Answer:
momentum of the coupled cars V = 1.77 m/s
kinetic energy coverted to other forms during the collision ΔK.E = -2.892×10⁴J
Explanation:
given
m₁ =3.05 × 10⁴kg
u₁ =2.90m/s
m₂=6.10× 10⁴kg
u₂=1.20m/s
using law of conservation of momentum
m₁u₁ + m₂u₂ = (m₁ + m₂) V
3.05 × 10⁴ ×2.90 + 6.10× 10⁴× 1.20 = (9.15×10⁴)V
V = 1.617×10⁵/9.15×10⁴
V = 1.77m/s
K.E =1/2mV²
ΔK.E = K.E(final) - K.E(initial)
ΔK.E = ¹/₂ × 9.15×10⁴ ×(1.77)² - ¹/₂ ×3.05 × 10⁴ × (2.90)² -¹/₂ × 6.10× 10⁴× (1.20)²
ΔK.E = ¹/₂ × (28.67-25.65-8.784) ×10⁴
ΔK.E = -2.892×10⁴J
The final speed is 1.77 m/s
The initial momentum is 8.84 × 10⁴ kgm/s [first car] and 7.3 × 10⁴ kgm/s [coupled car]
2.892×10⁴J of energy is converted.
Inelastic collision:Since the first boxcar collides and couples with the two coupled boxcars, the collision is inelastic. In an inelastic collision, the momentum of the system is conserved but there is a loss in the total kinetic energy of the system.
Let the mass of the railroad boxcar be m₁ =3.05 × 10⁴kg
The initial speed of the railroad boxcar is u₁ = 2.90m/s
Mass of the two coupled boxcars m₂ = 2 × 3.05 × 10⁴kg = 6.10× 10⁴kg
And the initial speed be u₂ = 1.20m/s
The initial momentum of the first car is:
m₁u₁ = 3.05 × 10⁴ × 2.90 = 8.84 × 10⁴ kgm/s
The initial momentum of the coupled car is:
m₁u₁ = 6.10 × 10⁴ × 1.20 = 7.3 × 10⁴ kgm/s
Let the final speed after all the boxcars are coupled be v
From the law of conservation of momentum, we get:
m₁u₁ + m₂u₂ = (m₁ + m₂)v
3.05 × 10⁴ ×2.90 + 6.10× 10⁴× 1.20 = (9.15×10⁴)Vv
v = 1.617×10⁵/9.15×10⁴
v = 1.77m/s
The difference between initial and final kinetic energies is the amount of energy converted into other forms, which is given as follows:
ΔKE = K.E(final) - K.E(initial)
ΔKE = ¹/₂ × 9.15×10⁴ ×(1.77)² - ¹/₂ ×3.05 × 10⁴ × (2.90)² -¹/₂ × 6.10× 10⁴× (1.20)²
ΔKE = ¹/₂ × (28.67-25.65-8.784) ×10⁴
ΔKE = -2.892×10⁴J
Learn more about inelastic collision:
https://brainly.com/question/13861542?referrer=searchResults
Two vehicles approach an intersection, a 2500kg pickup travels from E to W at 14.0m/s and a 1500kg car from S to N at 23.0m/s. Find P net of this system (direction and magnitude)
Answer:
The magnitude of the momentum is 49145.19 kg.m/s
The direction of the two vehicles is 44.6° North West
Explanation:
Given;
speed of first vehicle, v₁ = 14 m/s (East to west)
mass of first vehicle, m₁ = 1500 kg
speed of second vehicle, v₂ = 23 m/s (South to North)
momentum of the first vehicle in x-direction (E to W is in negative x-direction)
[tex]P_x = mv_x\\\\P_x = 2500kg(-14 \ m/s)\\\\P_x = -35000 \ kg.m/s[/tex]
momentum of the second vehicle in y-direction (S to N is in positive y-direction)
[tex]P_y = m_2v_y\\\\P_y = 1500kg(23 \ m/s)\\\\P_y = 34500 \ kg.m/s[/tex]
Magnitude of the momentum of the system;
[tex]P= \sqrt{P_x^2 + P_y^2} \\\\P = \sqrt{(-35000)^2+(34500)^2} \\\\P = 49145.19 \ kg.m/s[/tex]
Direction of the two vehicles;
[tex]tan \ \theta = \frac{P_y}{|P_x|} \\\\tan \ \theta = \frac{34500}{35000} \\\\tan \ \theta = 0.9857\\\\\theta = tan^{-1} (0.9857)\\\\\theta = 44.6^0[/tex]North West
What force is required so that a particle of mass m has the position function r(t) = t3 i + 7t2 j + t3 k?
Answer:
[tex]F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k\\F(t)=\,(6\,m\,t,14\,m,6\,m\,t)[/tex]
Explanation:
Recall that force is defined as mass times acceleration, and acceleration is the second derivative with respect to time of the position. Since the position comes in terms of time, and with separate functions for each component in the three dimensional space, we first calculate the velocity (with the first derivative, and then the acceleration as the second derivative:
[tex]r(t)=t^3\,\hat i+7\,t^2\,\hat j+t^3\,\hat k\\v(t)=3\,t^2\,\hat i+14\,t\,\hat j+3\,t^2\,\hat k\\a(t)=6\,t\,\hat i+14\,\hat j+6\,t\,\hat k[/tex]
Therefore, the force will be given by the product of this acceleration times the mass "m":
[tex]F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k[/tex]
A ball is dropped from the top of an eleven-story building to a balcony on the ninth floor. In which case is the change in the potential energy associated with the motion of the ball the greatest
Answer:
at the top of the 9 story building i think
Explanation:
When the ball starts to move, its kinetic energy increases and potential energy decreases. Thus the ball will experience its maximum potential energy at the top height before falling.
What is potential energy?Potential energy of a massive body is the energy formed by virtue of its position and displacement. Potential energy is related to the mass, height and gravity as P = Mgh.
Where, g is gravity m is mass of the body and h is the height from the surface. Potential energy is directly proportional to mass, gravity and height.
Thus, as the height from the surface increases, the body acquires its maximum potential energy. When the body starts moving its kinetic energy progresses and reaches to zero potential energy.
Therefore, at the sate where the ball is at the top of the building it have maximum potential energy and then changes to zero.
To find more about potential energy, refer the link below:
https://brainly.com/question/24284560
#SPJ2
A tightly wound toroid of inner radius 1.2 cm and outer radius 2.4 cm has 960 turns of wire and carries a current of 2.5 A.
Requried:
a. What is the magnetic field at a distance of 0.9 cm from the center?
b. What is the field 1.2 cm from the center?
Answer:
a
[tex]B = 0.0533 \ T[/tex]
b
[tex]B = 0.04 \ T[/tex]
Explanation:
From the question we are told that
The inner radius is [tex]r = 1.2 \ cm = 0.012 \ m[/tex]
The outer radius is [tex]r_o = 2.4 \ cm = \frac{2.4}{100} = 0.024 \ m[/tex]
The nu umber of turns is [tex]N = 960[/tex]
The current it is carrying is [tex]I = 2. 5 A[/tex]
Generally the magnetic field is mathematically represented as
[tex]B = \frac{\mu_o * N* I }{2 * \pi * r }[/tex]
Where [tex]\mu_o[/tex] is the permeability of free space with a constant value
[tex]\mu = 4\pi * 10^{-7} N/A^2[/tex]
And the given distance where the magnetic field is felt is r = 0.9 cm = 0.009 m
Now substituting values
[tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.009 }[/tex]
[tex]B = 0.0533 \ T[/tex]
Fro the second question the distance of the position considered from the center is r = 1.2 cm = 0.012 m
So the magnetic field is
[tex]B = \frac{ 4\pi * 10^{-7} * 960* 2.5 }{2 * 3.142 * 0.012 }[/tex]
[tex]B = 0.04 \ T[/tex]
The magnetic field at a distance of 0.9 cm from the center of the toroid is 0.053 T.
The magnetic field at a distance of 1.2 cm from the center of the toroid is 0.04 T.
The given parameters;
radius of the toroid, r = 1.2 cm = 0.012 mouter radius of the toroid, R = 2.4 cm = 0.024 mnumber of turns, N = 960 turnscurrent in wire, I = 2.5 AThe magnetic field at a distance of 0.9 cm from the center of the toroid is calculated as follows;
[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.009} \\\\B = 0.053 \ T[/tex]
The magnetic field at a distance of 1.2 cm from the center of the toroid is calculated as follows;
[tex]B = \frac{\mu_o NI}{2\pi r} \\\\B = \frac{(4\pi \times 10^{-7})\times (960) \times (2.5)}{2\pi \times 0.012} \\\\B = 0.04 \ T[/tex]
Learn more here:https://brainly.com/question/19564329
Water flowing through a garden hose of diameter 2.76 cm fills a 20.0-L bucket in 1.45 min. (a) What is the speed of the water leaving the end of the hose
Answer:
v = 31.84 cm/s or 0.318 m/s
the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s
Explanation:
Given;
Diameter of hose d = 2.76 cm
Volume filled V = 20.0 L = 20,000 cm^3
Time t = 1.45 min = 105 seconds
The volumetric flow rate of water is;
F = V/t = 20,000cm^3 ÷ 105 seconds
F = 190.48 cm^3/s
The volumetric flow rate is equal the cross sectional area of pipe multiply by the speed of flow.
F = Av
v = F/A
Area A = πd^2/4
Speed v = F/(πd^2/4)
v = 4F/πd^2 ......1
Substituting the given values;
v = (4×190.48)/(π×2.76^2)
v = 31.83767439628 cm/s
v = 31.84 cm/s or 0.318 m/s
the speed of the water leaving the end of the hose is 31.84 cm/s or 0.318 m/s
In an experiment different wavelengths of light, all able to eject photoelectrons, shine on a freshly prepared (oxide-free) zinc surface. Which statement is true
Answer:
the energy of the photons is greater than the work function of the zinc oxide.
h f> = Ф
Explanation:
In this experiment on the photoelectric effect, it is explained by the Einstein relation that considers the light beam formed by discrete energy packages.
K_max = h f - Ф
in the exercise phase, they indicate that different wavelengths can inject electrons, so the energy of the photons is greater than the work function of the zinc oxide.
h f > = Ф
How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.
Question:
A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes
How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.
Answer:
S = 5.508 × 10¹¹m
V = 2.62 × 10⁸ m/s
Explanation:
The radius of the orbit of Jupiter, Rj is 43.2 light-minutes
radius of the orbit of Mars, Rm is 12.6 light-minutes
Distance travelled S = (Rj - Rm)
= 43.2 - 12.6 = 30.6 light- minutes
= 30.6 × (3 ×10⁸m/s) × 60 s
= 5.508 × 10¹¹m
time = 35mins = (35 × 60 secs)
= 2100 secs
speed = distance/time
V = 5.508 × 10¹¹m / 2100 s
V = 2.62 × 10⁸ m/s
A man stands on a merry-go-round that is rotating at 2.5 rad/s. If the coefficient of static friction between the man’s shoes and the merry-go-round is µs = 0.5, how far from the axis of rotation can he stand without sliding?
Answer:
0.8 m
Explanation:
Draw a free body diagram. There are three forces:
Weight force mg pulling down,
Normal force N pushing up,
and friction force Nμ pushing towards the center.
Sum of forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum of forces in the centripetal direction:
∑F = ma
Nμ = m v²/r
Substitute and simplify:
mgμ = m v²/r
gμ = v²/r
Write v in terms of ω and solve for r:
gμ = ω²r
r = gμ/ω²
Plug in values:
r = (10 m/s²) (0.5) / (2.5 rad/s)²
r = 0.8 m
The distance (radius) from the axis of rotation which the man can stand without sliding is 0.784 meters.
Given the following data:
Angular speed = 2.5 rad/s.Coefficient of static friction = 0.5To determine how far (radius) from the axis of rotation can the man stand without sliding:
We would apply Newton's Second Law of Motion, to express the centripetal and force of static friction acting on the man.
[tex]\sum F = \frac{mv^2}{r} - uF_n\\\\\frac{mv^2}{r} = uF_n[/tex]....equation 1.
But, Normal force, [tex]F_n = mg[/tex]
Substituting the normal force into eqn. 1, we have:
[tex]\frac{mv^2}{r} = umg\\\\\frac{v^2}{r} = ug[/tex]....equation 2.
Also, Linear speed, [tex]v = r\omega[/tex]
Substituting Linear speed into eqn. 2, we have:
[tex]\frac{(r\omega )^2}{r} = ug\\\\r\omega ^2 = ug\\\\r = \frac{ug}{\omega ^2}[/tex]
Substituting the given parameters into the formula, we have;
[tex]r = \frac{0.5 \times 9.8}{2.5^2} \\\\r = \frac{4.9}{6.25}[/tex]
Radius, r = 0.784 meters
Read more: https://brainly.com/question/13754413
Two children are balanced on a seesaw, but one child weighs twice as much as the other child. The heavier child is sitting half as far from the pivot as is the lighter child. Since the seesaw is balanced, the heavier child is exerting on the seesaw:_______.
a. a force that is less than the force the lighter child is exerting.
b. a force that is equal in amount but oppositely directed to the force the lighter child is exerting.
Answer:
B. A force that is equal in amount but oppositely directed to the force the lighter child is exerting.
Explanation:
If they are sitting at the same distance away from the pivot yet the seesaw is balanced, the only conclusion is the heavier child is exerting a lower force. This causes the pivot exertion and balances to be equal. The equilibrium of the pivot-seesaw is not affected by the weight because of force exertion.
A 5000 kg railcar hits a bumper (a spring) at 1 m/s, and the spring compresses 0.1 meters. Assume no damping. a) Find the spring constant k.
Answer:
k = 0.5 MN/m
Explanation:
Mass of the railcar, m = 5000 kg
Speed of the rail car, v = 1 m/s
The Kinetic energy(KE) of the railcar is given by the equation:
KE = 0.5 mv²
KE = 0.5 * 5000 * 1²
KE = 2500 J
The spring's compression, x = 0.1 m
The potential energy(PE) stored in the spring is given by the equation:
PE = 0.5kx²
PE = 0.5 * k * 0.1²
PE = 0.005k
According to the principle of energy conservation, Kinetic energy of the railcar equals the potential energy stored in the spring
KE = PE
2500 = 0.005k
k = 2500/0.005
k = 500000 N/m
k = 0.5 MN/m
A bicycle tire pump has a piston with area 0.43 In2. If a person exerts a force of 16 lb on the piston while Inflating a tire, what pressure does this produce on the air in the pump?
Answer:
The pressure produced on the air in the pump is 37.209 pounds per square inch.
Explanation:
By definition, the pressure is the force exerted on the piston divided by its area. Given that, force is distributed uniformly on the piston area, the formula to determine the pressure is:
[tex]p = \frac{F}{A}[/tex]
Where:
[tex]p[/tex] - Pressure, measured in pounds per square inch.
[tex]F[/tex] - Force exerted on the piston, measured in pounds.
[tex]A[/tex] - Piston area, measured in square inches.
If [tex]F = 16\,lb[/tex] and [tex]A = 0.43\,in^{2}[/tex], the pressure produced on the air in the pump is:
[tex]p = \frac{16\,lb}{0.43\,in^{2}}[/tex]
[tex]p = 37.209\,psi[/tex]
The pressure produced on the air in the pump is 37.209 pounds per square inch.
According to Newton, when the distance between two interacting objects doubles, the gravitational force is
Answer:
1/4 of its original value
Explanation:
Newton's law of universal gravitation states that when two bodies of masses M₁ and M₂ interact, the force of attraction (F) between these bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance (r) between these bodies. i.e
F ∝ [tex]\frac{M_1 M_2}{r^2}[/tex] ------------(i)
From the equation above, it can be deduced that;
F ∝ [tex]\frac{1}{r^2}[/tex]
=> F = G [tex]\frac{1}{r^2}[/tex] -----------(ii)
Where;
G = constant of proportionality called the gravitational constant
Equation (ii) can be re-written as
Fr² = G
=> F₁r₁² = F₂r₂² -----------(iii)
Where;
F₁ and r₁ are the initial values of the force and distance respectively
F₂ and r₂ are the final values of the force and distance respectively
From the question, if the distance doubles i.e;
r₂ = 2r₁,
Then the final value of the gravitational force F₂ is calculated as follows;
Substitute the value of r₂ = 2r₁ into equation (iii) as follows;
F₁r₁² = F₂(2r₁)²
F₁r₁² = 4F₂r₁² [Divide through by r₁²]
F₁ = 4F₂ [Make F₂ subject of the formula]
F₂ = F₁ / 4 [Re-write this]
F₂ = [tex]\frac{1}{4} F_1[/tex]
Therefore the gravitational force will be 1/4 of its original value when the distance between the bodies doubles.
A particle with kinetic energy equal to 282 J has a momentum of magnitude 26.4 kg · m/s. Calculate the speed (in m/s) and the mass (in kg) of the particle.
Answer:
[tex]v=21.36\,\,\frac{m}{s}\\[/tex]
[tex]m=1.2357\,\,kg[/tex]
Explanation:
Recall the formula for linear momentum (p):
[tex]p = m\,v[/tex] which in our case equals 26.4 kg m/s
and notice that the kinetic energy can be written in terms of the linear momentum (p) as shown below:
[tex]K=\frac{1}{2} m\,v^2=\frac{1}{2} \frac{m^2\,v^2}{m} =\frac{1}{2}\frac{(m\,v)^2}{m} =\frac{p^2}{2\,m}[/tex]
Then, we can solve for the mass (m) given the information we have on the kinetic energy and momentum of the particle:
[tex]K=\frac{p^2}{2\,m}\\282=\frac{26.4^2}{2\,m}\\m=\frac{26.4^2}{2\,(282)}\,kg\\m=1.2357\,\,kg[/tex]
Now by knowing the particle's mass, we use the momentum formula to find its speed:
[tex]p=m\,v\\26.4=1.2357\,v\\v=\frac{26.4}{1.2357} \,\frac{m}{s} \\v=21.36\,\,\frac{m}{s}[/tex]
Why can a magnetic monopole not exist, assuming Maxwell's Equations are currently correct and complete?
Answer:
Because closed magnetic field loops have to be formed between both ends of the magnet, a magnet will always have two poles.
Explanation:
Magnetic Monopoles do not exist in nature because a magnetic field always forms a loop that runs from one end of the magnet to the other.
Since this loop of the magnetic field has an origination and termination point which are at the two ends of the magnet (North and South poles). A magnet will always be bipolar which is in this case, North and South; even at an atomic level.
You have a 2m long wire which you will make into a thin coil with N loops to generate a magnetic field of 3mT when the current in the wire is 1.2A. What is the radius of the coils and how many loops, N, are there
Answer:
radius of the loop = 7.9 mm
number of turns N ≅ 399 turns
Explanation:
length of wire L= 2 m
field strength B = 3 mT = 0.003 T
current I = 12 A
recall that field strength B = μnI
where n is the turn per unit length
vacuum permeability μ = [tex]4\pi *10^{-7} T-m/A[/tex] = 1.256 x 10^-6 T-m/A
imputing values, we have
0.003 = 1.256 x 10^−6 x n x 12
0.003 = 1.507 x 10^-5 x n
n = 199.07 turns per unit length
for a length of 2 m,
number of loop N = 2 x 199.07 = 398.14 ≅ 399 turns
since there are approximately 399 turns formed by the 2 m length of wire, it means that each loop is formed by 2/399 = 0.005 m of the wire.
this length is also equal to the circumference of each loop
the circumference of each loop = [tex]2\pi r[/tex]
0.005 = 2 x 3.142 x r
r = 0.005/6.284 = [tex]7.9*10^{-4} m[/tex] = 0.0079 m = 7.9 mm
a heat engine with an efficiency of 30.0% performs 2500 j of work. how much heat is discharged to the lower temperature reservoir
Answer:
Q₂ = 5833.33 J
Explanation:
First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:
η = W/Q₁
where,
η = efficiency of engine = 30% = 0.3
W = Work done by engine = 2500 J
Q₁ = Heat supplied to the engine = ?
Therefore,
0.3 = 2500 J/Q₁
Q₁ = 2500 J/0.3
Q₁ = 8333.33 J
Now, we find the heat discharged to lower temperature reservoir by using the formula of work:
W = Q₁ - Q₂
Q₂ = Q₁ - W
where,
Q₂ = Heat discharged to the lower temperature reservoir = ?
Therefore,
Q₂ = 8333.33 J - 2500 J
Q₂ = 5833.33 J
Consider a sound wave modeled with the equation s(x, t) = 3.00 nm cos(3.50 m−1x − 1,800 s−1t). What is the maximum displacement (in nm), the wavelength (in m), the frequency (in Hz), and the speed (in m/s) of the sound wave?
Answer:
- maximum displacement = 3.00nm
- λ = 1.79m
- f = 286.47 s^-1
Explanation:
You have the following equation for a sound wave:
[tex]s(x,t)=3.00nm\ cos(3.50m^{-1}x- 1,800s^{-1} t)[/tex] (1)
The general form of the equation of a sound wave can be expressed as the following formula:
[tex]s(x,t)=Acos(kx-\omega t)[/tex] (2)
A: amplitude of the wave = 3.00nm
k: wave number = 3.50m^-1
w: angular frequency = 1,800s^-1
- The maximum displacement of the wave is given by the amplitude of the wave, then you have:
maximum displacement = A = 3.00nm
- The wavelength is given by :
[tex]\lambda=\frac{2\pi}{k}=\frac{2\pi}{3.50m^{-1}}=1.79m[/tex]
The values for the wavelength is 1.79m
- The frequency is:
[tex]f=\frac{\omega}{2\pi}=\frac{1,800s^{-1}}{2\pi}=286.47s^{-1}[/tex]
The frequency is 286.47s-1
A length of organ pipe is closed at one end. If the speed of sound is 344 m/s, what length of pipe (in cm) is needed to obtain a fundamental frequency of 50 Hz
Answer:
The length = 27.52m
Explanation:
v=f x wavelength
An object is launched at a velocity of 20 m/s in a direction making an angle of 25° upward with the horizontal.
a) What is the maximum height reached by the object?
b) What is the total flight time (between launch and touching the ground) of the object?
c) What is the horizontal range (maximum x above ground) of the object?
d) What is the magnitude of the velocity of the object just before it hits the ground?
Answer:
(a) max. height = 3.641 m
(b) flight time = 1.723 s
(c) horizontal range = 31.235 m
(d) impact velocity = 20 m/s
Above values have been given to third decimal. Adjust significant figures to suit accuracy required.
Explanation:
This problem requires the use of kinematics equations
v1^2-v0^2=2aS .............(1)
v1.t + at^2/2 = S ............(2)
where
v0=initial velocity
v1=final velocity
a=acceleration
S=distance travelled
SI units and degrees will be used throughout
Let
theta = angle of elevation = 25 degrees above horizontal
v=initial velocity at 25 degrees elevation in m/s
a = g = -9.81 = acceleration due to gravity (downwards)
(a) Maximum height
Consider vertical direction,
v0 = v sin(theta) = 8.452 m/s
To find maximum height, we find the distance travelled when vertical velocity = 0, i.e. v1=0,
solve for S in equation (1)
v1^2 - v0^2 = 2aS
S = (v1^2-v0^2)/2g = (0-8.452^2)/(2*(-9.81)) = 3.641 m/s
(b) total flight time
We solve for the time t when the vertical height of the object is AGAIN = 0.
Using equation (2) for vertical direction,
v0*t + at^2/2 = S substitute values
8.452*t + (-9.81)t^2 = 3.641
Solve for t in the above quadratic equation to get t=0, or t=1.723 s.
So time for the flight = 1.723 s
(c) Horiontal range
We know the horizontal velocity is constant (neglect air resistance) at
vh = v*cos(theta) = 25*cos(25) = 18.126 m/s
Time of flight = 1.723 s
Horizontal range = 18.126 m/s * 1.723 s = 31.235 m
(d) Magnitude of object on hitting ground, Vfinal
By symmetry of the trajectory, Vfinal = v = 20, or
Vfinal = sqrt(v0^2+vh^2) = sqrt(8.452^2+18.126^2) = 20 m/s
A particle is released as part of an experiment. Its speed t seconds after release is given by v (t )equalsnegative 0.4 t squared plus 2 t, where v (t )is in meters per second. a) How far does the particle travel during the first 2 sec? b) How far does it travel during the second 2 sec?
Answer:
a) 2.933 m
b) 4.534 m
Explanation:
We're given the equation
v(t) = -0.4t² + 2t
If we're to find the distance, then we'd have to integrate the velocity, since integration of velocity gives distance, just as differentiation of distance gives velocity.
See attachment for the calculations
The conclusion of the attachment will be
7.467 - 2.933 and that is 4.534 m
Thus, The distance it travels in the second 2 sec is 4.534 m