The magnet has an unchanging magnetic field: very strong near the magnet, and weak far from the magnet. How did the magnetic field through the coil change as the magnet fell toward it? How did the magnetic flux through the coil change as the magnet fell toward it?

Answers

Answer 1

Answer:

The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.

Explanation:

At first, the magnet fall towards the coils;  inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.

This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.


Related Questions

Which three terms are needed to describe the energy a BASE jumper has as

she falls toward the ground?

O A. Potential

B. Electromagnetic

C. Gravitational

D. Kinetic

Answers

B would be your answer

Answer:

I’m saying kinetic gravitational and electromagnetic and I will comment on this if I got it right

Explanation:.

how much weight can a man lift in the jupiter if he can lift 100kg on the earth.calculate​

Answers

Answer:

2479 Newton

Solution,

Mass=100 kg

Acceleration due to gravity(g)=24.79 m/s^2

Now,.

[tex]weight = m \times g \\ \: \: \: \: \: \: \: \: \: \: = 100 \times 24.79 \\ \: \: \: \: \: \: = 2479 \: newton[/tex]

hope this helps ..

Good luck on your assignment..

Two astronauts, of masses 60 kg and 80 kg, are initially right next to each other and at rest in outer space. They suddenly push each other apart. What is their separation after the heavier astronaut has moved 12m

Answers

Answer:

The astronauts are separated by 28 m.

Explanation:

The separation of the astronauts can be found by conservation of linear momentum:

[tex] p_{i} = p_{f} [/tex]

[tex] m_{1}v_{1i} + m_{2}v_{2i} = m_{1}v_{1f} + m_{2}v_{2f} [/tex]

[tex] m_{1}*0 + m_{2}*0 = m_{1}v_{1f} + m_{2}v_{2f} [/tex]

[tex] m_{1}v_{1f} = -m_{2}v_{2f} [/tex]

[tex] v_{1f} = -\frac{m_{2}v_{2f}}{m_{1}} = -\frac{80v_{2f}}{60} [/tex]

Now, the distance (x) is:      

[tex] x = \frac{v}{t} [/tex]  

The distance traveled by the astronaut 1 is:

[tex] x_{1} = v_{1f}*t = -\frac{80v_{2f}}{60}*t [/tex]    (1)

And, the distance traveled by the astronaut 2 is:

[tex] x_{2} = v_{2f}*t [/tex]  (2)

From the above equation we have:  

[tex] t = \frac{x_{2}}{v_{2f}} [/tex]    (3)                                    

By entering equation (3) into (1) we have:    

[tex] x_{1} = -\frac{80v_{2f}}{60}*(\frac{x_{2}}{v_{2f}}) [/tex]

[tex] x_{1} = -\frac{4*12}{3} = -16 m [/tex]    

The minus sign is because astronaut 1 is moving in the opposite direction of the astronaut 2.      

Finally, the separation of the astronauts is:

[tex] x_{T} = |x_{1}| + x_{2} = (16 + 12)m = 28 m [/tex]

Therefore, the astronauts are separated by 28 m.

   

I hope it helps you!

The total separation between the two astronauts is 28m.

The given parameters:

masses of the astronauts, = 60 kg and 80 kg

Apply the principle of conservation of momentum to determine the final velocity of each astronauts as follows;

[tex]m_1u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2\\\\60(0) + 80(0) = 60(v_1) + 80(v_2)\\\\0 = 60v_1 + 80v_2\\\\-60v_1 = 80v_2\\\\v_1 = \frac{-80v_2}{60} \\\\v_1 = -1.333v_2[/tex]

Let the time when astronaut 2 moved 12 m = t

The distance traveled by astronaut 1 is calculated as;

[tex]x_1 = v_1 t\\\\x_1 = -1.333v_2t[/tex]

The  distance traveled by astronaut 2 is calculated as;

[tex]x_2 = v_2 t\\\\12 = v_2t\\\\t = \frac{12}{v_2}[/tex]

Now solve for the distance of astronaut 1

[tex]x_1 = - 1.333v_2 \times t\\\\x_1 = -1.333 v_2 \times \frac{12}{v_2} \\\\x_1 = -16 \ m[/tex]

The total separation between the two astronauts is calculated as follows;

[tex]d = |x_1| + x_2\\\\d = 16 + 12\\\\d = 28 \ m[/tex]

Learn more about conservation of linear momentum here: https://brainly.com/question/24424291

In a contest, two tractors pull two identical blocks of stone thesame distance over identical surfaces. However, block A is moving twice as fast as block B when it crosses the finish line. Which statement is correct?a) Block A has twiceas much kinetic energy as block B.b) Block B has losttwice as much kinetic energy to friction as block A.c) Block B has losttwice as much kinetic energy as block A.d) Both blocks havehad equal losses of energy to friction.e) No energy is lostto friction because the ground has no displacement.

Answers

Answer:

d) Both blocks have had equal losses of energy to friction

Explanation:

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces

Moreover, the block A is twice as fast than block B at the time of crossing the finish line

So based on the above information,  it contains the losses of identical friction

And we also know that

Friction energy loss is

[tex]= \mu \times m \times g \times D[/tex]

It would be the same for both the blocks

hence, the option d is correct

The correct answer will be both blocks have had equal losses of energy to friction.

What is friction?

Friction is defined as when any object is slides on a surface by means of any external force then the force in the opposite direction generated between the surface and the body restrict the motion of the body this force is called as the friction.

As it is mentioned in the question that two tractors pull two same stone blocks having the identical distance over the same surfaces.

Moreover, the block A is twice as fast as block B at the time of crossing the finish line.

So based on the above information,  it contains the losses of identical friction.

And we also know that

Friction energy loss is

[tex]E_f=\mu m g D[/tex]

It would be the same for both the blocks

Hence both blocks have had equal losses of energy to friction.

To know more about friction, follow

https://brainly.com/question/24386803

Immediately outside a conducting sphere(i.e. on the surface) of unknown charge Q and radius R the electric potential is 190 V, and 10.0 cm further from the sphere, the potential is 140 V. What is the magnitude of the charge Q on the sphere

Answers

Answer:

Q = 5.9 nC (Approx)

Explanation:

Given:

Further distance = 10 cm

Electric potential(V) = 190 v

Potential difference(V1) = 140 v

Find:

Magnitude of the charge Q

Computation:

V = KQ / r

190 = KQ / r.............Eq1

V1  = KQ / (r+10)

140 = KQ / (r+10) ............Eq2

From Eq2 and Eq1

r = 28 cm = 0.28 m

So,

190 = KQ / r

190 = (9×10⁹)(Q) / 0.28

53.2 = (9×10⁹)(Q)

5.9111 = (10⁹)(Q)

Q = 5.9 nC (Approx)

A man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and he holds a brick in each hand.The rotational inertia of the system consisting of the man, bricks, and platform about the central vertical axis of the platform is 6.0 k g times m squared. If by moving the bricks the man decreases the rotational inertia of the system to 2.0 k g times m squared, what is the resulting angular speed of the platform in rad/s

Answers

Answer:

resulting angular speed = 3.6 rev/s

Explanation:

We are given;

Initial angular speed; ω_i = 1.2 rev/s

Initial moment of inertia;I_i = 6 kg/m²

Final moment of inertia;I_f = 2 kg/m²

From conservation of angular momentum;

Initial angular momentum = Final angular momentum

Thus;

I_i × ω_i = I_f × ω_f

Making ω_f the subject, we have;

ω_f = (I_i × ω_i)/I_f

Plugging in the relevant values;

ω_f = (6 × 1.2)/2

ω_f = 3.6 rev/s

A car is designed to get its energy from a rotating flywheel with a radius of 1.50 m and a mass of 430 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel's rotational speed up to 5,200 rev/min.

Required:
a. Find the kinetic energy stored in the flywheel.
b. If the flywheel is to supply energy to the car as would a 15.0-hp motor, find the length of time the car could run before the flywheel would have to be brought back up to speed.

Answers

Answer:

a

  [tex]KE = 7.17 *10^{7} \ J[/tex]

b

 [tex]t = 6411.09 \ s[/tex]

Explanation:

From the question we are told that

    The radius of the flywheel is  [tex]r = 1.50 \ m[/tex]

      The mass of the flywheel is [tex]m = 430 \ kg[/tex]

          The rotational speed of the flywheel is [tex]w = 5,200 \ rev/min = 5200 * \frac{2 \pi }{60} =544.61 \ rad/sec[/tex]

      The power supplied by the motor is  [tex]P = 15.0 hp = 15 * 746 = 11190 \ W[/tex]

         

     Generally the moment of inertia of the flywheel is  mathematically represented as

       [tex]I = \frac{1}{2} mr^2[/tex]

substituting values

       [tex]I = \frac{1}{2} ( 430)(1.50)^2[/tex]

       [tex]I = 483.75 \ kgm^2[/tex]

The kinetic energy that is been stored is  

       [tex]KE = \frac{1}{2} * I * w^2[/tex]

substituting values

        [tex]KE = \frac{1}{2} * 483.75 * (544.61)^2[/tex]

        [tex]KE = 7.17 *10^{7} \ J[/tex]

Generally power is mathematically represented as

          [tex]P = \frac{KE}{t}[/tex]

=>      [tex]t = \frac{KE}{P}[/tex]

substituting the value

        [tex]t = \frac{7.17 *10^{7}}{11190}[/tex]

        [tex]t = 6411.09 \ s[/tex]

The robot HooRU is lost in space, floating around aimlessly, and radiates heat into the depths of the cosmos at the rate of 13.1 W. HooRU's surface area is 1.55 m2 and the emissivity of its surface is 0.287. Ignoring the radiation that HooRU absorbs from the cold universe, what is HooRU's temperature T?

Answers

Answer:

The temperature is  [tex]T = 168.44 \ K[/tex]

Explanation:

From the question ewe are told that

   The rate of heat transferred is    [tex]P = 13.1 \ W[/tex]

     The surface area is  [tex]A = 1.55 \ m^2[/tex]

      The emissivity of its surface is  [tex]e = 0.287[/tex]

Generally, the rate of heat transfer is mathematically represented as

           [tex]H = A e \sigma T^{4}[/tex]

=>         [tex]T = \sqrt[4]{\frac{P}{e* \sigma } }[/tex]

where  [tex]\sigma[/tex] is the Boltzmann constant with value  [tex]\sigma = 5.67*10^{-8} \ W\cdot m^{-2} \cdot K^{-4}.[/tex]

substituting value  

             [tex]T = \sqrt[4]{\frac{13.1}{ 0.287* 5.67 *10^{-8} } }[/tex]

            [tex]T = 168.44 \ K[/tex]

The water level in identical bowls, A and B, is exactly the same. A contains only water; B contains floating ice as well as water. When we weigh the bowls, we find that Group of answer choices

Answers

Answer:

We know that the density of the ice is smaller than the density of the water (and this is why the ice floats in water).

Dw > Di

Da is the density of the water and Di is the density of the ice

Since in Bowl A we have a volume V, only of water, then the mass of the bowl A is:

Dw*V.

Now, in the bowl B we have a combination of water and ice, suppose that Vw is the volume of water and Vi is the volume of ice, and we know that:

Vw + Vi = V.

Then the mass in this second bowl is:

Dw*Vw + Di*Vi = Dw*(V - Vi) + Di*Vi = Dw*V + (Di - Dw)*Vi

and we know that Dw > Di, then the left term is a negative term, then the mass of bowl B is smaller than the mass of bowl A.

The figure shows an arrangement of four charged particles, with θ = 20.0° and d1 = 3.00 cm, which is the distance from the origin to a charge q1. Charge q1 is unknown, but q2= +7.00×10‒19 C and q3 = q4 = ‒2.00×10‒19 C. If there is no nett electrostatic force on q1 due to the other charges (the nett electrostatic force on q1 is zero), calculate the distance from the origin to q2, given by d2, in cm. Assume that all forces apart from the electrostatic forces in the system are negligible

Answers

Answer:

[tex]d_2=3.16cm[/tex]

Explanation:

So, in order to solve this problem, we must start by building a diagram of the problem itself. (See attached picture) And together with the diagram, we must build a free body diagram, which will include the forces that are being applied on the given charged particle together with their directions.

In this case we only care about the x-direction of the force, since the y-forces cancel each other. So if we do a sum of forces on the x-direction, we get the following:

[tex]\sum{F_{x}}=0[/tex]

so:

[Tex]-F_{12}+F_{13x}+F_{14x}=0[/tex]

Since [tex]F_{13x}=F_{14x}[/tex] we can simplify the equation as:

[tex]-F_{12}+2F_{13x}=0[/tex]

we can now solve this for [tex]F_{12}[/tex] so we get:

[tex]F_{12}=2F_{13x}[/tex]

Now we can substitute with the electrostatic force formula, so we get:

[tex]k_{e}\frac{q_{1}q_{2}}{r_{12}^{2}}=2k_{e}\frac{q_{1}q_{3}}{r_{13}^{2}}cos \theta[/tex]

We can cancel [tex]k_{e}[/tex] and [tex]q_{1}[/tex]

so the simplified equation is:

[tex]\frac{q_{2}}{r_{12}^{2}}=2\frac{q_{3}}{r_{13}^{2}}cos \theta[/tex]

From the given diagram we know that:

[tex]cos \theta = \frac{d_{1}}{r_{13}}[/tex]

so when solving for [tex]r_{13}[/tex] we get:

[tex]r_{13}=\frac{d_{1}}{cos\theta}[/tex]

and if we square both sides of the equation, we get:

[tex]r_{13}^{2}=\frac{d_{1}^{2}}{cos^{2}\theta}[/tex]

and we can substitute this into our equation:

[tex]\frac{q_{2}}{r_{12}^{2}}=2\frac{q_{3}}{d_{1}^{2}}cos^{3} \theta[/tex]

so we can now solve this for [tex]r_{12}[/tex] so we get:

[tex]r_{12}=\sqrt{\frac{d_{1}^{2}q_{2}}{2q_{3}cos^{3}\theta}}[/tex]

which can be rewritten as:

[tex]r_{12}=d_{1}\sqrt{\frac{q_{2}}{2q_{3}cos^{3}\theta}}[/tex]

and now we can substitute values.

[tex]r_{12}=(3cm)\sqrt{\frac{7x10^{-19}C}{2(2x10^{-19}C)cos^{3}(20^{o})}}[/tex]

which solves to:

[tex]r_{12}=6.16cm[/tex]

now, we must find [tex]d_{2}[/tex] by using the following equation:

[tex]r_{12}=d_{1}+d_{2}[/tex]

when solving for [tex]d_{2}[/tex] we get:

[tex]d_{2}=r_{12}-d_{1}[/tex]

when substituting we get:

[tex]d_{2}=6.16cm-3cm[/tex]

so:

[tex]d_{2}=3.16cm[/tex]

A 4.5 kg ball swings from a string in a vertical circle such that it has constant sum of kinetic and gravitational potential energy. Ignore any friction forces from the air or in the string. What is the difference in the tension between the lowest and highest points on the circle

Answers

Answer:

88.29 N

Explanation:

mass of the ball = 4.5 kg

weight of the ball will be = mass x acceleration due to gravity(9.81 m/s^2)

weight W = 4.5 x 9.81 = 44.145 N

centrifugal forces Tc act on the ball as it swings.

At the top point of the vertical swing,

Tension on the rope = Tc - W.

At the bottom point of the vertical swing,

Tension on the rope = Tc + W

therefore,

difference in tension between these two points will be;

Net tension = tension at bottom minus tension at the top

= Tc + W - (Tc - W) = Tc + W -Tc + W

= 2W

imputing the value of the weight W, we have

2W = 2 x 44.145 = 88.29 N

what is the orbital speed for a satellite 3.5 x 10^8m from the center of mars? Mars mass is 6.4 x 10^23 kg

Answers

Answer:

v = 349.23 m/s

Explanation:

It is required to find the orbital speed for a satellite [tex]3.5\times 10^8\ m[/tex] from the center of mass.

Mass of Mars, [tex]M=6.4\times 10^{23}\ kg[/tex]

The orbital speed for a satellite is given by the formula as follows :

[tex]v=\sqrt{\dfrac{GM}{r}} \\\\v=\sqrt{\dfrac{6.67\times 10^{-11}\times 6.4\times 10^{23}}{3.5\times 10^8}} \\\\v=349.23\ m/s[/tex]

So, the orbital speed for a satellite is 349.23 m/s.

That 85 kg paratrooper from the 50's was moving at constant speed of 56 m/s because the air was applying a frictional drag force to him that matched his weight. If he fell this way for 40 m, how much heat was generated by this frictional drag force in J

Answers

Answer:

46648 J

Explanation:

mass m= 85 Kg

velocity v = 56 m/s

distance covered s =40 m

According to Question,

frictional drag force to him that matched his weight

[tex]\Rightarrow F_d =mg\\=85\times9.81=833 N[/tex]

Therefore, work done by practometer against the drag force = heat was generated by this frictional drag force in J

W=Q= F_d×s

=833×56 = 46648 J

A charged particle q moves at constant velocity through a crossed electric and magnetic fields (E and B, which are both constant in magnitude and direction). Write the magnitude of the electric force on the particle in terms of the variables given. Do the same for the magnetic force

Answers

Answer:

The magnitude of the electric force on the particle in terms of the variables given is, F = qE

The magnitude of the magnetic force on the particle in terms of the variables given is, F = q (v x B)

Explanation:

Given;

a charged particle, q

magnitude of electric field, E

magnitude of magnetic field, B

The magnitude of the electric force on the particle in terms of the variables given;

F = qE

The magnitude of the magnetic force on the particle in terms of the variables given;

F = q (v x B)

where;

v is the constant velocity of the charged particle

Answer:

The magnitude of the electric force acting on a charged particle moving through an electric field = |qE|

The magnitude of the magnetic force of a charged particle moving at a particular velocity through a magnetic field = |qv × B|

Explanation:

The electric force acting on a charged particle, q, moving through an electric field, E, is given as a product of the charge on the particle (a scalar quantity) and the electric field (a vector quantity).

Electric force = qE

The magnitude of the electric force = |qE|

That is, magnitude of the product of the charge and the electric field vector.

The magnetic force acting on a charged particle, q, moving with a velocity, v, through a magnetic field, B is a vector product of qv [a product of the charge of the particle (a scalar quantity) and the velocity of the particle (a vector quantity)] and B (a vector quantity).

It is given mathematically as (qv × B)

The magnitude of the magnetic force is the magnitude of the vector product obtained.

Magnitude of the magnetic force = |qv × B|

Hope this Helps!!!

1. Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm in 5.00 s. Radius of tire is 50 cm. What angle did the tire move through in those 5 secs

Answers

Answer:

[tex]\theta=65.18rad[/tex]

Explanation:

The angle in rotational motion is given by:

[tex]\theta=\frac{w_o+w_f}{2}t[/tex]

Recall that the angular speed is larger than regular frequency (in rpm) by a factor of [tex]2\pi[/tex], so:

[tex]\omega_f=2\pi f\\\omega_f=2\pi*250rpm\\\omega_f=1570.80 \frac{rad}{min}[/tex]

The wheel spins from rest, that means that its initial angular speed is zero([tex]\omega_o[/tex]). Finally, we have to convert the given time to minutes and replace in the first equation:

[tex]t=5s*\frac{1min}{60s}=0.083min\\\theta=\frac{\omega_f}{2}t\\\theta=\frac{1570.800\frac{rad}{min}}{2}(0.083min)\\\theta=65.18rad[/tex]

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivere

Answers

Complete question:

Two conductors made of the same material are connected across the same potential difference. Conductor A has seven times the diameter and seven times the length of conductor B. What is the ratio of the power delivered to A to power delivered to B.

Answer:

The ratio of the power delivered to A to power delivered to B is 7 : 1

Explanation:

Cross sectional area of a wire is calculated as;

[tex]A = \frac{\pi d^2}{4}[/tex]

Resistance of a wire is calculated as;

[tex]R = \frac{\rho L}{A} \\\\R = \frac{4\rho L}{\pi d^2} \\\\[/tex]

Resistance in wire A;

[tex]R = \frac{4\rho _AL_A}{\pi d_A^2}[/tex]

Resistance in wire B;

[tex]R = \frac{4\rho _BL_B}{\pi d_B^2}[/tex]

Power delivered in wire;

[tex]P = \frac{V^2}{R}[/tex]

Power delivered in wire A;

[tex]P = \frac{V^2_A}{R_A}[/tex]

Power delivered in wire B;

[tex]P = \frac{V^2_B}{R_B}[/tex]

Substitute in the value of R in Power delivered in wire A;

[tex]P_A = \frac{V^2_A}{R_A} = \frac{V^2_A \pi d^2_A}{4 \rho_A L_A}[/tex]

Substitute in the value of R in Power delivered in wire B;

[tex]P_B = \frac{V^2_B}{R_B} = \frac{V^2_B \pi d^2_B}{4 \rho_B L_B}[/tex]

Take the ratio of power delivered to A to power delivered to B;

[tex]\frac{P_A}{P_B} = (\frac{V^2_A \pi d^2_A}{4\rho_AL_A} ) *(\frac{4\rho_BL_B}{V^2_B \pi d^2_B})\\\\ \frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{\rho_AL_A} )*(\frac{\rho_BL_B}{V^2_B d^2_B})\\\\[/tex]

The wires are made of the same material, [tex]\rho _A = \rho_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{V^2_A d^2_A}{L_A} )*(\frac{L_B}{V^2_B d^2_B})\\\\[/tex]

The wires are connected across the same potential; [tex]V_A = V_B[/tex]

[tex]\frac{P_A}{P_B} = (\frac{ d^2_A}{L_A} )* (\frac{L_B}{d^2_B} )[/tex]

wire A has seven times the diameter and seven times the length of wire B;

[tex]\frac{P_A}{P_B} = (\frac{ (7d_B)^2}{7L_B} )* (\frac{L_B}{d^2_B} )\\\\\frac{P_A}{P_B} = \frac{49d_B^2}{7L_B} *\frac{L_B}{d^2_B} \\\\\frac{P_A}{P_B} =\frac{49}{7} \\\\\frac{P_A}{P_B} = 7\\\\P_A : P_B = 7:1[/tex]

Therefore, the ratio of the power delivered to A to power delivered to B is

7 : 1

Two red blood cells each have a mass of 9.0 x 10-14 kg and carry a negative charge spread uniformly over their surfaces. The repulsion from the excess charge prevents the cells from clumping together. One cell carries -2.5pC and the other -3.30 pC, and each cell can be modeled as a sphere 3.75 × 10-6 m in radius. If the red blood cells start very far apart and move directly toward each other with the same speed.
1. What initial speed would each need so that they get close enough to just barely touch?
2. What is the maximum acceleration of the cells as they move toward each other and just barely touch?

Answers

Answer:

Explanation:

Given that:

The mass of the cell is 9.0 x 10^-14 kg

The charges of the cell is -2.5pC and the other -3.30 pC

[tex]q_1=-2.5\times10^{-12}C \ \ and \ \ q_2=-3.75\times10^{-12}C[/tex]

Radius is  3.75 × 10-6 m

The final distance is twice the radius

i.e [tex]2*(3.75 \times 10^{-6}) = 7.5*10^{-6}m[/tex]

The formula for the velocity of the cell is

[tex]mv^2=\frac{q_1q_2}{4\pi \epsilon 2 r} \\[/tex]

[tex]v=\sqrt{\frac{q_1q_2}{4\pi \epsilon 2 r} }[/tex]

[tex]=\sqrt{\frac{(-2.5\times10^{-12})(-3.3\times10^{-12}}{4(3.14)(8.85\times10^{-112}(2\times3.75\times10^{-6})(9\times10^{-14})} } \\\\=\sqrt{\frac{(-8.25\times10^{-24})}{(7503.03\times10^{-32})} } \\\\=\sqrt{109955.5779} \\\\=331.60m/s[/tex]

The maximum acceleration of the cells as they move toward each other and just barely touch is

[tex]ma= \frac{q_1q_2}{4\pi \epsilon (2r)^2} \\\\a= \frac{q_1q_2}{4\pi \epsilon (2r)^2(m)}[/tex]

[tex]=\frac{(-2.5\times10^{-12})(-3.3\times10^{-12})}{4(3.14)(8.85\times10^{-12})(2\times3.75\times10^{-6})^2(9\times10^{-14})}[/tex]

[tex]=\frac{(-8.25\times10^{-24})}{(56272.725\times10^{-38})} \\\\=1.47\times10^{10}m/s^2[/tex]

The answers obtained are;

1. The initial speed of each of the red blood cells is [tex]v= 331.66\,m/s[/tex].

2. The maximum acceleration of the cells is [tex]a=1.47\times 10^{10}\,m/s^2[/tex].

The answer is explained as shown below.

We have, the mass of the red blood cell;

[tex]m=9\times 10^{-14}\,kg[/tex]

Also, the charges of the cells are;

[tex]q_1=-2.5\times 10^{-12}\,C[/tex] and[tex]q_2=-3.30\times 10^{-12}\,C[/tex]

The distance between the charges when they barely touch will be two times the radius of each charge.

[tex]r=2\times r\,'=2\times3.75\times10^{-6}\,m=7.5\times10^{-6}\,m[/tex]

Kinetic Energy of moving charges

1. As both the cells are negatively charged they will repel each other.

So, for the cells to come nearly close, their kinetic energies must be equal to the electric potential between them.[tex]\frac{1}{2}mv^2+ \frac{1}{2}mv^2=k\frac{q_1 q_2}{r^2}[/tex]Where, [tex]k=9\times10^9\,Nm^2/C^2[/tex] is the Coulomb's constant.

Now, substituting all the known values in the equation, we get;

[tex](9\times 10^{-14}\,kg)\times v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m}[/tex]

[tex]v^2=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{7.5\times10^{-6}\,m\times(9\times 10^{-14}\,kg)} =110000\,m^2/s^2[/tex]

[tex]\implies v=\sqrt{110000\,m^2/s^2}=331.66\,m/s[/tex]

Electrostatic force between two charges

2. Also as the force between them is repulsive, there must be an acceleration to make them barely touch each other.

[tex]ma=k\frac{q_1 q_2}{r^2}[/tex]

Substituting the known values, we get;

[tex](9\times 10^{-14}\,kg)\times a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2}[/tex]

[tex]\implies a=9\times 10^9Nm^2/C^2\times\frac{(-2.5\times 10^{-12}\,C)\times(-3.30\times 10^{-12}\,C)}{(7.5\times10^{-6}\,m)^2\times(9\times 10^{-14}\,kg) }[/tex]

[tex]a=1.47\times 10^{10}\,m/s^2[/tex]

Find out more information about moving charges here:

https://brainly.com/question/14632877

The larger the push, the larger the change in velocity. This is an example of Newton's Second Law of Motion which states that the acceleration an object experiences is

Answers

Answer:

According to Newtons 2nd law of motion ;

  The acceleration an object experiences is as a result of the net force which is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

Explanation:

This law is simply saying ;

Force = Mass ×Acceleration

I Hope It Helps  :)

How much force is needed to cause a 15 kilogram bicycle to accelerate at a rate of 10
meters per second per second?
O A. 15 newtons
OB. 1.5 newtons
C. 150 newtons
OD. 10 newtons

Answers

Net force = (mass) x (acceleration)... that’s Newton’s 2nd law of motion.
Net force = (15kg) x (10 m/s squared)
Net force = 150 Newtons.

A mass m slides down a frictionless ramp and approaches a frictionless loop with radius R. There is a section of the track with length 2R that has a kinetic friction coefficient of 0.5. From what height h must the mass be released to stay on the track

Answers

Answer:

   h = 2 R (1 +μ)

Explanation:

This exercise must be solved in parts, first let us know how fast you must reach the curl to stay in the

let's use the mechanical energy conservation agreement

starting point. Lower, just at the curl

       Em₀ = K = ½ m v₁²

final point. Highest point of the curl

        [tex]Em_{f}[/tex] = U = m g y

Find the height y = 2R

      Em₀ = Em_{f}

      ½ m v₁² = m g 2R

       v₁ = √ 4 gR

Any speed greater than this the body remains in the loop.

In the second part we look for the speed that must have when arriving at the part with friction, we use Newton's second law

X axis

    -fr = m a                      (1)

Y Axis  

      N - W = 0

      N = mg

the friction force has the formula

     fr = μ  N

     fr = μ m g

    we substitute 1

    - μ mg = m a

     a = - μ g

having the acceleration, we can use the kinematic relations

    v² = v₀² - 2 a x

    v₀² = v² + 2 a x

the length of this zone is x = 2R

    let's calculate

     v₀ = √ (4 gR + 2 μ g 2R)

     v₀ = √4gR( 1 + μ)

this is the speed so you must reach the area with fricticon

finally have the third part we use energy conservation

starting point. Highest on the ramp without rubbing

     Em₀ = U = m g h

final point. Just before reaching the area with rubbing

     [tex]Em_{f}[/tex] = K = ½ m v₀²

      Em₀ = Em_{f}

     mgh = ½ m 4gR(1 + μ)

       h = ½ 4R (1+ μ)

       h = 2 R (1 +μ)

Potential difference of a battery is 2.2 V when it is connected
across a resistance of 5 ohm, if suddenly the potential difference
falls to 1.8V, its internal resistance will be​

Answers

Answer:

1.1ohms

Explanation:

According to ohms law E = IR

If potential difference of a battery is 2.2 V when it is connected across a resistance of 5 ohm and if suddenly the voltage Falls to 1.8V then the current in the 5ohms resistor I = V/R = 1.8/5

I = 0.36A (This will be the load current).

Before we can calculate the value of the internal resistance, we need to know the voltage drop across the internal resistance.

Voltage drop = 2.2V - 1.8V = 0.4V

Then we calculate the internal resistance using ohms law.

According to the law, V = Ir

V= voltage drop

I is the load current

r = internal resistance

0.4 = 0.36r

r = 0.4/0.36

r = 1.1 ohms

Strontium decays by beta decay part of the nuclear equation is shown below fill in the blank with a number? 90/38Sr -> 0/-1e 90/blankY

Answers

Answer : The chemical equation for the beta decay process of [tex]_{38}^{90}\textrm{Sr}[/tex] follows:

[tex]_{38}^{90}\textrm{Sr}\rightarrow _{39}^{90}\textrm{Y}+_{-1}^0\beta[/tex]

Explanation :

Beta decay : It is defined as the process in which beta particle is emitted. In this process, a neutron gets converted to a proton and an electron.

The released beta particle is also known as electron.

The beta decay reaction is:

[tex]_Z^A\textrm{X}\rightarrow _{Z+1}^A\textrm{Y}+_{-1}^0\beta[/tex]

The chemical equation for the beta decay process of [tex]_{38}^{90}\textrm{Sr}[/tex] follows:

[tex]_{38}^{90}\textrm{Sr}\rightarrow _{39}^{90}\textrm{Y}+_{-1}^0\beta[/tex]

Answer:

the blank is 39

Explanation: a p e x

Question 4
3 pts
I am approaching a traffic light at a speed of 135 km/h when I suddenly notice that
the light is red. I slam on my brakes and come to a stop in 4.29 seconds. What is the
acceleration of the car as I screech to a complete stop? (Note that an object that slows down
simply has a negative acceleration.)
& show work please I want to also understand

Answers

Answer:

The deceleration of the car is [tex]\approx -0.065m/s^{2}[/tex]

Explanation:

to solve this, we will have to apply the knowledge that will be got from the equations of motion.

There are several equations of motion, and depending on the parameters given in the problem, we can choose the perfect equation that can best be used to solve the problem.

In this case, since we are given the velocity and time, and we are solving for the acceleration, we will use this formula

[tex]v = u +at[/tex]

where v= final velocity = 0

u = initial velocity = 135Km/h [tex]\approx 0.278 m/s[/tex]

t= time = 4.29 seconds.

[tex]a = \frac{v - u}{t}[/tex]

[tex]a =\frac{0-0.278}{4.29} \approx 0.065m/s^{2}[/tex]

Hence, the deceleration of the car is [tex]\approx -0.065m/s^{2}[/tex]

A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sticks out over the water. It is held in place only by its own weight. You have a mass of 70 kg and walk the plank past the edge of the ship. How far past the edge do you get before the plank starts to tip, in m

Answers

Answer:

about 1 meter

Explanation:

   

The distance past the edge that the man will get before the plank starts to tip is; 0.4285 m

We are given;

Mass of plank; m = 30 kg

Length of plank; L = 6m

Mass of man; M = 70 kg

Since the plank has 2 supports which are the deck of the ship, then it means that, we can take moments about the right support before the 2m stick out of the plank.

Thus;

Moment of weight of plank about the right support;

τ_p = mg((L/2) - 2)

τ_p = 30 × 9.8((6/2) - 2)

τ_p = 294 N.m

Moment of weight of man about the right support;

τ_m = Mgx

where x is the distance past the edge the man will get before the plank starts to tip.

τ_m = 70 × 9.8x

τ_m = 686x

Now, moment of the board is counterclockwise while that of the man is clockwise. Thus;

τ_m = τ_p

686x = 294

x = 294/686

x = 0.4285 m

Read more at; https://brainly.com/question/22150651

A small, rigid object carries positive and negative 3.00 nC charges. It is oriented so that the positive charge has coordinates (−1.20 mm, 1.20 mm) and the negative charge is at the point (1.70 mm, −1.30 mm).

Required:
a. Find the electric dipole moment of the object.
b. The object is placed in an electric field E = (7.80 103 î − 4.90 103 ĵ). Find the torque acting on the object.
c. Find the potential energy of the object–field system when the object is in this orientation.
d. Assuming the orientation of the object can change, find the difference between the maximum and the minimum potential energies of the system,

Answers

Answer:

Umax = 105.8nJ

Umin =-105.8nJ

Umax-Umin = 211.6nJ

Explanation:

A nonuniform electric field is given by the expression = ay î + bz ĵ + cx , where a, b, and c are constants. Determine the electric flux (in the +z direction) through a rectangular surface in the xy plane, extending from x = 0 to x = w and from y = 0 to y = h. (Use any variable or symbol stated above as necessary.)

Answers

English please. I don’t under this. Is it Czechish Orr???

Two narrow slits, illuminated by light consisting of two distinct wavelengths, produce two overlapping colored interference patterns on a distant screen. The center of the eighth bright fringe in one pattern coincides with the center of the third bright fringe in the other pattern. What is the ratio of the two wavelengths?

Answers

Answer:

The ration of the two wavelength is  [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

Explanation:

Generally two slit constructive interference can be mathematically represented as

      [tex]\frac{y}{L} = \frac{m * \lambda}{d}[/tex]

Where  y is the distance between fringe

           d  is the distance between the two slit

           L is the distance between the slit and the wall

           m is the order of the fringe

given that  y , L  , d  are constant  we have that

     [tex]\frac{m }{\lambda } = constant[/tex]

So  

    [tex]\frac{m_1 }{\lambda_1 } = \frac{m_2 }{\lambda_2 }[/tex]

So     [tex]m_1 = 8[/tex]

  and  [tex]m_2 = 3[/tex]

=>     [tex]\frac{m_2}{m_1} = \frac{\lambda_1}{\lambda_2}[/tex]

=>     [tex]\frac{8}{3} = \frac{\lambda_1}{\lambda_2}[/tex]

So

     [tex]\frac{\lambda_1}{\lambda_2} = \frac{8}{3}[/tex]

A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point circled A, at a potential of 1.50 103 V, to point circled B, at 4.00 103 V. What is its speed at point circled B?

Answers

Answer:

[tex]v_B=3.78\times 10^5\ m/s[/tex]

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is [tex]6.63\times 10^{-27}\ kg[/tex]

Speed of nucleus at A is [tex]v_A=6.2\times 10^5\ m/s[/tex]

Potential at point A, [tex]V_A=1.5\times 10^3\ V[/tex]

Potential at point B, [tex]V_B=4\times 10^3\ V[/tex]

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

[tex]\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s[/tex]

So, the speed at point B is [tex]3.78\times 10^5\ m/s[/tex].

A 25 kg box is 220 N pulled at constant speed up a frictionless inclined plane by a force that is parallel to the incline. If the plane is inclined at an angle of 25o above the horizontal, the magnitude of the applied force is

Answers

Answer:

F = 103.54N

Explanation:

In order to calculate the magnitude of the applied force, you take into account that the forces on the box are the applied force F and the weight of the box W.

The box moves with a constant velocity. By the Newton second law you have that the sum of forces must be equal to zero.

Furthermore, you have that the sum of forces are given by:

[tex]F-Wsin\theta=0[/tex]                (1)

F: applied force = ?

W: weight of the box = Mg = (25kg)(9.8m/s^2) = 245N

θ: degree of the incline = 25°

You solve the equation (1) for F:

[tex]F=Wsin\theta=(245N)sin(25\°)=103.54N[/tex]          (2)

The applied force on the box is 103.54N

Jack and Jill went up the hill to fetch a pail of water. Jack, who’s mass is 75 kg, 1.5 times heavier than Jill’s mass, fell down and broke his crown after climbing a 15 m high hill. Jillcame tumbling after covering the same distance as Jack in 1/3rd of the time.Required:a. Who did the most work climbing up the hill? b. Who applied the most power?

Answers

Answer:

a) Jack does more work uphill

b) Numerically, we can see that Jill applied the most power downhill

Explanation:

Jack's mass = 75 kg

Jill's mass = [tex]1.5x = 75[/tex]

Jill's mass = [tex]x = \frac{75}{1.5}[/tex] = 50 kg

distance up hill = 15 m

a) work done by Jack uphill = mgh

where g = acceleration due to gravity= 9.81 m/s^2

work = 75 x 9.81 x 15 = 11036.25 J

similarly,

Jill's work uphill = 50 x 9.81 x 15 = 7357.5 J

this shows that Jack does more work climbing up the hill

b) assuming Jack's time downhill to be t,

then Jill's time = [tex]\frac{t}{3}[/tex]

we recall that power is the rate in which work id done, i.e

P = [tex]\frac{work}{time}[/tex]

For Jack, power = [tex]\frac{11036.25}{t}[/tex]

For Jill, power =  [tex]\frac{3*7357.5}{t}[/tex] =  [tex]\frac{22072.5}{t}[/tex]

Numerically, we can see that Jill applied the most power downhill

Other Questions
Calculate 85% of 2 500m Use the drop-down menu to complete each statement,Elasticity is the measure of how producers and consumers react to changes inA supply iswhen the quantity of a good supplied does not change as the price changesA supply iswhen the quantity of a good supplied increases or decreases as the price changesIntroDone6 of 11 a painter paints the side of a house at a rate of 3 square feet per minute. if the dimensions of the side of the house are 15 feet by 18, how many minutes does it take the painter to finish the job? The cost in dollars C(x), where x is the number of miles driven, of renting a car for a day is C(x)=1.95x+32. What is the independent variable and its units? ______ (dollars, miles, miles per dollar, or dollars per mile) - select the correct units What is the dependent variable and its units? ______ (miles or dollars) - select the correct units Which common area of conflict does this situation represent? A cylindrical tank is required to contain a gage pressure 670 kPakPa . The tank is to be made of A516 grade 60 steel with a maximum allowable normal stress of 150 MPaMPa . If the inner diameter of the tank is 2 mm , what is the minimum thickness, tt, of the wall Which of the following choices is one of the four main sentences structures? A. Simple sentences B. Compound sentences C. Compound-complex sentences D. All of the choices are correct Anyone know this ? Please help Which is an example of business correspondence?A. An advertisement encouraging customers to choose A+ PaintcompanyB. An email sent from one paint company to another, asking forpricing informationC. A guide to help customers choose the correct paint type for theirhomesD. A manual that provides instructions for completing employee timecards Use the multiplication rule for independent event probabilities. Two friends are both pregnant, and find out they are each expecting twins! Let A be the event that one friend is pregnant with identical twins, and note that P(A) = 0.0045. Let B be the event that the other friend is pregnant with fraternal twins, and note that P(B)= 0.01. A and B are independent events. What is the probability that one friend is pregnant with identical twins, and one friend is pregnant with fraternal twins? Give your answer as a percent, rounded to four decimal places if necessary. Isaac applied the steps below to find the product of (4.2)(-5.4)..Step 1: (4.2)(-5.4) = (-5.4)(4.2)Step 2:= (-5.4)(4) + (-5.4)(0.2)Step 3:= (-21.6) + (-1.08)Step 4:=-22.68Which step shows where Isaac applied the distributive property?Step 10 0Step 2Step 3Step 4 The office's boisterous celebration, full of cheering, shouting, and laughter, caused other businesses on the samefloor to shut their doors.The word "boisterous" most likely meanscorporate.rowdy.scandalous.tiresome. PLEASE HELP!A farmer wanted to paint a shed out in his field. Here is the breakdown of the dimensions: the building is sitting on a square slab of cement that is 10' x 10'. It is 8 feet from the bottom of the shed to the bottom of the roof on the edge, and 10 feet from the bottom of the shed to the top of the very tip top of the roof. So A = 10, B = 8 and C = 10. Using the formula for the area of a rectangle, A = l x w and the area of a triangle, 1/2(bh), b is base and h is height, then find the total area that needs to be painted. Total area = Un bombero alejado d = 31.0 m de un edificio en llamas dirige un chorro de agua desde una manguera contra incendios a nivel del suelo con un ngulo de i = 33.0 arriba de la horizontal como se muestra en la figura siguiente. Si la rapidez del chorro cuando sale de la manguera es vi = 40.0 m/s, a qu altura (en m) golpear el edificio? m Sam munches on some almonds. Identify the food group to which almonds belong. A. fruits B. dairy C. protein D. vegetables Can someone helpit's urgent. I will mark you the brainliest, I promise!!! A speech to persuade: Group of answer choices influences the audience by presenting arguments intended to change attitudes, beliefs, or values amuses the audience by engaging them in a relatively light-hearted speech increases the audience's knowledge about a topic or issue shows the audience the necessary steps taken in order to use, operate, or do something. In what ways are fats and steroids similar to each other, and in what ways are they different? a. Fats and steroids are both hydrophilic lipids, but fats help with metabolism while steroids provide insulation. b. Fats and steroids are both hydrophobic lipids, but fats serve as energy while steroids serve as hormones. c. Steroids contain a four-carbon ring while fats consist of glycerol and fatty acids, but both are proteins. d. Steroids help with transport while fats store energy, but both are proteins. x square + 4 x - 12 all over x squared - 2x Write a program that prompts the user to enter a hex digit and displays its corresponding binary number. Sample Run 1 Enter a hex digit: B The binary value is 1011 Sample Run 2 Enter a hex digit: b The binary value is 1011 Sample Run 3 Enter a hex digit: T Invalid input