Answer:
The correct answer is 12.58 grams.
Explanation:
Based on the given information, the electrolysis equation will be,
Al³⁺ + 3e⁻ ⇔ Al
1 mol of Al needs 3 moles of electron, and the value for 1 mole of electron is 96485 C.
Thus, 1 mole of Al needs 3 × 96485 C = 289455 C
Now the amount of charge passed is,
T = 2.5 hours
= 2.5 × 3600 s = 9 × 10³ s
Q = Current × Time
= 15A × 9 × 10³ s
= 13.5 × 10⁴ C
The moles of Al plated will be,
= 13.5 × 10⁴ / 289455
= 0.4664 mol
The molecular mass of Al is 26.98 grams per mole
Now the mass of Al will be,
= Number of moles × Molecular mass
= 0.4664 × 26.98
= 12.58 grams
Consider four different samples: aqueous LiBr, molten LiBr, aqueous LiF, and molten LiF. Current run through each sample produces one of the following products at the anode: liquid bromine, fluorine gas, or oxygen gas. Match each sample to its anodic product from aqueous LiBr, Molten LiBr, aqueous LiF, and molten LiFA. Liquid bromine,
B. Fluorine gas,
C. oxygen gas
Answer:
Following are the solution to the given question:
Explanation:
Please find the matching in attached file.
During the electrolysis of Molten LiBr : Li is reduced and Br are oxidized .
Lithium Metal is produced at the Cathod during the electrolysis of Molten LiBR .
In the aquous LiBr : In aquous LiBr potential of Li is greater than the of water then Li is reduced to produce solid Li ion. As well As aqueous LiF ( electrolysis)and Molten LiF electrolysis produce the gas.
aqueous LiF: Oxygen gas.
Molten LiF : Flourine gas.
Calculate the number of hydrogen atoms present in 40g of urea, (NH2)2CO
Answer: There are [tex]16.14 \times 10^{23}[/tex] atoms of hydrogen are present in 40g of urea, [tex](NH_{2})_{2}CO[/tex].
Explanation:
Given: Mass of urea = 40 g
Number of moles is the mass of substance divided by its molar mass.
First, moles of urea (molar mass = 60 g/mol) are calculated as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{40 g}{60 g/mol}\\= 0.67 mol[/tex]
According to the mole concept, 1 mole of every substance contains [tex]6.022 \times 10^{23}[/tex] atoms.
So, the number of atoms present in 0.67 moles are as follows.
[tex]0.67 mol \times 6.022 \times 10^{23} atoms/mol\\= 4.035 \times 10^{23} atoms[/tex]
In a molecule of urea there are 4 hydrogen atoms. Hence, number of hydrogen atoms present in 40 g of urea is as follows.
[tex]4 \times 4.035 \times 10^{23} atoms\\= 16.14 \times 10^{23} atoms[/tex]
Thus, we can conclude that there are [tex]16.14 \times 10^{23}[/tex] atoms of hydrogen are present in 40g of urea, [tex](NH_{2})_{2}CO[/tex].
Determine the molarity and mole fraction of a 1.09 m solution of acetone (CH3COCH3) dissolved in ethanol (C2H5OH). (Density of acetone
Answer:
Molarity = 0.809 M
mole fraction = 0.047
Explanation:
The complete question is
Calculate the molarity and mole fraction of acetone in a 1.09-molal solution of acetone (CH3COCH3) in ethanol (C2H5OH). (Density of acetone = 0.788 g/cm3; density of ethanol = 0.789 g/cm3.) Assume that the volumes of acetone and ethanol add.
Solution -
Solution for molarity:
1.09-molal means 1.09 moles of acetone in 1.00 kilogram of ethanol.
1)
Mass of 1.09 mole of acetone
= 1.09 mol x 58.0794 g/mol = 63.306 g
Density of acetone = 0.788 g/cm3
Thus, volume of 1.09 moles of acetone = 63.306 g/0.788 g/cm3 = 80.34 cm3
For ethanol
1000 g divided by 0.789 g/cm3 = 1267.427 cm3
Total volume of the solution = Volume of acetone + Volume of ethanol = 80.34 cm3 + 1267.427 cm3 = 1347.765 cm3 = 1.347 L
a) Molarity:
1.09 mol / 1.347 L = 0.809 M
Mole Fraction
a) moles of ethanol:
1000 g / 46.0684 g/mol = 21.71 mol
b) moles of acetone:
1.09 / (1.09 + 21.71) = 0.047
how many moles of Carbon are in 3.06 g of Carbon
Answer:
[tex]\boxed {\boxed {\sf 0.255 \ mol \ C }}[/tex]
Explanation:
If we want to convert from grams to moles, the molar mass is used. This is the mass of 1 mole. They are found on the Periodic Table as the atomic masses, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
Look up the molar mass of carbon.
Carbon (C): 12.011 g/molSet up a ratio using the molar mass.
[tex]\frac {12.011 \ g \ C}{ 1 \ mol \ C}[/tex]
Since we are converting 3.06 grams to moles, we multiply by that value.
[tex]3.06 \ g \ C*\frac {12.011 \ g \ C}{ 1 \ mol \ C}[/tex]
Flip the ratio. This way, the ratio is still equivalent, but the units of grams of carbon cancel.
[tex]3.06 \ g \ C* \frac{1 \ mol \ C}{12.011 \ g\ C}[/tex]
[tex]3.06 * \frac{1 \ mol \ C}{12.011 }[/tex]
[tex]\frac {3.06}{12.011 } \ mol \ C[/tex]
[tex]0.25476646 \ mol \ C[/tex]
The original measurement of grams (3.06) has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place.
0.25476646The 7 in the ten-thousandth place tells us to round the 4 up to a 5.
[tex]0.255 \ mol \ C[/tex]
3.06 grams of carbon is approximately 0.255 moles of carbon.
Which organ produces the female hormone estrogen
Answer:
Ovary
Explanation:
ovaries produce the most estrogen in females.
Assume that your empty crucible weighs 15.98 g, and the crucible plus the sodium bicarbonate sample weighs 18.56 g. After the first heating, your crucible and contents weighs 17.51 g. After the second heating, your crucible and contents weighs 17.50 g.What is the theoretical yield of sodium carbonate
The question is incomplete, the complete question is;
Assume that your empty crucible weighs 15.98 g, and the crucible plus the sodium bicarbonate sample weighs 18.56 g. After the first heating, your crucible and contents weighs 17.51 g. After the second heating, your crucible and contents weighs 17.50 g.
What is the theoretical yield of sodium carbonate?
What is the experimental yield of sodium carbonate?
What is the percent yield for sodium carbonate?
Which errors could cause your percent yield to be falsely high, or even over 100%?
Answer:
See Explanation
Explanation:
We have to note that water is driven away after the second heating hence we are concerned with the weight of the pure dry product.
Hence;
From the reaction;
2 NaHCO3 → Na2CO3(s) + H2O(l) + CO2(g)
Number of moles of sodium bicarbonate = 18.56 - 15.98 = 2.58 g/87 g/mol
= 0.0297 moles
2 moles of sodium bicarbonate yields 1 mole of sodium carbonate
0.0297 moles of 0.015 moles sodium bicarbonate yields 0.0297 * 1/2 = 0.015 moles
Theoretical yield of sodium carbonate = 0.015 moles * 106 g/mol = 1.59 g
Experimental yield of sodium bicarbonate = 17.50 g - 15.98 g = 1.52 g
% yield = experimental yield/Theoretical yield * 100
% yield = 1.52/1.59 * 100
% yield = 96%
The percent yield may exceed 100% if the water and CO2 are not removed from the system by heating the solid product to a constant mass.
If one neutron initiates a fission event that produces two neutrons in the products, how many new reactions can now be initiated? 9 If each of the neutrons produced in the first fission event then initiates a fission event that produces one neutron in the products, how many new reactions can now be initiated by each neutron? How many neutrons in total were produced by the two fission events described?
Answer:
See Explanation
Explanation:
A fission reaction is a chain reaction. The neutrons that are produced in one reaction leads to further chain reaction in the system.
If one neutron initiates fission that leads to the production of two other neutrons,two more new reactions are initiated.
If these reactions each produce one neutron, then another two new reactions are initiated. This makes a total of four new reactions from the two fission events described.
A total of four neutrons is produced from the two fission events.
Answer:
If one neutron initiates a fission event that produces two neutrons in the products, how many new reactions can now be initiated?
2
If each of the neutrons produced in the first fission event then initiates a fission event that produces one neutron in the products, how many new reactions can now be initiated by each neutron?
1
How many neutrons in total were produced by the two fission events described?
4
Explanation:
Got it correct on Edge.
PLEASE HELP ME!!!!!!!
Answer:
The heat capacity of the metal underneath the gold is 0.431 J/g°C
Explanation:
Using the formula as outlined in the image:
Q = m × c × ∆T
Where;
Q = amount of heat energy (J)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
According to the information in this question;
Q = 503.9J
m = 23.02g
c = ?
∆T = 74°C - 23.2°C = 50.8°C
Using Q = m × c × ∆T
c = Q ÷ m∆T
c = 503.9 ÷ (23.02 × 50.8)
c = 503.9 ÷ 1169.42
c = 0.431 J/g°C
From the above heat capacity of the metal underneath the gold, it is obvious that the metal is not pure gold (c = 0.129J/g°C)
A chemist must dilute of aqueous silver perchlorate solution until the concentration falls to . He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Round your answer to significant digits
The given question is incomplete, the complete question is:
A chemist must dilute 54.1 mL of 20.2 M aqueous silver perchlorate (AgC102) solution until the concentration falls to 3.00 M. He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Round your answer to 3 significant digits.
Answer:
The correct answer is 0.364 L.
Explanation:
A solution is made less concentrated by diluting it with a solvent. There is no change in the number of moles when more solvent is added to the solution. In case, if the solution is diluted from V1 to V2, a change is noticed in the molarity of the solution based on the given equation,
M1V1 = M2V2
In the given case, the V1 or the volume of the original solution is 54.1 ml, M1 or the molarity of the original solution is 20.2 M.
The M2 or the molarity of the diluted solution is 3.00 M, there is a need to find the V2 or the volume of the diluted solution.
Now by putting the values in the equation we get,
= 20.2M * 54.1 ml = 3.0 M * V2
V2 = 364.27 ml
It is known that 1000 ml is equivalent to 1L, therefore, 1 ml = 0.001 L
Now, the value of V2 will be,
= 364.27 * 0.001 L = 0.36427 L or 0.364 L
In the following reaction, C5H12(1) + 8 O2 (g) - 6 H2O (g) + 5 CO2 (g), how many
moles of water (H20) are produced by 14.2 moles of O2?
Answer:
10.65 moles
Explanation:
O2:H2O
8:6
14.2:x
x= 10.65 moles
does anyone know this??
Answer: C2H6O
Explanation: It is C2H6O with a molar mass of 46.07 g/mol.
BRAINISEST & 10 POINTS
Answer:
In order from left to right, 7 (gamma), 5 (ultraviolet, now continue pattern), 4, 6, 2, 3, 1.
The mass of 1.63×10^21 silicon atoms
Answer:
I think it is 7.60 X 1
but if it's not srry
) Dinitrogen Tetroxide partially decomposes according to the following equilibrium: N2O4 (g) 2NO2 (g) A 1.00-L flask is charged with 0.400 mol of N2O4. At equilibrium at 373 K, 0.0055 mol of N2O4 remains. Keq for this reaction is __________.
Answer: The value of [tex]K_{eq}[/tex] for this reaction is 1.578.
Explanation:
Given: Initial moles of [tex]N_{2}O_{4}[/tex] = 0.4 mol
Volume = 1.00 L
Therefore, initial concentration of [tex]N_{2}O_{4}[/tex] is calculated as follows.
[tex]Concentration = \frac{moles}{volume}\\= \frac{0.4}{1.0 L} mol\\= 0.4 M[/tex]
Now, ICE table for the given reaction equation is as follows.
[tex]N_{2}O_{4}(g) \rightleftharpoons 2NO_{2}[/tex]
Initial: 0.4 0
Change: -x +2x
Equib: 0.4 - x = 0.0055 2x
Hence, the value of x is calculated as follows.
0.4 - x = 0.0055
x = 0.4 - 0.0055
= 0.3945
Now, the [tex][NO_{2}][/tex] is calculated as follows.
2x = [tex][NO_{2}][/tex] = [tex]2 \times 0.3945 = 0.789[/tex]
Therefore, [tex]K_{eq}[/tex] for the given reaction is calculated as follows.
[tex]K_{eq} = \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]}\\= \frac{(0.789)^{2}}{(0.3945)}\\= 1.578[/tex]
Thus, we can conclude that [tex]K_{eq}[/tex] for this reaction is 1.578.
scenario Juan and Maria Lopez wish to invest in a no-risk savings account. They currently have 530,000 in an account bearing 5.25 % annual interest, compounded continuously. The following options are available to them.
Answer:
The amount after three year is 617934.1302
Explanation:
Complete question
A person places $530,000 in an investment account earning an annual rate of 5.25%, compounded continuously. Using the formula V = Pe^{rt}V=Pe rt , where V is the value of the account in t years, P is the principal initially invested, e is the base of a natural logarithm, and r is the rate of interest, determine the amount of money, to the nearest cent, in the account after 3 years
Solution
The formula for calculating compound interest is
[tex]A = p (1 + \frac{r}{n})^{nt}[/tex]
Substituting the given values we get -
[tex]A = 530,000 (1 + \frac{5.25}{100})^3\\A = 530,000 * ( 1+ 0.0525)^3\\A = 530,000 * ( 1.0525)^3\\A = 617934.1302[/tex]
The amount after three year is 617934.1302
When fuels are burned, the chemical energy that is released can be used to generate another form of energy, such as heat, light,motion,or electricity. This is called
Answer: When fuels are burned, the chemical energy that is released can be used to generate another form of energy, such as heat, light, motion, or electricity. This is called combustion.
Explanation:
The chemical energy present in fuels actually releases when these fuels are burned or by combustion.
Hence when fuels are burned, the chemical energy that is released can be used to generate another form of energy, such as heat, light, motion, or electricity. This is called combustion.
For example, gasoline present in vehicles burns and undergoes chemical change which is then converted into thermal energy. This thermal energy then converts into mechanical energy due to which car moves.
Thus, we can conclude that when fuels are burned, the chemical energy that is released can be used to generate another form of energy, such as heat, light, motion, or electricity. This is called combustion.
The table below shows some characteristics of three different types of muscles
Answer: Type A are cardiac muscles Type B are skeletal muscles, and Type C are smooth muscles.
Explanation: sub to technoblade :P
A gas has a solubility of 0.66 g/L at 10.0 atm. What is the pressure on a 1.0 L samples that contains 1.5 g of gas
Answer:
"22.73 atm" is the correct answer.
Explanation:
Given:
Solubility,
[tex]S_1=0.66 \ g/L[/tex]
[tex]S_2=1.5 \ g/L[/tex]
Pressure,
[tex]P_1=10.0 \ atm[/tex]
[tex]P_2=?[/tex]
By using Henry's law,
⇒ [tex]\frac{S_1}{P_1} =\frac{S_2}{P_2}[/tex]
or,
⇒ [tex]P_2=\frac{S_2 P_1}{S_1}[/tex]
By putting the values, we get
⇒ [tex]=\frac{1.5\times 10.0}{0.66}[/tex]
⇒ [tex]=\frac{15}{0.66}[/tex]
⇒ [tex]=22.73\ atm[/tex]
What is the entropy change in the environment when 5.0 MJ of energy is transferred thermally from a reservoir at 1000 K to one at 500 K
Answer:
The entropy change in the environment is 3.62x10²⁶.
Explanation:
The entropy change can be calculated using the following equation:
[tex]\Delta S = \frac{Q}{k_{B}}(\frac{1}{T_{f}} - \frac{1}{T_{i}})[/tex]
Where:
Q: is the energy transferred = 5.0 MJ
[tex]k_{B}[/tex]: is the Boltzmann constant = 1.38x10⁻²³ J/K
[tex]T_{i}[/tex]: is the initial temperature = 1000 K
[tex]T_{f}[/tex]: is the final temperature = 500 K
Hence, the entropy change is:
[tex] \Delta S = \frac{5.0 \cdot 10^{6} J}{1.38 \cdot 10^{-23} J/K}(\frac{1}{500 K} - \frac{1}{1000 K}) = 3.62 \cdot 10^{26} [/tex]
Therefore, the entropy change in the environment is 3.62x10²⁶.
I hope it helps you!
PbO2 + 4HCl --- PbCl2 + Cl2 + 2H2O who buys electrons and who loses electrons?
Answer: Electrons are taken up by [tex]PbO_2[/tex] and they are lost by [tex]HCl[/tex]
Explanation:
Redox reaction is defined as the reaction in which oxidation and reduction take place simultaneously. It is also called the reaction where the exchange of electrons takes place.
An oxidation reaction is defined as the reaction in which a chemical species loses electrons takes place. In this reaction, the oxidation state of a substance gets increased.
A reduction reaction is defined as the reaction in which a chemical species gains electrons takes place. In this reaction, the oxidation state of a substance gets reduced.
For the given chemical reaction:
[tex]PbO_2+4HCl\rightarrow PbCl_2+Cl_2+2H_2O[/tex]
The half-reactions for this redox rection follows:
Oxidation half-reaction: [tex]2HCl\rightarrow ClO_2 + 2e^-[/tex]
Reduction half-reaction: [tex]PbO_2+2e^-\rightarrow PbCl_2[/tex]
Hence, electrons are taken up by [tex]PbO_2[/tex] and they are lost by [tex]HCl[/tex]
A single ___ bond is made when two atoms share a pair of ____
Answer:
covalent
valence electrons
Explanation:
The attraction between two atoms that share a pair of valence electrons is known as a covalent bond. The nuclei of both atoms are drawn to the shared electrons. This results in a molecule with two or more atoms. Covalent bonds are formed solely between nonmetal atoms.
Between atoms of the same element or between atoms of different elements, covalent bonds can form. A new substance termed a covalent compound is formed when atoms of various elements create covalent bonds.
When water and alcohol are mixed, the final volume is less than the total of volume of alcohol plus water added due to .......
Answer:
molecules take up more space
Which point defect in its crystal units alters the density of a solid?
please please answer
Answer:
Schottky defect
Explanation:
Schottky defect in crystals units alters the density of a solid.
If the Bunsen burner gave a luminous flame and some soot was deposited on
the tube, what effect would this situation have on the calculated % of oxygen ?
Explanation:
If bunsen burner gave a luminous flame then there will deposition of soot at the bottom of the test tube which is actually pure carbon.
This deposition of soot actually depicts that there is incomplete combustion reaction that has taken place.
Also, the deposition of soot will provide a limited supply of oxygen to the reaction that has been calculated.
Therefore, in order to avoid any formation of soot it is advisable to adjust the burner flame till it produces a blue flame.
How many grams are in 0.375 mol LiBr? (MM LiBr=86.85 g/mol)
O 32.6 g
O 0.00315 g
O 0043 g
O 86.8 g
Answer:
32.57g
Explanation:
mass = mole x molar mass
mass of LiBr = 0.375 x 86.85
mass = 32.57g
Limitations of Pearson rule
please answer all three of these questions
Answer:
I think it's 1.D
2.C
3.C
my apologies if it's incorrect
Brainiest and 10 points
Which has a HIGHER frequency?
A. Orange light
B. Blue light
Answer:
A. Orange light
Explanation:
According to the band spectrum of white light ( ROYGBIV )
Answer:
I think it blue light is higher
The solubility of an ionic compound can be expressed as the number of moles of the compound that will dissolve per liter of solution (molarity). The saturated solution has approximately____(a) sodium ions dissolved in it (give an estimate of the average value.) The solution (not the solid) contains approximately_____(b) moles of sodium ions.
Answer:
Number of moles of sodium dissolved = 6.0 *10^23
Explanation:
The image for the question is attached
Solution
a) Total 181 ions of Na are dissolved
b)
The number of moles of sodium dissolved = 181/6.023 *10^23
Number of moles of sodium dissolved = 5.987 * 10^23
Number of moles of sodium dissolved = 6.0 *10^23
Which waves are blocked by the atmosphere? A. gamma rays B. visible light C. radio waves D. infrared waves
Answer: look at the explanation and try to work it
Explanation: in contrast, our atmosphere blocks most ultraviolet light (UV) and all X-rays and gamma-rays from reaching the surface of Earth. Because of this, astronomers can only study these kinds of light using detectors mounted on weather balloons, in rockets, or in Earth-orbiting satellites.