the mass of a brick is 4 kg, find the mass of water displaced by it when completely immersed in water.​

Answers

Answer 1

Answer:

The correct answer is = 1.6

Explanation:

Density of water = 1000kg/m³ = d₁

Mass of brick = 4kg = m

Density of brick = 2.5 g/cm³ = 2.5 × 1000 =2500 kg/m³ = d₂

Volume of brick = m/d₂ = 4/2500 =16/10000 = 0.0016 L = v

Buoyant Force = v × d₁ × g          (g= acceleration due to gravity =9.8m/s²)

= 0.0016 × 1000 × 9.8 = 15.68 Newtons

By the Archimedes' Principle, the buoyant force is equal to the weight of the liquid displaced by an object.

Weight of the water displaced=Buoyant Force

=Mass of water displaced × g,

as weight = mass × acceleration due to gravity

15.68= mass of brick × 9.8

15.68/9.8 =Mass of water displaced

1.6 kg = Mass of water displaced


Related Questions

The efficiency of a carnot cycle is 1/6. If on reducing the temperature of the sink 75 degree Celsius, the efficiency becomes 1/3, determine the initial and final temperature between which the cycle is working.

Answers

Answer:

375 and 450

Explanation:

The computation of the initial and the final temperature is shown below:

In condition 1:

The efficiency of a Carnot cycle is [tex]\frac{1}{6}[/tex]

So, the equation is

[tex]\frac{1}{6} = 1 - \frac{T_2}{T_1}[/tex]

For condition 2:

Now if the temperature is reduced by 75 degrees So, the efficiency is [tex]\frac{1}{3}[/tex]

Therefore the next equation is

[tex]\frac{1}{3} = 1 - \frac{T_2 - 75}{T_1}[/tex]

Now solve both the equations

solve equations (1) and (2)

[tex]2(1 - T_2/T_1) = 1 - (T_2 - 75)/T_1\\\\2 - 1 = 2T_2/T_1 - (T_2 - 75)/T_1\\\\ = (T_2 + 75)/T_1T_1 = T_2 + 75\\\Now\ we\ will\ Put\ the\ values\ into\ equation (1)\\\\1/6 = 1 - T_2/(T_2 + 75)\\\\1/6 = (75)/(T_2 + 75)[/tex]

T_2 + 450 = 75

T_2 = 375

Now put the T_2 value in any of the above equation

i.e

T_1 = T_2 + 75

T_1 = 375 + 75

= 450

An elevator filled with passengers has a mass of 1,700 kilograms and accelerates upward from rest at a rate of 1 meters/seconds 2 for 1.8 seconds. Calculate the tension in the cable (in Newtons) supporting the elevator during this time.

Answers

Answer:

The tension in the cable is 18371.9 newtons.

Explanation:

Physically speaking, the tension can be calculated with the help of the Second Newton's Law. The upward acceleration means that magnitude of tension must be greater than weight of elevator, whose equation of equilibrium is described below:

[tex]\Sigma F = T - m\cdot g = m \cdot a[/tex]

Where:

[tex]T[/tex] - Tension in the cable, measured in newtons.

[tex]m[/tex] - Mass of the elevator, measured in kilograms.

[tex]g[/tex] - Gravity constant, measured in meters per square second.

[tex]a[/tex] - Net acceleration of the elevator, measured in meters in square second.

Now, tension is cleared and resultant expression is also simplified:

[tex]T = m \cdot (a + g)[/tex]

If [tex]m = 1700\,kg[/tex], [tex]a = 1\,\frac{m}{s^{2}}[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], the tension in the cable is:

[tex]T = (1700\,kg)\cdot \left(1\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}} \right)[/tex]

[tex]T = 18371.9\,N[/tex]

The tension in the cable is 18371.9 newtons.

An experiment is set up to test the angular resolution of an optical device when red light (wavelength ????r ) shines on an aperture of diameter D . Which aperture diameter gives the best resolution? D=(1/2)????r D=????r D=2????r

Answers

Explanation:

As per Rayleigh criterion, the angular resolution is given as follows:

[tex]\theta=\frac{1.22 \lambda}{D}[/tex]

From this expression larger the size of aperture, smaller will be the value of angular resolution and hence, better will be the device i.e. precision for distinguishing two points at very high angular difference is higher.

What is Ohm's Law, and how does it work in real life.

Answers

Explanation:

Ohms law states that the electrical current present in a metallic conductor is directly proportional to the potential difference between the metallic conductor and inversely proportional to the resistance therefore if the voltage is increased resistance also increases provided that temperature and other physical properties remains constant V=IR

a wave with a high amplitude______?

Answers

. . . is carrying more energy than a wave in the same medium with a lower amplitude.

Light in vacuum is incident on the surface of a glass slab. In the vacuum the beam makes an angle of 38.0° with the normal to the surface, while in the glass it makes an angle of 26.0° with the normal. What is the index of refraction of the glass?

Answers

Answer:

n_glass = 1.404

Explanation:

In order to calculate the index of refraction of the light you use the Snell's law, which is given by the following formula:

[tex]n_1sin\theta_1=n_2sin\theta_2[/tex]         (1)

n1: index of refraction of vacuum = 1.00

θ1: angle of the incident light respect to normal of the surface = 38.0°

n2: index of refraction of glass = ?

θ2: angle of the refracted light in the glass respect to normal = 26.0°

You solve the equation (1) for n2 and replace the values of all parameters:

[tex]n_2=n_1\frac{sin\theta_1}{sin\theta_2}=(1.00)\frac{sin(38.0\°)}{sin(26.0\°)}\\\\n_2=1.404[/tex]

The index of refraction of the glass is 1.404

If you place a 50 Volt power source across a 10 Ohm resistor, what will the current
be?

Answers

Answer:

use voltage=current*resistance

v=i*r

50=i*10

50/10=i

i=5

hope it's clear

Given the following data:

Voltage = 50 Volt

Resistance = 10 Ohm

To determine the current flowing through the circuit, we would apply Ohm's law:

Mathematically, Ohm's law is given by the formula;

[tex]V = IR[/tex]

Where;

V is voltage measured in voltage.

I is current measured in amperes.

R is resistance measured in ohms.

Making I the subject of formula, we have:

[tex]I = \frac{V}{R}[/tex]

Substituting the given parameters into the formula, we have;

[tex]I = \frac{50}{10}[/tex]

Current, I = 5 Ampere.

Read more: https://brainly.com/question/23754122

The sound level of one person talking at a certain distance from you is 61 dB. If she is joined by 5 more friends, and all of them are talking at the same time as loudly as she is, what sound level are you being exposed to?

Answers

Answer:

Explanation:

For sound level in decibel scale the relation is

dB = 10 log I / I₀ where I₀ = 10⁻¹² and I is intensity of sound whose decibel scale is to be calculated .

Putting the given values

61 = 10 log I / 10⁻¹²

log I / 10⁻¹² = 6.1

I = 10⁻¹² x 10⁶°¹

[tex]=10^{-5.9}[/tex]

intensity of sound of 5 persons

[tex]I=5\times 10^{-5.9}[/tex]

[tex]dB=10log\frac{5 X 10^{-5.9}}{10^{-12}}[/tex]

= 10log 5 x 10⁶°¹

= 10( 6.1 + log 5 )

= 67.98

sound level will be 67.98 dB .

a certain volume of dry air at NTP is allowed to expand five times of it original volume under adiabatic condition.calculate the final pressure.(air=1.4)​

Answers

Answer:

Final pressure 0.105atm

Explanation:

Let V1 represent the initial volume of dry air at NTP.

under adiabatic condition: no heat is lost or  gained by the system. This does not implies that the constant temperature throughout the system , but rather that no heat gained or loss by the system.

Adiabatic expansion:

[tex]\frac{T_1}{T_2} =(\frac{V_1}{V_2} )^{\gamma -1}[/tex]

273/T2=(5V1/V1)^(1.4−1)

273/T2=5^0.4

Final temperature  T2=143.41 K

Also

P1/P2=(V2/V1)^γ

1/P2=(5V1/V1)^1.4

Final pressure P2=0.105atm

A closely wound, circular coil with radius 2.50 cmcm has 740 turns. Part A What must the current in the coil be if the magnetic field at the center of the coil is 0.0760 TT?

Answers

Answer:

The current in the coil is 4.086 A

Explanation:

Given;

radius of the circular coil, R = 2.5 cm = 0.025 m

number of turns of the circular coil, N = 740 turns

magnetic field at the center of the coil, B = 0.076 T

The magnetic field at the center of the coil is given by;

[tex]B = \frac{N\mu_o I}{2R}[/tex]

where;

μ₀ is permeability of free space = 4 x 10⁻⁷ m/A

I is the current in the coil

R is radius of the coil

N is the number of turns of the coil

The current in the circular coil is given by

[tex]B = \frac{N\mu_o I}{2R} \\\\I = \frac{2BR}{N\mu_o} \\\\I =\frac{2*0.076*0.025}{740*4\pi*10^{-7}} \\\\I = 4.086 \ A[/tex]

Therefore, the current in the coil is 4.086 A

Rope BCA passes through a pulley at point C and supports a crate at point A. Rope segment CD supports the pulley and is attached to an eye anchor embedded in a wall. Rope segment BC creates an angle of ϕ = 51.0 ∘ with the floor and rope segment CD creates an angle θ with the horizontal. If both ropes BCA and CD can support a maximum tensile force Tmax = 120 lb , what is the maximum weight Wmax of the crate that the system can support? What is the

Answers

Answer:

Wmax = 63.65 ≈ 64 lb

Explanation:

A solid wooden door, 90 cm wide by 2.0 m tall, has a mass of 35 kg. It is open and at rest. A small 500-g ball is thrown perpendicular to the door with a speed of 20 m/s and hits the door 60 cm from the hinged side, causing it to begin turning. The ball rebounds along the same line with a speed of 16.0 m/s relative to the ground.

Required:
How much energy is lost during this collision?

a. 15J
b. 16J
c. 13J
d. 4.8J
e. 30J

Answers

Answer:

the kinetic energy lost in the collison is a) 30 J

Explanation:

given data

mass of door m1 = 35 kg

width a = 90 cm = 0.9 m

the mass of ball  m2 = 500 g = 0.5 kg

initial speed of ball  u = 20 m/s

final speed of ball  v = 16 m/s

r = 60 cm = 0.6 m

soluion

we will consider here final angular speed of the door = w

so now we use conservation of angular momentum  that is

Li = Lf    ........................1

that is express as

m2 × u × r = I × w + m2 × v × r

put here value and we get  

0.5 × 20 × 0.6 = [tex](m1 \times \frac{a^2}{12})[/tex] × w + 0.5 × 16 × 0.6

solve it we get

w = 0.508 rad/s

so that here

the kinetic energy lost in the collison,

KE = KE initial - KE final     ..................2

put here value

KE = 0.5 × m2 × u² - (0.5 × I × w² + 0.5 × m2 × v²)

KE = 0.5 × (0.5 × 20² - (35 × 0.9² ÷ 12) × 0.508² - 0.5 × 16²) J

KE = 30 J

the kinetic energy lost in the collison is a) 30 J

Three solid, uniform, cylindrical flywheels, each of mass 65.0 kg and radius 1.47 m, rotate independently around a common axis through their centers. Two of the flywheels rotate in one direction at 8.94 rad/s, but the other one rotates in the opposite direction at 3.42 rad/s.

Required:
Calculate the magnitude of the net angular momentum of the system.

Answers

Answer:

the angular momentum is 1015.52 kg m²/s

Explanation:

given data

mass of each flywheel, m = 65 kg

radius of flywheel, r = 1.47 m

ω1 = 8.94 rad/s

ω2 = - 3.42 rad/s

to find out

magnitude of the net angular momentum

solution

we get here Moment of inertia that is express as

I = 0.5 m r²    .................1

put here value and we get

I = 0.5 × 65 × 1.47 × 1.47

I = 70.23 kg m²

and

now we get here Angular momentum that is express as

L = I × ω    ...........................2

and Net angular momentum will be

L = 2 × I x ω1 - I × ω2

put here value and we get

L = 2 × 70.23 × 8.94 - 70.23 × 3.42

L = 1015.52 kg m²/s

so

the angular momentum is 1015.52 kg m²/s

The magnitude of the net angular momentum of the system will be "1015.52 kg.m²/s".

Momentum

According to the question,

Flywheel's mass, m = 65 kg

Flywheel's radius, r = 1.47 m

ω₁ = 8.94 rad/s

ω₂ = 3.42 rad/s

We know,

The moment of inertia (I),

= 0.5 m r²

By substituting the values,

= 0.5 × 65 × 1.47 × 1.47

= 70.23 kg.m²

hence, The angular momentum be:

→ L = I × ω or,

     = 2 × I × ω₁ - l × ω₂

     = 2 × 70.23 × 8.94 - 70.23 × 3.42

     = 1015.52 kg.m²/s

Thus the above answer is correct.

Find out more information about momentum here:

https://brainly.com/question/25121535

Fermat's principle is of least time rather than of least distance. Would least distance apply for reflection? For refraction? Why are your answers different?

Answers

Answer:

Fermat's principle states that the path taken by a ray between two given points is the path that can be traversed in the least time.

Thus this least distance being the same as least time will only apply to reflection alone because in reflection light travels In the same direction so least distance will also mean least time. But for refraction light travels in different mediums at different speeds so least distance and least time paths will definately not be the same

The position of a particle is r(t)= (4.0t'i+ 2.4j- 5.6tk) m. (Express your answers in vector form.) (a) Determine its velocity (in m/s) and acceleration (in m/s2) as functions of time. (Use the following as necessary: t. Assume t is seconds, r is in meters, and v is in m/s, Do not include units in your answer.) v(t)= ________m/s a(t)= ________m/s2 (b) What are its velocity (in m/s) and acceleration (in m/s2) at time t 0? v(0) =_______ m/s a(0)=_______ m/s2

Answers

Corrected Question:

The position of a particle is r(t)= (4.0t²i+ 2.4j- 5.6tk) m. (Express your answers in vector form.)

(a) Determine its velocity (in m/s) and acceleration (in m/s²) as functions of time. (Use the following as necessary: t. Assume t is seconds, r is in meters, and v is in m/s, Do not include units in your answer.)

v(t)= ________m/s

a(t)= ________m/s²

(b) What are its velocity (in m/s) and acceleration (in m/s²) at time t 0?

v(0) =_______ m/s

a(0)=_______ m/s²

Answer:

(a)

v(t)= [tex]8ti - 5.6k[/tex] m/s

a(t)= 8i m/s²

(b)

v(0) = -5.6k m/s

a(0)= 8i m/s²

Explanation:

From the question, the position of the particle is given by;

r(t)= (4.0t²i+ 2.4j- 5.6tk)        -----------------(i)

(a)

(i)To get the velocity, v(t), of the particle, we'll take the first derivative of the position of the particle (given by equation (i)) with respect to time, t, as follows;

v(t) = [tex]\frac{dr(t)}{dt}[/tex] = [tex]\frac{d(4.0t^2i + 2.4j - 5.6tk)}{dt}[/tex]

v(t) = [tex]\frac{dr(t)}{dt}[/tex] = [tex]8ti +0j - 5.6k[/tex]

v(t) = [tex]8ti - 5.6k[/tex]          --------------------(ii)

(ii) To get the acceleration, a(t), of the particle, we'll take the first derivative of the velocity of the particle (given by equation (ii)) with respect to time, t, as follows;

a(t) = [tex]\frac{dv(t)}{dt}[/tex]  = [tex]\frac{d(8ti - 5.6k)}{dt}[/tex]

a(t) = 8i                    --------------------(iii)

(b)

(i) To get the velocity of the particle at time t = 0, substitute the value of t = 0 into equation (ii) as follows;

v(t) = [tex]8ti - 5.6k[/tex]  

v(0) = 8(0)i - 5.6k

v(0) = 0 - 5.6k

v(0) = -5.6k

(ii) To get the acceleration of the particle at time t = 0, substitute the value of t = 0 into equation (iii) as follows;

a(t) = 8i

a(0) = 8i

A 300-foot cable weighing 5 pounds per foot is hanging from a winch 300 feet above ground level. Find the work (in ft-lb) done in winding up the cable when there is a 300-pound load attached to the end of the cable.

Answers

Answer:

  315,000 ft·lb

Explanation:

At 300 ft and 5 lb/ft, the weight of the cable is (300 f)(5 lb/ft) = 1500 lb. The work done to raise it is equivalent to the work done to raise the cable's center of mass. Since the cable is of uniform density, its center of mass is half the cable length below the winch.

  total work done = work to raise cable + work to raise load

  = (1500 lb)(150 ft) +(300 lb)(300 ft) = 315,000 ft·lb

Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 21 mi/h. At what rate is the distance between the cars increasin

Answers

Complete question:

Two cars start moving from the same point. One travels south at 28 mi/h and the other travels west at 21 mi/h. At what rate is the distance between the cars increasing four hours later.

Answer:

The rate at which the distance between the cars is increasing four hours later is 35 mi/h.

Explanation:

Given;

speed of one car, dx/dt = 28 mi/h South

speed of the second car, dy/dt = 21 mi/h West

The distance between the cars is the line joining west to south, which forms a right angled triangle with the two positions.

Apply Pythagoras theorem to evaluate this distance;

let the distance between the cars = z

x² + y² = z² -------- equation (1)

Differentiate with respect to time (t)

[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt}[/tex] ----- equation (2)

Since the speed of the cars is constant, after 4 hours their different distance will be;

x: 28(4) = 112 mi

y: 21(4) = 84 mi

[tex]z = \sqrt{x^2 + y^2} \\\\z = \sqrt{112^2 + 84^2} \\\\z = 140 \ mi[/tex]

Substitute in the value of x, y, z, dx/dt, dy /dt into equation (2) and solve for dz/dt

[tex]2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 2z\frac{dz}{dt} \\\\2(112)(28) + 2(84)(21) = 2(140)\frac{dz}{dt} \\\\9800 = 280\frac{dz}{dt} \\\\\frac{dz}{dt} = \frac{9800}{280} \\\\\frac{dz}{dt} = 35 \ mi/h[/tex]

Therefore, the rate at which the distance between the cars is increasing four hours later is 35 mi/h

Four point charges have the same magnitude of 2.4×10^−12C and are fixed to the corners of a square that is 4.0 cm on a side. Three of the charges are positive and one is negative. Determine the magnitude of the net electric field that exists at the center of the square.

Answers

Answer:

7.2N/C

Explanation:

Pls see attached file

You push a hockey puck that is initially at rest on slick ice by applying a constant force until the puck reaches a final velocity of 1 m/s. On the second attempt, you want the hockey puck to reach the same final velocity by applying a force that is twice as large.
1. Therefore, you must exert the force for a time interval that is
A. shorter than the time interval of your first attempt.
B. longer than the time interval of your first attempt.
C. the same as the time interval of your first attempt.
2. After the hockey puck has reached the final velocity, you suddenly stop pushing it. The hockey puck:
A. stops abruptly
B. reduces speed gradually
C. continues at constant velocity
D. increases speed gradually
E. reduces speed abruptly

Answers

Answer:

1. A

2. B or C

Explanation:

1.

F=ma, meaning that if you use two times more force on a constant mass, the acceleration must double. Acceleration is change in velocity, which means that if you are aiming for the same final velocity the change must happen in half of the time. Therefore, the correct answer is choice A.

2.

By Newton's first law, an object in motion will stay in motion unless an external force acts on it. Since there is nothing pushing the puck in the other direction, the puck will either keep on going for at a constant velocity or will reduce its speed gradually, depending on whether or not this ice is considered to be frictionless. Hope this helps!

(1) You must exert the force for a time interval that is  shorter than the time interval of your first attempt.

(2) The hockey puck reduces speed abruptly.

According to Newton's second law of motion; the force applied to an object is directly proportional to the mass and acceleration of the object.

F = ma

[tex]F = \frac{mv}{t}[/tex]

The force applied to an object is directly proportional to the velocity of the object and inversely proportional to the time of motion of the object.To double the force, you must halve the time interval.

Thus, to apply a force that is twice as large as the first while maintaining the same velocity, you must exert the force for a time interval that is  shorter than the time interval of your first attempt.

(2) The force applied to an object is direct directly proportional to the velocity of the object. Once you stop applying force to the hockey puck, it moves for a short with initial momentum gained before it will stop.

Thus, the magnitude of the velocity (speed) will drop sharply once the force on the object is removed.

Learn more here:  https://brainly.com/question/18076879

A lunar module weighs 12 metric tons on the surface of the Earth. How much work is done in propelling the module from the surface of the moon to a height of 80 miles

Answers

Answer:

149.05J

Explanation:

Hello,

Data;

Weight = 12N

x = 80miles

Radius of the moon = 1079.4mi

W = mg

But gravity at moon = ⅙ the gravity on earth

12 = ⅙ × m

M = 2kg

Mass of the module = 2kg

K = F.x

F(x) = k / x²

2 = k / (1079.4)²

k = 2.33×10⁶

Work = ∫f.dx

work = ∫₁₀₇₉.₄¹¹⁵⁹ . (2.33×10⁶/x²).dx

Work = (-2.33×10⁶) ×(¹/₁₁₅₉ - ¹/₁₀₇₉)

work = 149.05J

how does current change under different polarity?

Answers

Answer:

Due to flipping of polarity

Explanation:

During the changing of polarity, the current on the one side is maximum as the polarity change then the current is gradually reducing toget from another end.

The normal force equals the magnitude of the gravitational force as a roller coaster car crosses the top of a 58-m-diameter loop-the-loop. What is the car's speed at the top?

Answers

Answer:

16.87 m/s

Explanation:

To find the speed of the car at the top, when the normal force is equal the gravitational force, we just need to equate both forces:

[tex]N = P[/tex]

[tex]m*a_c = mg[/tex]

[tex]a_c[/tex] is the centripetal acceleration in the loop:

[tex]a_c = v^2/r[/tex]

So we have that:

[tex]mv^2/r = mg[/tex]

[tex]v^2/r = g[/tex]

[tex]v^2 = gr[/tex]

[tex]v = \sqrt{gr}[/tex]

So, using the gravity = 9.81 m/s^2 and the radius = 29 meters, we have:

[tex]v = \sqrt{9.81 * 29}[/tex]

[tex]v = \sqrt{284.49} = 16.87\ m/s[/tex]

The speed of the car is 16.87 m/s at the top.

A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation between the plates is increased, what will happen to the charge on the capacitor and the electric potential across it

Answers

Answer:

The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)

Explanation:

The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. [tex]Q[/tex], the amount of charge stored in this capacitor, will stay the same.

The formula [tex]\displaystyle Q = C\, V[/tex] relates the electric potential across a capacitor to:

[tex]Q[/tex], the charge stored in the capacitor, and[tex]C[/tex], the capacitance of this capacitor.

While [tex]Q[/tex] stays the same, moving the two plates apart could affect the potential [tex]V[/tex] by changing the capacitance [tex]C[/tex] of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:

[tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex],

where

[tex]\epsilon[/tex] is the permittivity of the material between the two plates.[tex]A[/tex] is the area of each of the two plates.[tex]d[/tex] is the distance between the two plates.

Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of [tex]\epsilon[/tex]. Neither will that change the area of the two plates.

However, as [tex]d[/tex] (the distance between the two plates) increases, the value of [tex]\displaystyle C = \frac{\epsilon\, A}{d}[/tex] will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.

On the other hand, the formula [tex]\displaystyle Q = C\, V[/tex] can be rewritten as:

[tex]V = \displaystyle \frac{Q}{C}[/tex].

The value of [tex]Q[/tex] (charge stored in this capacitor) stays the same. As the value of [tex]C[/tex] becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.  

A circuit contains an EMF source, a resistor R, a capacitor C, and an open switch in series. The capacitor initially carries zero charge. How long after the switch is closed will it take the capacitor to reach 2/3 its maximum charge?

Answers

Answer:

t = 1.098*RC

Explanation:

In order to calculate the time that the capacitor takes to reach 2/3 of its maximum charge, you use the following formula for the charge of the capacitor:

[tex]Q=Q_{max}[1-e^{-\frac{t}{RC}}][/tex]         (1)

Qmax: maximum charge capacity of the capacitor

t: time

R: resistor of the circuit

C: capacitance of the circuit

When the capacitor has 2/3 of its maximum charge, you have that

Q=(2/3)Qmax    

You replace the previous expression for Q in the equation (1), and use properties of logarithms to solve for t:

[tex]Q=\frac{2}{3}Q_{max}=Q_{max}[1-e^{-\frac{t}{RC}}]\\\\\frac{2}{3}=1-e^{-\frac{t}{RC}}\\\\e^{-\frac{t}{RC}}=\frac{1}{3}\\\\-\frac{t}{RC}=ln(\frac{1}{3})\\\\t=-RCln(\frac{1}{3})=1.098RC[/tex]

The charge in the capacitor reaches 2/3 of its maximum charge in a time equal to 1.098RC

What is surface tension??​

Answers

Answer:

Surface tension is the tendency of liquid surfaces to shrink into the minimum surface area possible. Surface tension allows insects (e.g. water striders), usually denser than water, to float and slide on a water surface.

Explanation:

Answer:

It is the tension of the surface film of a liquid caused by the attraction of the particles in the surface layer by the bulk of the liquid, which tends to minimize surface area.

The first Leyden jar was probably discovered by a German clerk named E. Georg von Kleist. Because von Kleist was not a scientist and did not keep good records, the credit for the discovery of the Leyden jar usually goes to physicist Pieter Musschenbroek from Leyden, Holland. Musschenbroek accidentally discovered the Leyden jar when he tried to charge a jar of water and shocked himself by touching the wire on the inside of the jar while holding the jar on the outside. He said that the shock was no ordinary shock and his body shook violently as though he had been hit by lightning. The energy from the jar that passed through his body was probably around 1 J, and his jar probably had a capacitance of about 1 nF.A) Estimate the charge that passed through Musschenbroek's body.
B) What was the potential difference between the inside and outside of the Leyden jar before Musschenbroek discharged it?

Answers

Answer:

a) q = 4.47 10⁻⁵ C

b)     ΔV = 4.47 10⁴ V

Explanation:

A Leyden bottle works as a condenser that accumulates electrical charge, so we can use the formula of the energy stored in a capacitor

           U = Q² / 2C

         Q = √ (2UC)

let's reduce the magnitudes to the SI system

   c = 1 nF = 1 10⁻⁹ F

let's calculate

         q = √ (2 1 10⁻⁹-9)

         q = 0.447 10⁻⁴ C

         q = 4.47 10⁻⁵ C

b) for the potential difference we use

             C = Q / ΔV

            ΔV = Q / C

            ΔV = 4.47 10⁻⁵ / 1 10⁻⁹

            ΔV = 4.47 10⁴ V

If there is a potential difference V between the metal and the detector, what is the minimum energy Emin that an electron must have so that it will reach the detector

Answers

Answer:

Emin= eV

Explanation:

This minimum amount of energy is the work function and so for an electron to reach the detector the energy must b more than work function and the stopping potential so

Emin=eV

A woman living in a third-story apartment is moving out. Rather than carrying everything down the stairs, she decides to pack her belongings into crates, attach a frictionless pulley to her balcony railing, and lower the crates by rope.

Required:
How hard must she pull on the horizontal end of the rope to lower a 49 kg crate at steady speed?

Answers

Answer:

T = 480.2N

Explanation:

In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.

The forces on the boxes are:

[tex]T-Mg=0[/tex]      (1)

T: tension of the rope

M: mass of the boxes 0= 49kg

g: gravitational acceleration = 9.8m/s^2

The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.

By using the equation (1) you obtain:

[tex]T=Mg=(49kg)(9.8m/s^2)=480.2N[/tex]

The woman needs to pull the rope at 480.2N

When one person was talking in a small room, the sound intensity level was 60 dB everywhere within the room. Then, there were 14 people talking in similar manner simultaneously in the room, what was the resulting sound intensity level?
A. 64 dB
B. 60 dB
C. 69 dB
D. 79 dB
E. 71 dB

Answers

Answer:

E= 71dB

Explanation:

See attached file for step by step calculation

if the input work on a machine is equal to it's output work. the machine has _____ efficiency.
(fill in the blank)​

Answers

Answer:

100% efficiency

Explanation:

the machine has _100%_ efficiency.

(fill in the blank)

Answer:

100%

Explanation: A p e x

Other Questions
Mr. Tylers class is having a discussion about whether sugary drinks should be sold at an upcoming school event. One student says, "Sugary drinks are not nutritious and can cause many health problems. I think students would enjoy a smoothie bar as a fresh alternative. Which would be an appropriate follow-up question to ask this student? Do you have a favorite recipe for fresh fruit smoothies? What are the health problems caused by sugary drinks? Dont you think smoothies are a lot more expensive? How do you know so much about nutrition? Which equation represents the product of a number and 24 is 72? 24 p = 72 24 = 72 p (24) (72) = p StartFraction p Over 24 EndFraction = 72 Ella has twelve cards numbered I to 12. What is the probability she picks three even-numbered cards in a row, if the first two cards are not replaced? sin155 = _____ sin25 sin(-25) -sin25 Choose example(dilemma's) below and describe your reaction to it and defend your reaction:A 12-year-old girl lives outside the city limits on a farm. She wants to play on a youth soccer team, but a youngster has to be a resident of the city to play in the city league, and there aren't any teams in the surrounding rural area. Her mother decides to lie about the girls address; the mother tells the soccer league that the girl lives inside the city at her uncle's house. The girl is delighted to play on a city soccer team, even though the team wins only three games all season Mrs. Carlyle bought a bag of nuts for her children. Phillip, Joy, Brent, and Preston took some from the bag.Phillip took 1/3. Joy took 1/4 of the remaining nuts. Brent took 1/2 of the remaining peanuts.Preston took 10. There were 71 remaining in the bag. How many peanuts were oringinally in the bag? How many peanuts did each child take? What is a possible result of evaluating your investigation?A. You find out why your experiment went wrong.B. You decide you need to retest certain data.C. All of these.D. You find your data to be reliable. Explain why the pH stays the same no matter how much water is in the beaker. Determine the area of the given rhombus. ANSWERS: 140 square units 35 square units 70 square units 17.5 square units George is afraid of falling off his roof, but he needs to measure to measure his roof so he can re-shingle it.What is the measure of AB? Complete el prrafo con los mandatos informales. 1)Querido Toms, Me han dicho que eres el chef principal en un restaurante nuevo. Felicidades! S que eres joven y muy ambicioso, pero como tengo ms experiencia que t quiero darte algunos consejos. (1)______ (Tener) cuidado con tus empleados. (2)______ (Interesarse) por ellos, (3)_______(respetar) a todos y no (4)______(pensar) slo en tus intereses personales sino en el bien del grupo. (5) __________(Aprender) a trabajar bajo presin,(6)________ (aceptar) las crticas y (7) _____________(aprovecharlas) para mejorar tu trabajo. (8)_______(Hacer) bien tu trabajo y (9)________ (crear) un ambiente agradable. No (10) (descuidar) tu salud, no (11)_________ (trabajar) en exceso y no (12)________(olvidarse) de tu familia. Muchas veces la familia sufre las consecuencias de la ambicin profesional.Se despide tu amigo y chef, Matiel Martnez 1. Describe at least one part of the experiment procedure you thought was essential for getting good results. Did you find that certain steps in the procedure had to be followed carefully to get consistent results? If you wanted better results, do you think there is a step that could have been added to the procedure? 2. Discuss your thoughts on the overall lab design. Did it help you understand the concepts better, or did it raise more questions? Do you think you could have designed a better experiment? If so, explain how and then discuss it with your classmates. Share some of your knowledge with them to learn a little more about this experiment. Calculate the number of grams of sodium in 2.00 gof each sodium-containing food additive.-NaCl -Na3PO4-NaC7H5O2-Na2C6H6O7 A heterozygous organism has1.three different alleles for a trait 2. Two identical alleles for a trait 3. Only one allele for a trait 4. Two different alleles for a trait I NEED HELP PLEASE, THANKS! :) Draw a flow chart of the steps that would be employed by a neutrophil to eliminate a bacterial cell. Assume that no antibodies are present that recognize the bacteria as foreign. Which best describes thermal energy? a classical music concert is to constist of 3 cello pieces, 3 choral works, and 3 pieces for piano. In how many ways can the program be arranged if a piano piece must come first Compared to stars viewed with the unaided eye, stars viewed with telescope appear It takes 6 hours to reach London from Minneapolis. Amanda took a flight to London from Minneapolis and reached at 7:15 pm London time. At what time did she depart Minneapolis at London time? i will mark as brainliestplease explain I will mark as brainliest