Answer:
The equation is:
[tex]L=3\,\,d^2\\[/tex]
and a beam with 10 in diagonal will support 300 lb
Step-by-step explanation:
The mathematical expression that represents the statement:
"The maximum load a beam will support varies directly with the square of the diagonal of the beam’s cross-section. "
can be written as:
[tex]L=k\,\,d^2[/tex]
where k is the constant of proportionality
To find the constant we use the data they provide: "A beam with diagonal 6 in will support a maximum load of 108 lb.":
[tex]L=k\,\,d^2\\108 = k\,\,(6)^2\\k=\frac{108}{36} \,\,\frac{lb}{in^2}\\ k = 3\,\,\frac{lb}{in^2}[/tex]
Now we can use the proportionality found above to find the maximum load for a 10 in diagonal beam:
[tex]L=3\,\,d^2\\L=3\,\,(10)^2\\L=300 \,\,lb[/tex]
Answer:
L=3d^2 the beam will support 300 pounds
Step-by-step explanation:
108=k x 6^2
Dividing by 6^2=36 gives k=3, so an equation that relates L and d is
L=3d^2 d=10 yields
3(10)^2=300
So a beam with a 10in diagonal will support a 300lb load.
given that 3*6=12 and 2*5=9, then a*b may be defined as
Answer:
I noticed a pattern:
3 * 2 + 6 = 12 and 2 * 2 + 5 = 9
This means that a*b = 2a + b.
What is the value of the angle marked with xxx?
Answer:
Here you go!! :)
Step-by-step explanation:
Given that the sides of the quadrilateral are 3.3
The measure of one angle is 116°
We need to determine the value of x.
Value of x:
Since, the given quadrilateral is a rhombus because it has all four sides equal.
We know the property that the opposite sides of the rhombus are equal.
The measure of the opposite angle is 116°
x = measure of opposite angle
x = 116°
Then, the value of x is 116°
Therefore, the value of x is 116°
Answer:
In the diagram, the measurement of x is 87°
Step-by-step explanation:
In this diagram, this shape is a quadrilateral. This quadrilateral in this picture is known as rhombus. In a rhombus, the consecutive angles are supplementary meaning they have a sum of 180°. Consecutive means the angles are beside each other. So, we will subtract 93 from 180 to find the value of x.
180 - 93 = 87
The measurement of x is 87°
Please answer this correctly
Assuming the coin is not weighted and is a fair and standard coin - the chance of flipping head is 1/2. You can either flip head or tails, there are no other possible outcomes.
Please help me !!!!!
Answer:
11.5
Step-by-step explanation:
Put the numbers in order from smallest to largest
2,2,6,9,9,11,11,12,32,43,46,54,54,59
The median is the middle number
There are 14 numbers so the middle is between 7 and 8
2,2,6,9,9,11,11, 12,32,43,46,54,54,59
Take the average of the 7th and 8th numbers
(11+12)/2 = 11.5
The median is 11.5
Answer: 11.5
Step-by-step explanation:
The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.
Ordering the data from least to greatest, we get:
2 2 6 9 9 11 11 12 32 43 46 54 54 59
As you can see, we do not have just one middle number but we have a pair of middle numbers, so the median is the average of these two numbers:
Median= 11+12/2=11.5
In 1998, the average price for bananas was 51 cents per pound. In 2003, the following 7 sample prices (in cents) were obtained from local markets:
50, 53, 55, 43, 50, 47, 58.
Is there significant evidence to suggest that the average retail price of bananas is different than 51 cents per pound? Test at the 5% significance level.
Answer:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Step-by-step explanation:
Info given
50, 53, 55, 43, 50, 47, 58.
We can calculate the sample mean and deviation with this formula:
[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]
[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2)}{n-1}}[/tex]
represent the mean height for the sample
[tex]s=5.014[/tex] represent the sample standard deviation for the sample
[tex]n=7[/tex] sample size
represent the value that we want to test
[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value
Hypothesis to test
We want to test if the true mean is equal to 51, the system of hypothesis would be:
Null hypothesis:[tex]\mu = 51[/tex]
Alternative hypothesis:[tex]\mu \neq 51[/tex]
The statistic is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
Replacing we got:
[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]
The degrees of freedom are given by:
[tex]df=n-1=7-1=6[/tex]
The p value for this case would be given:
[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]
The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51
Which functions have an axis of symmetry of x = -2? Check all that apply. A. f(x) = x^2 + 4x + 3 B. f(x) = x^2 - 4x - 5 C. f(x) = x^2 + 6x + 2 D. f(x) = -2x^2 - 8x + 1 E. f(x) = -2x^2 + 8x - 2
Answer:
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
Step-by-step explanation:
The axis of symmetry is found by h = -b/2a where ax^2 +bx +c
A. f(x) = x^2 + 4x + 3
h = -4/2*1 = -2 x=-2
B. f(x) = x^2 - 4x - 5
h = - -4/2*1 = 4/2 =2 x=2 not -2
C. f(x) = x^2 + 6x + 2
h = -6/2*1 = -3/2 = x=-3/2 not -2
D. f(x) = -2x^2 - 8x + 1
h = - -8/2*-2 = 8/-4 =-2 x=-2
E. f(x) = -2x^2 + 8x - 2
h = - 8/2*-2 = -8/-4 =2 x=2 not -2
Answer:
Hey there! The answer to this question is
A. f(x) = x^2 + 4x + 3
D. f(x) = -2x^2 - 8x + 1
Express it in slope-intercept form
Answer:
Step-by-step explanation:
Can u help me
Answer:
cant see the picture
Step-by-step explanation:
The life of light bulbs is distributed normally. The standard deviation of the lifetime is 25 hours and the mean lifetime of a bulb is 510 hours. Find the probability of a bulb lasting for at most 552 hours.
Answer:
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Step-by-step explanation:
Step(i):-
Given mean of the life time of a bulb = 510 hours
Standard deviation of the lifetime of a bulb = 25 hours
Let 'X' be the random variable in normal distribution
Let 'x' = 552
[tex]Z = \frac{x-mean}{S.D} = \frac{552-510}{25} =1.628[/tex]
Step(ii):-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = P(Z>1.63)
= 1- P( Z< 1.63)
= 1 - ( 0.5 + A(1.63)
= 1- 0.5 - A(1.63)
= 0.5 -A(1.63)
= 0.5 -0.4485
= 0.0515
Conclusion:-
The probability of a bulb lasting for at most 552 hours.
P(x>552) = 0.0515
Add the two rational expressions: (x/x+1)+(2/x)
me Left:1:23:57
Mandeep Sharma: Attempt 1
Question 1 (2 points)
A scientist records the internal temperature of a kiln that has been turned off for maintenance after
a limestone calcination reaction as 794 °C. He then leaves the room to allow the kiln cool further.
The room temperature is 25°C. An equation that models the temperature of the cooling kiln (T in °C,
t in min) is as follows:
T(t) = 1.0.73l/3.7 + 25
How fast is the reaction cooling rate (%T lost/min) to the nearest whole number?
Your Answer:
Answer
Answer:
c and I will talk to you later today or tomorrow morning and then I will
Step-by-step explanation:
email to you later today to see you and the kids are doing well and that you
What is the value of x?
Answer:
x=98°
Step-by-step explanation:
The angles of a triangle must equal 180°.
To get the third angle (G) you must do: 180°-53°-45°
That will give you 82°
Anglr G and angle x create a straight line which is 180°.
so to get the answer you must do 180°-G=x
180°-82°=98°
Therefore x=98°
Betty can mow a lawn in 60 minutes. Melissa can mow the same lawn in 30 minutes. How long does it take for both Betty and Melissa to mow the lawn if they are working together? Express your answer as a reduced fraction.
Answer:
20 minutes
Step-by-step explanation:
Melissa works as fast as two Bettys, so working together, they get the job done at the rate 3 Bettys could do it. That time is (60 minutes)/3 = 20 minutes.
Working together, Betty and Melissa can mow the lawn in 20 minutes.
_____
You can also think in terms of mowing rates as lawns per minute. The total mowing rate is ...
Betty's rate + Melissa's rate = (1/60 lawns/min) +(1/30 lawns/min)
= (1/60 +2/60) lawns/min = 1/20 lawns/min
The inverse rate is then ...
20/1 min/lawn
Together, they take 20 minutes to mow 1 lawn.
Suppose you are looking for a house to purchase, and have a maximum price you can afford. To help decide which neighborhoods to shop for a home in, which is most useful to you?a. the mean house priceb. the median house pricec. the mode house priced. the SD of the house pricee. the range of the house price
Answer:
Mean
Step-by-step explanation:
-Mean is the average calculated by adding up all the prices and dividing them by the number of prices.
-Median is the middle value in the group of prices after they are organized from the lowest to the highest.
-Mode is the price that is repeated more frequently in the data set.
-SD refers to the quantity of variation between the prices.
-The range is the difference between the highest and the lowest price.
According to this, the answer is that the most option is the mean house price because it indicates the center of the values and it allows to get an overall idea of the prices which would allow you to have a clear view about the neighborhoods where you can shop for a home in.
The other options are not right because the median would indicate the middle value and the mode the most repeated value but they don't necessarily provide an exact image of the prices as for example, the most repeated value does not necessarily reflects the values of all the houses in the neighborhood. Also, SD calculates the variation and the range calculates the difference between prices which doesn't provide a clear picture about the neighborhoods where you can afford a house.
Please answer this correctly without making mistakes
Answer:
A digit that makes this sentence true is 4.
Step-by-step explanation:
Since the first digit in the number to the left is 3, you simply have to find a digit greater than 3. Here are the possibilities:
4
5
6
7
8
and
9
Out of any of these you can choose, I chose 4.
9514 1404 393
Answer:
3, or any greater digit
Step-by-step explanation:
Suppose the digit is 'd'. Then the value on the right is ...
69.436 +100d
Subtracting the value on the left, we want the difference greater than 0.
69.436 +100d - 352.934 > 0
100d -293.498 > 0 . . . . simplify
100d > 293.498 . . . . . . . add 293.498
d > 2.93498 . . . . . . . . . . divide by 100
That is d is any single digit greater than 2.9. Those digits are ...
d ∈ {3, 4, 5, 6, 7, 8, 9}
Any digit 3 or greater makes the sentence true.
Please answer this correctly
Answer:
1/8
Step-by-step explanation:
Total cards = 8
Card with 4 = 1
P(4) = 1/8
Determine the sum of the arithmetic series 6 + 11 + 16 +......
91.
Answer:
873
Step-by-step explanation:
so the equation is: 5x+1
sum is:
[tex] \frac{first \: one \: + \: last \: one}{2} \times quantity \: of \: terms \\ [/tex]
we have 6( 5×1+1) to 91 (5×18+1)
so we have 18 terms
then:
[tex] \frac{91 + 6}{2} \times 18 = 873[/tex]
Solve of the following equations for x: x + 3 = 6
Answer:
X = 3Step-by-step explanation:
[tex]x + 3 = 6[/tex]
Move constant to R.H.S and change its sign:
[tex]x = 6 - 3[/tex]
Calculate the difference
[tex]x = 3[/tex]
Hope this helps...
Good luck on your assignment..
Calculate sales tax using the following information: Taxable amount of the sale: $ 142 Sales tax percentage: 7 % What is the amount of the sales tax? Round the answer to the nearest cent (hundredths).
Answer:
Step-by-step explanation:
142(.07)= 9.94 amount of the sales tax
$142+9.94= $151.94
i need help please!!!
Answer:
1 = 95
2 = 77
3 = 85
4 = 103
Step-by-step explanation:
Inscribed angles are half their arc that their 2 lines intersect.
Identify which quadrant of the coordinate plane the point (−3, 15) lies in.
Answer:
Quadrant II.
Step-by-step explanation:
Quadrant | has positive x and y coordinates.
Quadrant || has negative x and positive y coordinates.
Quadrant ||| has negative x and y coordinates.
Quadrant |V has positive x and negative y coordinates.
Since -3 is negative and 15 is positive, the answer is Quadrant II.
I NEED HELP ASAP PLEASE! :)
Answer:
option 1
Step-by-step explanation:
[tex]r=\sqrt{(5\sqrt{2})^{2}+(-5\sqrt{2})^{2} } \\\\=\sqrt{25*2+25*2}\\\\ =\sqrt{50+50}\\\\=\sqrt{100}\\\\=10[/tex]
[tex]x=tan^{-1}(\frac{-5\sqrt{2}}{5\sqrt{2}})\\\\x=tan^{-1} (-1)\\x=\frac{7\pi}{4}[/tex]
[tex]re^{ix}=10e^{i\frac{7\pi}{4}}[/tex]
Which of the following is not an example of a quadratic function?
1. f(x)= (3x-2)(4x +7) 2. f(x) = (2x-1)2
3. f(x)= -7x²+8X
4. f(x)= 8x4–3x+5x2
Answer:
4. f(x) = 8x^4 – 3x + 5x^2
Step-by-step explanation:
In choices 1., 2., and 3., each function is a 2nd degree function since the term with the highest degree has an exponent of 2 on x. In choice 4., the function is a 4th degree function since there is a term with x^4, and that is the highest exponent on x.
Answer: 4. f(x) = 8x^4 – 3x + 5x^2
I need help asap I don't understand this
Answer:
[tex]\boxed{\sf \ \ \ a=-2, \ b = 1 \ \ \ }[/tex]
Step-by-step explanation:
Hello,
saying that the function is continuous means that you cannot have a "jump" in the graph of the function
so we want
a*(-3)+b=7 and a*4+b=-7
it comes
(1) -3a + b = 7
(2) 4a + b = -7
(2)-(1) gives 4a + b + 3a - b =7a = -7-7 = -14
so a = -14/7 = -2
we replace in (1)
b = 7 + 3*(-2) = 7 - 6 = 1
hope this helps
The Gold Bar has a trapezium cross-sectional area Gold has a density of 19.3 grams per
Answer: 22.3 quarter
Step-by-step explanation:
Answer:
13.896 kg
Step-by-step explanation:
Write an equation that represents the relationship.Please help!
Answer:
n = r - 2.5
Step-by-step explanation:
We have the following data:
7 4.5
8 5.5
10 7.5
12 9.5
Now, what we will do is what happens if we subtract each one:
7 - 4.5 = 2.5
8 - 5.5 = 2.5
10 - 7.5 = 2.5
12 - 9.5 = 2.5
The difference is always kept constant, therefore the equation would be:
n = r - 2.5
the linear equation y=2x represents the cost y of x pounds of pears. which order pair lies on the graph of the equation? A. (2,4) B. (1,0) C.(10,5) D. (4,12)
Answer:
A. (2, 4)
Step-by-step explanation:
The ordered pairs represent (x, y). Since you have y =2x, this is the same as ...
(x, 2x)
That is, the second number in the pair needs to be twice the first number in the pair. Since you know your times tables, you know that this is not the case for (1, 0), (10, 5) or (4, 12). Those values of x would give (1, 2), (10, 20), (4, 8).
It is the case that you have (x, 2x) for (2, 4).
The point (2, 4) lies on the graph of y = 2x.
An article reported that for a sample of 52 kitchens with gas cooking appliances monitored during a one-week period, the sample mean CO2 level (ppm) was 654.16, and the sample standard deviation was 165.4.
Required:
a. Calculate and interpret a 9596 (two-sided) confidence interval for true average C02 level in the population of all homes from which the sample was selected.
b. Suppose the investigators had made a rough guess of 175 for the value of s before collecting data. What sample size would be necessary to obtain an interval width of 50 ppm for a confidence level of 95%?
Answer:
a) [tex]654.16-2.01\frac{165.4}{\sqrt{52}}=608.06[/tex]
[tex]654.16+2.01\frac{165.4}{\sqrt{52}}=700.26[/tex]
b) [tex]n=(\frac{1.960(175)}{25})^2 =188.23 \approx 189[/tex]
So the answer for this case would be n=189 rounded up to the nearest integer
Step-by-step explanation:
Part a
[tex]\bar X=654.16[/tex] represent the sample mean
[tex]\mu[/tex] population mean (variable of interest)
s=165.4 represent the sample standard deviation
n =52represent the sample size
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The degrees of freedom aregiven by:
[tex]df=n-1=52-1=51[/tex]
Since the Confidence is 0.95 or 95%, the significance [tex]\alpha=0.05[/tex] and [tex]\alpha/2 =0.025[/tex], and the critical value would be [tex]t_{\alpha/2}=2.01[/tex]
Now we have everything in order to replace into formula (1):
[tex]654.16-2.01\frac{165.4}{\sqrt{52}}=608.06[/tex]
[tex]654.16+2.01\frac{165.4}{\sqrt{52}}=700.26[/tex]
Part b
The margin of error is given by this formula:
[tex] ME=z_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (a)
And on this case we have that ME =25 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=(\frac{z_{\alpha/2} s}{ME})^2[/tex] (b)
The critical value for this case wuld be [tex]z_{\alpha/2}=1.960[/tex], replacing into formula (b) we got:
[tex]n=(\frac{1.960(175)}{25})^2 =188.23 \approx 189[/tex]
So the answer for this case would be n=189 rounded up to the nearest integer
Point p is the centroid of jkl. Kr=72 and Pq=30 what is kp?
Answer:
B (48)
Step-by-step explanation:
One particular property of medians is the 2/3 ratio. Basically, the centroid separates the median into two line segments, and the longer line segment is 2/3 of the median length. So, 72 x 2/3 is 48.
A line with points (-4.0) and (-3.1)
has a slope of?
Slope is the change in y over the change in x
Slope = (1-0) /( -3 - -4)
Slope = 1/1
Slope = 1
A boat that can travel 18 mph in still water can travel 21 miles downstream in the same amount of time that it can travel 15 miles upstream. Find the speed (in mph) of the current in the river.
Hey there! I'm happy to help!
We see that if the river isn't moving at all the boat can move at 18 mph (most likely because it has an engine propelling it.)
We want to set up a proportion where our 21 miles downstream time is equal to our 15 miles upstream time so we can find the speed. A proportion is basically showing that two ratios are equal. Since our downstream distance and upstream distance can be done in the same amount of time, we will write it as a proportion.
We want to find the speed of the river. We will use r to represent the speed of the river. When going downstream, the boat will go faster, so it will have a higher mph. So, our speed going down is 18+r. When you are going upstream, it's the opposite, so it will be 18-r.
[tex]\frac{distance}{speed} =\frac{21}{18+r} = \frac{15}{18-r}[/tex]
So, how do we figure out what r is now? Well, one nice thing to know about proportions is that the product of the items diagonal from each other equals the product of the other items. Basically, that means that 15(18+r) is equal to 21(18-r). This is a very nice trick to solve proportions quickly. We see that we have made an equation and now we can solve it!
15(18+r)=21(18-r)
We use the distributive property to undo the parentheses.
270+15r=378-21r
We subtract 270 from both sides.
15r=108-21
We add 21 to both sides.
36r=108
We divide both sides by 36.
r=3
Therefore, the speed of the river is 3 mph.
You also could have noticed that 18mph to 21 mph is +3, and 18mph to 15 mph -3 in -3 mph, so the speed of the river is 3 mph. That would have been a quicker way to solve it XD!
Have a wonderful day!