The electric potential of a charge distribution is given by the equation V(x) = 3x2y2 + yz3 - 2z3x, where x, y, z are measured in meters and V is measured in volts. Calculate the magnitude of the electric field vector at the position (x,y,z) = (1.0, 1.0, 1.0)

Answers

Answer 1

Answer:

The magnitude of the electric field is  [tex]|E| = 8.602 \ V/m[/tex]

Explanation:

From the question we are told that

    The electric potential is  [tex]V = 3x^2y^2 + yz^3 - 2z^3x[/tex]

Generally electric filed is mathematically represented as

          [tex]E = - [\frac{dV }{dx} i + \frac{dV}{dy} j + \frac{dV}{dz} \ k][/tex]

So

         [tex]E =- ( [6xy^2 - 2z^3] i + [6x^2y+ z^3]j + [3yz^2 -6xz^2])[/tex]

at (x,y,z) = (1.0, 1.0, 1.0)

        [tex]E = [6(1)(1)^2 - 2(1)^3] i + [6(1)^2(1)+ (1)^3]j + [6(1)(1)^2 -6(1)(1)^2][/tex]

        [tex]E =- ([4] i + [7]j + [-3])[/tex]

       [tex]E =-4i -7j + 3 k[/tex]

The magnitude of the electric field is  

        [tex]|E| = \sqrt{(-4)^2 + (-7)^2 + (3^2)}[/tex]

       [tex]|E| = 8.602 \ V/m[/tex]


Related Questions

g The Trans-Alaskan pipeline is 1,300 km long, reaching from Prudhoe Bay to the port of Valdez, and is subject to temperatures ranging from -71°C to +35°C. How much does the steel pipeline expand due to the difference in temperature?

Answers

Answer:

ΔL = 1.653 km

Explanation:

The linear expansion of any object due to change in temperature is given by the following formula:

ΔL = αLΔT

where,

ΔL = Change in length or expansion of steel pipe line = ?

α = coefficient of linear expansion of steel = 12 x 10⁻⁶ /°C

L = Original Length of the steel pipe = 1300 km

ΔT = Change in temperature = 35°C - (- 71°C) = 35°C + 71°C = 106°C

Therefore,

ΔL = (12 x 10⁻⁶ /°C)(1300 km)(106°C)

ΔL = 1.653 km

The Pauli exclusion principle states that Question 1 options: the wavelength of a photon of light times its frequency is equal to the speed of light. no two electrons in the same atom can have the same set of four quantum numbers. both the position of an electron and its momentum cannot be known simultaneously very accurately. the wavelength and mass of a subatomic particle are related by . an electron can have either particle character or wave character.

Answers

Answer:

no two electrons in the same atom can have the same set of four quantum numbers

Explanation:

Pauli 's Theory of Exclusion specifies that for all four of its quantum numbers, neither two electrons in the same atom can have similar value.

In a different way, we can say that no more than two electrons can take up the identical orbital, and two electrons must have adversely spin in the identical orbital

Therefore the second option is correct

What do behaviorism and cognitive psychology have in common?

O Both rely on the scientific method.

Both attempt to explain human behavior.

Both note the differences between human and animal behavior

Behaviorism focuses on actions only.

Answers

Answer:

Both attempt to explain human behavior

Explanation:

Psychology is generally regarded as the science of human behavior. Behaviourism is the psychological theory which holds that behaviour can be fully understood in terms of conditioning, without actually considering thoughts or feelings. The theory holds that psychological disorders can be aptly handled by simply altering the behavioural patterns of the individual. It involves the study of stimulus and responses.

Cognitive psychology attempts to decipher what is going on in people's minds. That is, it looks at the mind as a processor of information. Hence we can define cognitive psychology as the study of the internal mental processes. This according to behaviorists, cannot be studied in measurable terms as in behaviourism (stimulus response approach) even though mental processes are known to influence human behavior significantly.

Hence, both behaviourism and cognitive psychology attempt to study human behavior from different perspectives.

A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 43.0 vibrations in 33.0 s. Also, a given maximum travels 424 cm along the rope in 15.0 s. What is the wavelength

Answers

Answer:

0.218

Explanation:

Given that

Total vibrations completed by the wave is 43 vibrations

Time taken to complete the vibrations is 33 seconds

Length of the wave is 424 cm = 4.24 m

to solve this problem, we first find the frequency.

Frequency, F = 43 / 33 hz

Frequency, F = 1.3 hz

Also, we find the wave velocity. Which is gotten using the relation,

Wave velocity = 4.24 / 15

Wave velocity = 0.283 m/s

Now, to get our answer, we use the formula.

Frequency * Wavelength = Wave Velocity

Wavelength = Wave Velocity / Frequency

Wavelength = 0.283 / 1.3

Wavelength = 0.218

A coil is connected to a galvanometer, which can measure the current flowing through the coil. You are not allowed to connect a battery to this coil. Given a magnet, a battery and a long piece of wire, can you induce a steady current in that coil?

Answers

Answer:

Yes we can induce current in the coil by moving the magnet in and out of the coil steadily.

Explanation:

A current can be induced there using the magnetic field and the coil of wire. Moving the bar magnet around the coil can induce a current and this is called electromagnetic induction.

What is electromagnetic induction ?

The generation of an electromotive force  across an electrical conductor in a fluctuating magnetic field is known as electromagnetic or magnetic induction.

Induction was first observed in 1831 by Michael Faraday, and James Clerk Maxwell mathematically named it Faraday's law of induction. The induced field's direction is described by Lenz's law.

Electrical equipment like electric motors and generators as well as parts like inductors and transformers have all found uses for electromagnetic induction.

Here, moving the bar magnet around the coil generates the electronic movement followed by a generation of electric current.

Find more on electromagnetic induction :

https://brainly.com/question/13369951

#SPJ6

A mercury barometer reads 745.0 mm on the roof of a building and 760.0 mm on the ground. Assuming a constant value of 1.29 kg/m3 for the density of air, determine the height of the building

Answers

Answer:

The height of the building is 158.140 meters.

Explanation:

A barometer is system that helps measuring atmospheric pressure. Manometric pressure is the difference between total and atmospheric pressures. Manometric pressure difference is directly proportional to fluid density and height difference. That is:

[tex]\Delta P \propto \rho \cdot \Delta h[/tex]

[tex]\Delta P = k \cdot \rho \cdot \Delta h[/tex]

Where:

[tex]\Delta P[/tex] - Manometric pressure difference, measured in kilopascals.

[tex]\rho[/tex] - Fluid density, measured in kilograms per cubic meter.

[tex]\Delta h[/tex] - Height difference, measured in meters.

Now, an equivalent height difference with a different fluid can be found by eliminating manometric pressure and proportionality constant:

[tex]\rho_{air} \cdot \Delta h_{air} = \rho_{Hg} \cdot \Delta h_{Hg}[/tex]

[tex]\Delta h_{air} = \frac{\rho_{Hg}}{\rho_{air}} \cdot \Delta h_{Hg}[/tex]

Where:

[tex]\Delta h_{air}[/tex] - Height difference of the air column, measured in meters.

[tex]\Delta h_{Hg}[/tex] - Height difference of the mercury column, measured in meters.

[tex]\rho_{air}[/tex] - Density of air, measured in kilograms per cubic meter.

[tex]\rho_{Hg}[/tex] - Density of mercury, measured in kilograms per cubic meter.

If [tex]\Delta h_{Hg} = 0.015\,m[/tex], [tex]\rho_{air} = 1.29\,\frac{kg}{m^{3}}[/tex] and [tex]\rho_{Hg} = 13600\,\frac{kg}{m^{3}}[/tex], the height difference of the air column is:

[tex]\Delta h_{air} = \frac{13600\,\frac{kg}{m^{3}} }{1.29\,\frac{kg}{m^{3}} }\times (0.015\,m)[/tex]

[tex]\Delta h_{air} = 158.140\,m[/tex]

The height of the building is 158.140 meters.

Answer:

158.13m

Explanation:

Force exerted over a unit area is called Pressure. Also, in a given column of air, the pressure(P) is given as the product of the density(ρ) of the air, the height(h) of the column of air and the acceleration due to gravity(g). i.e

P = ρhg

Let;

Pressure measured at the roof top =  ([tex]P_{R}[/tex])

Pressure measured at the ground level =  ([tex]P_{G}[/tex])

Pressure at the ground level = Pressure at the roof + Pressure at the column height of air.

[tex]P_{G}[/tex] = [tex]P_{R}[/tex] + P               ---------------(i)

(a) P = ρhg             -----------(***)

But;

ρ = density of air = 1.29kg/m³  

h = height of column of air = height of building

g = acceleration due to gravity = 10m/s²

Substitute these values into equation (***)

P = 1.29 x h x 10

P = 12.9h Pa

(b) [tex]P_{G}[/tex] =  ρ[tex]_{mercury}[/tex] x h[tex]_{(mercury)_{ground} }[/tex] x g ------------(*)

But;

ρ[tex]_{mercury}[/tex] = density of mercury = 13600kg/m³  

h[tex]_{(mercury)_{ground} }[/tex] = height of mercury on the ground = 760.0mm = 0.76m

g = acceleration due to gravity = 10m/s²

Substitute these values into equation (*)

[tex]P_{G}[/tex] =  13600 x 0.76 x 10

[tex]P_{G}[/tex] = 103360 Pa

(c) [tex]P_{R}[/tex] = ρ[tex]_{mercury}[/tex] x h[tex]_{(mercury)_{roof} }[/tex] x g       --------------(**)

But;

ρ[tex]_{mercury}[/tex] = density of mercury = 13600kg/m³  

h[tex]_{(mercury)_{roof} }[/tex] = height of mercury on the roof = 745.0mm = 0.745m

g = acceleration due to gravity = 10m/s²

Substitute these values into equation (**)

[tex]P_{R}[/tex]  =  13600 x 0.745 x 10

[tex]P_{R}[/tex]  = 101320 Pa

(d) Now that we know the values of P, [tex]P_{G}[/tex] and [tex]P_{R}[/tex] , let's substitute them into equation (i) as follows;

[tex]P_{G}[/tex] = [tex]P_{R}[/tex] + P  

103360 = 101320 + 12.9h

Solve for h;

12.9h = 103360 - 101320

12.9h = 2040

h = [tex]\frac{2040}{12.9}[/tex]

h = 158.13m

Therefore, the height of the building is 158.13m

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm .What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answers

Complete Question:

The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 43 mm , while nonathletes' stretch only 32 mm . The spring constant for the tendon is the same for both groups, [tex]31 {\rm {N}/{mm}}[/tex]. What is the difference in maximum stored energy between the sprinters and the nonathlethes?

Answer:

[tex]\triangle E = 12.79 J[/tex]

Explanation:

Sprinters' tendons stretch, [tex]x_s = 43 mm = 0.043 m[/tex]

Non athletes' stretch, [tex]x_n = 32 mm = 0.032 m[/tex]

Spring constant for the two groups, k = 31 N/mm = 3100 N/m

Maximum Energy stored in the sprinter, [tex]E_s = 0.5kx_s^2[/tex]

Maximum energy stored in the non athletes, [tex]E_m = 0.5kx_n^2[/tex]

Difference in maximum stored energy between the sprinters and the non-athlethes:

[tex]\triangle E = E_s - E_n = 0.5k(x_s^2 - x_n^2)\\\triangle E = 0.5*3100* (0.043^2 - 0.032^2)\\\triangle E = 0.5*31000*0.000825\\\triangle E = 12.79 J[/tex]

The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

The distance is  [tex]d = 1.5 *10^{15} \ km[/tex]

Explanation:

From the question we are told that

        The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]

Generally a grid unit is  [tex]\frac{1}{10}[/tex] of  an arcsec

  This implies that  0.2 grid unit is  [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]

The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

           [tex]d = \frac{1}{k}[/tex]

substituting values

           [tex]d = \frac{1}{0.02}[/tex]

           [tex]d = 50 \ parsec[/tex]

Note  [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]

So  [tex]d = 50 * 3.08 *10^{13}[/tex]

     [tex]d = 1.5 *10^{15} \ km[/tex]

A positively charged particle Q1 = +45 nC is held fixed at the origin. A second charge Q2 of mass m = 4.5 μg is floating a distance d = 25 cm above charge The net force on Q2 is equal to zero. You may assume this system is close to the surface of the Earth.
|Q2| = m g d2/( k Q1 )
Calculate the magnitude of Q2 in units of nanocoulombs.

Answers

Answer:

( About ) 6.8nC

Explanation:

We are given the equation |Q2| = mgd^2 / kQ1. Let us substitute known values into this equation, but first list the given,

Charge Q2 = +45nC = (45 × 10⁻⁹) C

mass of charge Q2 = 4.5 μg, force of gravity = 4.5 μg × 9.8 m/s² = ( 4.41 × 10^-5 ) N,

Distance between charges = 25 cm = 0.25 m,

k = Coulomb's constant = 9 × 10^9

_______________________________________________________

And of course, we have to solve for the magnitude of Q2, represented by the charge magnitude of the charge on Q2 -

(4.41 × 10^-5) = [(9.0 × 10⁹) × (45 × 10⁻⁹) × Q₂] / 0.25²

_______________________________________________________

Solution = ( About ) 6.8nC

A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil and capped at both ends with tight-fitting pistons. The wider arm of the U-tube has a radius of 18.0 cm and the narrower arm has a radius of 5.00 cm. The car rests on the piston on the wider arm of the U-tube. The pistons are initially at the same level. What is the initial force that must be applied to the

Answers

Answer:

F₂ = 925.92 N

Explanation:

In a hydraulic lift the normal stress applied to one arm must be equally transmitted to the other arm. Therefore,

σ₁ = σ₂

F₁/A₁ = F₂/A₂

F₂ = F₁ A₂/A₁

where,

F₂ = Initial force that must be applied to narrow arm = ?

F₁ = Load on Wider Arm to be raised = 12000 N

A₁ = Area of wider arm = πr₁² = π(18 cm)² = 324π cm²

A₂ = Area of narrow arm = πr₂² = π(5 cm)² = 25π cm²

Therefore,

F₂ = (12000 N)(25π cm²)/(324π cm²)

F₂ = 925.92 N

A charged Adam or particle is called a

Answers

Answer:

A charged atom or particle is called an ion :)

The atom is called an ion. This is because when an atom is attracted to another atom both atoms do not have the same number of electrons and protons. If the atom has more electrons than protons it is an ion. Hope that helps!! Good luck you’re doing great!

A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20 J

Explanation:

From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.

m'u'+mu = V(m+m')........... Equation 1

Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.

make V the subject of the equation above

V = (m'u'+mu)/(m+m')............. Equation 2

Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).

Substitute into equation 2

V = [(2×5)+(8×0)]/(2+8)

V = 10/10

V = 1 m/s.

Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision

Total kinetic energy before collision = 1/2(2)(5²) = 25 J

Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J

Lost in kinetic energy = 25-5 = 20 J

The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.

Since there is a lost in kinetic energy, the collision is inelastic collision.  

m'u'+mu = V(m+m')

[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]  

Where

m' = mass of the moving object = 2 kg

m = mass of the stick = 8 kg,

u' = initial velocity of the moving object = 5 m/s

V = common velocity after collision= ?    

u = 0 m/s (at rest).

put the values in the formula,  

[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]

 

  kinetic energy before collision

[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]  

kinetic energy after collision

[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]  

Lost in kinetic energy = 25-5 = 20 J

Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.

To know more about Kinetic energy,

https://brainly.com/question/12669551

You throw a ball straight up into the air from the top of a building. The building has a height of 15.0 m. The ball reaches a height (measured from the ground) of 25.0 m and then it starts to fall back down.
a) Determine the initial velocity of the ball.
b) What is the velocity of the ball when it comes back down and is at the same height from which it was thrown?
c) How long will it take the ball to come back down to this height from the time at which it was first thrown?
d) Let’s say that you missed catching the ball on the way back down and it fell to the ground. How long did it take to hit the ground from the moment you threw it up?
e) What was the ball’s final velocity the moment before it hit the ground?

Answers

Answer:

a) vo = 14m/s

b) v = 14m/s

c) t = 2.85s

d) t = 0.829s

e) v =  22.12 m/s

Explanation:

a) To find the initial velocity of the ball yo use the following formula:

[tex]h_{max}=\frac{v_o^2}{2g}[/tex]         (1)

hmax:  maximum height reached by the ball but measured from the point at which the ball is thrown = 25.0m - 15.0m = 10.0m

vo: initial velocity of the ball = ?

g: gravitational acceleration = 9.8m/s^2

You solve the equation (1) for vo and replace the values of the other parameters:

[tex]v_o=\sqrt{2gh_{max}}}=\sqrt{2(9.8m/s^2)(10.0m)}=14\frac{m}{s}[/tex]

The initial velocity of the ball is 14m/s

b) To find the velocity of the ball when it is at the same position as the initial point where it was thrown, you can use the following formula:

[tex]v^2=2gh_{max}\\\\v=\sqrt{2gh_{max}}[/tex]        

as you can notice, v = vo = 14m/s

The velocity of the ball is 14 m/s

c) The flight time of the ball is given by twice the time the ball takes to reach the maximum height. You use the following formula:

[tex]t=2\frac{v_o}{g}=2\frac{14m/s}{9.8m/s^2}=2.85s[/tex]             (3)

The time is 2.85s

d) To find the time the ball takes to arrive to the ground after the ball passes the same height at which is was thrown, you can use the following formula:

[tex]y=y_o-v_ot-\frac{1}{2}gt^2[/tex]          (4)

y: 0 m (ball just after it impact the ground)

yo: initial position = 15.0 m

vo: in)itial velocity of the ball = 14m/s    

t: time

You replace the values of the parameters in the equation (4) and obtain a quadratic formula:

[tex]0=15.0-14t-\frac{1}{2}(9.8)t^2\\\\[/tex]

You use the quadratic formula to find the roots t:

[tex]t_{1,2}=\frac{-(-14)\pm\sqrt{(-14)^2-4(4.9)(15)}}{2(-4.9)}\\\\t_{1,2}=\frac{14\pm22.13}{-9.8}\\\\t_1=0.829s\\\\t_2=-2.19s[/tex]

you choose the positive values because is has physical meaning

The time the ball takes to arrive to the ground is 0.829s

e) The final velocity is:

[tex]v=v_o+gt[/tex]

[tex]v=14m/s+(9.8m/s^2)(0.829s)=22.12\frac{m}{s}[/tex]

The final velocity is 22.14 m/s

A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)

Answers

Answer:

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

Explanation:

An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:

[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]

[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]

The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:

[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]

Where:

[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.

[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.

[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.

If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:

[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]

[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]

As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:

[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]

[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]

The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:

[tex]x = \frac{n_{R}}{n_{E}}[/tex]

[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]

[tex]x = 8.5222 \times 10^{-11}[/tex]

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

Suppose two children push horizontally, but in exactly opposite directions, on a third child in a sled. The first child exerts a force of 79 N, the second a force of 92 N, kinetic friction is 5.5 N, and the mass of the third child plus sled is 24 kg.
1. Using a coordinate system where the second child is pushing in the positive direction, calculate the acceleration in m/s2.
2. What is the system of interest if the accelaration of the child in the wagon is to be calculated?
3. Draw a free body diagram including all bodies acting on the system
4. What would be the acceleration if friction were 150 N?

Answers

Answer:

Please, read the anser below

Explanation:

1. In order to calculate the acceleration of the children you use the Newton second law for the summation of the implied forces:

[tex]F_2-F_1-F_f=Ma[/tex]          (1)

Where is has been used that the motion is in the direction of the applied force by the second child

F2: force of the second child = 92N

F1: force of the first child = 79N

Ff: friction force = 5.5N

M: mass of the third child = 24kg

a: acceleration of the third child = ?

You solve the equation (1) for a, and you replace the values of the other parameters:

[tex]a=\frac{F_2-F_1.F_f}{M}=\frac{96N-79N-5.5N}{24kg}=0.48\frac{m}{s^2}[/tex]

The acceleration is 0.48m/s^2

2. The system of interest is the same as before, the acceleration calculated is about the motion of the third child.

3. An image with the diagram forces is attached below.

4. If the friction would be 150N, the acceleration would be zero, because the friction force is higher than the higher force between children, which is 92N.

Then, the acceleration is zero

The probability of nuclear fusion is greatly enhanced when the appropriate nuclei are brought close together, but their mutual coulomb repulsion must be overcome. This can be done using the kinetic energy of high temperature gas ions or by accelerating the nuclei toward one another.

Required:
a. Calculate the potential energy of two singly charged nuclei separated by 1.00×10^−12m
b. At what temperature will atoms of a gas have an average kinetic energy equal to this needed electrical potential energy?

Answers

Answer:

a

  [tex]PE = 2.3 *10^{-16} \ J[/tex]

b

 [tex]T = 1.1 *10^{7} \ K[/tex]

Explanation:

From the question we are told that

      The distance of separation is  [tex]d = 1.00 *10^{-12} \ m[/tex]

Generally the electric potential energy can be mathematically represented as

            [tex]PE = \frac{k * q_1 q_2 }{d}[/tex]

Given that in a nuclei the only charged particle is the proton who charge is

     [tex]p = 1.60 *10^{-19} \ C[/tex]

Hence

     [tex]q_1 = q_2 = 1.60 *10 ^{-19} \ C[/tex]

And k is the coulomb constant with values   [tex]k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.N/A2[/tex]

      So we have that

       [tex]PE = \frac{9*10^9 * (1.60 *10^{-19})^2}{ 1.00*10^{-12}}[/tex]

      [tex]PE = 2.3 *10^{-16} \ J[/tex]

The relationship between the electrical potential energy and the temperature is mathematically represented as

         [tex]PE = \frac{3}{2} kT[/tex]

Here  k is  the Boltzmann's constant with value  [tex]k = 1.38*10^{-23} JK^{-1}[/tex]

   making T the subject

       [tex]T = \frac{2}{3} * \frac{PE}{k}[/tex]

substituting values

      [tex]T = \frac{2}{3} * \frac{2.30 *10^{-16}}{ 1.38 *10^{-23}}[/tex]

     [tex]T = 1.1 *10^{7} \ K[/tex]

 

As you know, a common example of a harmonic oscillator is a mass attached to a spring. In this problem, we will consider a horizontally moving block attached to a spring. Note that, since the gravitational potential energy is not changing in this case, it can be excluded from the calculations. For such a system, the potential energy is stored in the spring and is given by
U = 12k x 2
where k is the force constant of the spring and x is the distance from the equilibrium position. The kinetic energy of the system is, as always,
K = 12mv2
where m is the mass of the block and v is the speed of the block.
A) Find the total energy of the object at any point in its motion.
B) Find the amplitude of the motion.
C) Find the maximum speed attained by the object during its motion.

Answers

Answer:

a) [tex]E = \frac{1}{2} \cdot k \cdot x^{2} + \frac{1}{2} \cdot m \cdot v^{2}[/tex], b) Amplitude of the motion is [tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex], c) The maximum speed attained by the object during its motion is [tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex].

Explanation:

a) The total energy of the object is equal to the sum of potential and kinetic energies. That is:

[tex]E = K + U[/tex]

Where:

[tex]K[/tex] - Kinetic energy, dimensionless.

[tex]U[/tex] - Potential energy, dimensionless.

After replacing each term, the total energy of the object at any point in its motion is:

[tex]E = \frac{1}{2} \cdot k \cdot x^{2} + \frac{1}{2} \cdot m \cdot v^{2}[/tex]

b) The amplitude of the motion occurs when total energy is equal to potential energy, that is, when objects reaches maximum or minimum position with respect to position of equilibrium. That is:

[tex]E = U[/tex]

[tex]E = \frac{1}{2} \cdot k \cdot A^{2}[/tex]

Amplitude is finally cleared:

[tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex]

Amplitude of the motion is [tex]A = \sqrt{\frac{2\cdot E}{k} }[/tex].

c) The maximum speed of the motion when total energy is equal to kinetic energy. That is to say:

[tex]E = K[/tex]

[tex]E = \frac{1}{2}\cdot m \cdot v_{max}^{2}[/tex]

Maximum speed is now cleared:

[tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex]

The maximum speed attained by the object during its motion is [tex]v_{max} = \sqrt{\frac{2\cdot E}{m} }[/tex].

A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.

Answers

Answer:

P = 5.97 × 10^(5) Pa

Explanation:

We are given;

Mass of balloon;m_b = 4.3 kg

Radius;r = 1.54 m

Temperature;T = 289 K

Density;ρ = 1.19 kg/m³

We know that, density = mass/volume

So, mass = Volume x Density

We also know that Force = mg

Thus;

F = mg = Vρg

Where m = mass of balloon(m_b) + mass of helium (m_he)

So,

(m_b + m_he)g = Vρg

g will cancel out to give;

(m_b + m_he) = Vρ - - - eq1

Since a sphere shaped balloon, Volume(V) = (4/3)πr³

V = (4/3)π(1.54)³

V = 15.3 m³

Plugging relevant values into equation 1,we have;

(3 + m_he) = 15.3 × 1.19

m_he = 18.207 - 3

m_he = 15.207 kg = 15207 g

Molecular weight of helium gas is 4 g/mol

Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles

From ideal gas equation, we know that;

P = nRT/V

Where,

P is absolute pressure

n is number of moles

R is the gas constant and has a value lf 8.314 J/mol.k

T is temperature

V is volume

Plugging in the relevant values, we have;

P = (3802 × 8.314 × 289)/15.3

P = 597074.53 Pa

P = 5.97 × 10^(5) Pa

Water molecules are made of slightly positively charged hydrogen atoms and slightly negatively charged oxygen atoms. Which force keeps water molecules stuck to one another? strong nuclear gravitational weak nuclear electromagnetic

Answers

Answer:

The answer is electromagnetic

Answer:

electromagnetic

Explanation:

edge 2021

according to newtons second law of motion, what is equal to the acceleration of an object

Answers

Answer: According to Newtons second Law of motion ;

F = ma (Force  equals  mass multiplied by acceleration.)

The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force

Explanation:

A cat’s crinkle ball toy of mass 15g is thrown straight up with an initial speed of 3m/s. Assume in this problem that air drag is negligible. If the gravitational potential energy is taken to be zero at the point where it leaves your hand, what is the gravitational potential energy when the ball is at its peak height?

Answers

Answer:

P.E = 0.068 J = 68 mJ

Explanation:

First we need to find the height attained by the ball toy. For this purpose, we will be using 3rd equation of motion:

2gh = Vf² - Vi²

where,

g = -9.8 m/s²  (negative sign due to upward motion)

h = height attained by the ball toy = ?

Vf = Final Velocity = 0 m/s (since it momentarily stops at the highest point)

Vi = Initial Velocity = 3 m/s

Therefore,

2(-9.8 m/s²)h = (0 m/s)² - (3 m/s)²

h = (9 m²/s²)/(19.6 m/s²)

h = 0.46 m

Now, the gravitational potential energy of ball at its peak is given by the following formula:

P.E = mgh

P.E = (0.015 kg)(9.8 m/s²)(0.46 m)

P.E = 0.068 J = 68 mJ

A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe

Answers

Answer:

[tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

Explanation:

Given that

Wavelength [tex]\lambda=588 \mathrm{nm}[/tex]

slit separation [tex]\mathrm{d}=2464 \mathrm{nm}[/tex]

slit screen distance [tex]\mathrm{D}=11 \mathrm{cm}[/tex]

We know that for double slit the maxima condition is that

[tex]\operatorname{dsin} \theta=m \lambda[/tex]

[tex]\sin \theta=\frac{m \lambda}{d}[/tex]

[tex]\theta=\sin ^{-1}\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)[/tex]

For small angle approximation, [tex]\sin \theta \approx \tan \theta \approx \theta[/tex]

[tex]\tan \theta=\frac{y_{m}}{D}[/tex]

[tex]y_{m}=D \times \tan \left[\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right][/tex]

Now [tex]y_{4}[/tex] [tex]y_{4}=D \times \tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{4 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}[/tex]

Again [tex]y_{3}=D \times \tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{3 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}[/tex]

Hence [tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

which of the following best describes a stable atom?

Answers

A 1 or 2 electrons because it is the brainless answer

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere

Answers

Answer:

The radius of the sphere is 4.05 m

Explanation:

Given;

potential at surface, [tex]V_s[/tex] = 450 V

potential at radial distance, [tex]V_r[/tex] = 150

radial distance, l = 8.1 m

Apply Coulomb's law of electrostatic force;

[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]

[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]

Therefore, the radius of the sphere is 4.05 m

what is a push or a pull on an object known as

Answers

Answer:

Force

Explanation:

Force is simply known as pull or push of an object

Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C

Answers

Answer:

Φ = 361872 N.m^2 / C

Explanation:

Given:-

- The area of the two plates, [tex]A_p = 180 cm^2[/tex]

- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]

- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]

- The radius for the flux region, [tex]r = 3.3 cm[/tex]

- The angle between normal to region and perpendicular to plates, θ = 4°

Find:-

Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.

Solution:-

- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

                             [tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):

                           σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]

                           σ = 0.00094 C / m^2

- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

                         [tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

                        [tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:

                        Φ = E_net * Ar * cos ( θ )

                        Φ = (106214689.26553) * (0.00342) * cos ( 5 )

                        Φ = 361872 N.m^2 / C

A long horizontal hose of diameter 3.4 cm is connected to a faucet. At the other end, there is a nozzle of diameter 1.8 cm. Water squirts from the nozzle at velocity 14 m/sec. Assume that the water has no viscosity or other form of energy dissipation.
A) What is the velocity of the water in the hose ?
B) What is the pressure differential between the water in the hose and water in the nozzle ?
C) How long will it take to fill a tub of volume 120 liters with the hose ?

Answers

Answer:

a) v₁ = 3.92 m / s , b)     ΔP =  = 9.0 10⁴ Pa, c)  t = 0.0297 s  

Explanation:

This is a fluid mechanics exercise

a) let's use the continuity equation

       

let's use index 1 for the hose and index 2 for the nozzle

        A₁ v₁ = A₂v₂

in area of ​​a circle is

       A = π r² = π d² / 4

we substitute in the continuity equation

        π d₁² / 4 v₁ = π d₂² / 4 v₂

        d₁² v₁ = d₂² v₂

the speed of the water in the hose is v1

       v₁ = v₂ d₂² / d₁²

       v₁ = 14 (1.8 / 3.4)²

        v₁ = 3.92 m / s

b) they ask us for the pressure difference, for this we use Bernoulli's equation

       P₁ + ½ ρ v₁² + m g y₁ = P₂ + ½ ρ v₂² + mg y2

as the hose is horizontal y₁ = y₂

       P₁ - P₂ = ½ ρ (v₂² - v₁²)

      ΔP = ½ 1000 (14² - 3.92²)

       ΔP = 90316.8 Pa = 9.0 10⁴ Pa

c) how long does a tub take to flat

the continuity equation is equal to the system flow

        Q = A₁v₁

        Q = V t

where V is the volume, let's equalize the equations

         V t = A₁ v₁

         t = A₁ v₁ / V

A₁ = π d₁² / 4

let's reduce it to SI units

         V = 120 l (1 m³ / 1000 l) = 0.120 m³

          d1 = 3.4 cm (1 m / 100cm) = 3.4 10⁻² m

let's substitute and calculate

         t = π d₁²/4   v1 / V

         t = π (3.4 10⁻²)²/4 3.92 / 0.120

         t = 0.0297 s

In a hydraulic lift, if the pressure exerted on the liquid by one piston is increased by 100 N/m2 , how much additional weight can the other piston slowly lift if its cross sectional area is 25 m2

Answers

Answer:

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

Explanation:

By means of the Pascal's Principle, the hydraulic lift can be modelled by the following two equations:

Hydraulic Lift - Before change

[tex]P = \frac{F}{A}[/tex]

Hydraulic Lift - After change

[tex]P + \Delta P = \frac{F + \Delta F}{A}[/tex]

Where:

[tex]P[/tex] - Hydrostatic pressure, measured in pascals.

[tex]\Delta P[/tex] - Change in hydrostatic pressure, measured in pascals.

[tex]A[/tex] - Cross sectional area of the hydraulic lift, measured in square meters.

[tex]F[/tex] - Hydrostatic force, measured in newtons.

[tex]\Delta F[/tex] - Change in hydrostatic force, measured in newtons.

The additional weight is obtained after some algebraic handling and the replacing of all inputs:

[tex]\frac{F}{A} + \Delta P = \frac{F}{A} + \frac{\Delta F}{A}[/tex]

[tex]\Delta P = \frac{\Delta F}{A}[/tex]

[tex]\Delta F = A\cdot \Delta P[/tex]

Given that [tex]\Delta P = 100\,Pa[/tex] and [tex]A = 25\,m^{2}[/tex], the additional weight is:

[tex]\Delta F = (25\,m^{2})\cdot (100\,Pa)[/tex]

[tex]\Delta F = 2500\,N[/tex]

The additional mass needed for the additional weight is:

[tex]\Delta m = \frac{\Delta F}{g}[/tex]

Where:

[tex]\Delta F[/tex] - Additional weight, measured in newtons.

[tex]\Delta m[/tex] - Additional mass, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

If [tex]\Delta F = 2500\,N[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then:

[tex]\Delta m = \frac{2500\,N}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]\Delta m = 254.92\,kg[/tex]

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound

Answers

Answer:

t = 0.414s

Explanation:

In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:

[tex]t=\frac{d}{v}[/tex]         (1)

d: distance to the plate = 18.4m

v: speed of the ball = 160.0km/h

You first convert the units of the sped of the ball to appropriate units (m/s)

[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]

Then, you replace the values of the speed v and distance s in the equation (1):

[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]

THe ball takes 0.414s to reach the home plate

The magnet has an unchanging magnetic field: very strong near the magnet, and weak far from the magnet. How did the magnetic field through the coil change as the magnet fell toward it? How did the magnetic flux through the coil change as the magnet fell toward it?

Answers

Answer:

The magnetic field through the coil at first increases steadily up to its maximum value, and then decreases gradually to its minimum value.

Explanation:

At first, the magnet fall towards the coils;  inducing a gradually increasing magnetic field through the coil as it falls into the coil. At the instance when half the magnet coincides with the coil, the magnetic field magnitude on the coil is at its maximum value. When the magnet falls pass the coil towards the floor, the magnetic field then starts to decrease gradually from a strong magnitude to a weak magnitude.

This action creates a changing magnetic flux around the coil. The result is that an induced current is induced in the coil, and the induced current in the coil will flow in such a way as to oppose the action of the falling magnet. This is based on lenz law that states that the induced current acts in such a way as to oppose the motion or the action that produces it.

Other Questions
Electrons are emitted form a certain metal with a maximum kinetic energy of 2 eV when 6-eV photons are inicident on its surface. What is the maximum kinetic energy of electrons emitted if photons of twice the wavelength are inicdent on this metal? Explain your answer Which did President Andrew Jackson support? If 0.360 J of heat is added to 0.7402 g of water, how much will the temperature increase? Both bacteria and rocks split to give rise to more of their kind. Why are bacteria said to reproduce, but rocks are not? A. Bacteria can move on their own, but rocks cannot. B. Bacteria do not need an external force to help them reproduce, but rocks must be broken apart. C. Bacteria form identical cells, but rocks form new rocks of different sizes and shapes. D. Bacteria pass down genetic material to new bacterial cells, but rocks do not. Fortune, Inc., is preparing its master budget for the first quarter. The company sells a single product at a price of $25 per unit. Sales (in units) are forecasted at 39,000 for January, 59,000 for February, and 49,000 for March. Cost of goods sold is $12 per unit. Other expense information for the first quarter follows. Commissions 11 % of sales dollars Rent $ 20,000 per month Advertising 12 % of sales dollars Office salaries $ 74,000 per month Depreciation $ 49,000 per month Interest 11 % annually on a $270,000 note payable Tax rate 40 % Prepare a budgeted income statement for this first quarter. (Round your final answers to the nearest whole dollar.) what is the area of this title ? Which three religions have fought for control of Jerusalem? What has to happen for the President to get line-item veto power? A) A national referendum on the veto must be held. B) The Supreme Court must give the President the power. C) The Senate must vote to give the President the power. D) The U.S. Constitution must be amended. What is f(x) + f(x) + f(x)? Help plz will give brainliest los dodgers ,los mariners ,y los yankees son _ de beisbol Show that every triangle formed by the coordinate axes and a tangent line to y = 1/x ( for x > 0)always has an area of 2 square units.Hint: Find the equation of the tangent line at x = a. (It will contain as as well as x and y.) Then find thex-and y-intercepts for that line to find the lengths of sides of the right triangle. What would you say as a valid reason for baby A to remain in the incubator and baby B to remain oit 5 > 2p + 1 The first answer is p=2 what is the other answer? Find the equation of the line.Use exact numbers. Your company is upgrading the breakroom and kitchen. It is going to include an expresso machine, a fridge with compartments for each employee, a sink, microwave, toaster oven, tables chairs, a rock wall, snacks for everyone, and maybe some other bells and whistles. Your managers think that by updating this area employees will not take as long of lunches. They understand this purchase will be at a cost. You are tasked with considering two different options and presenting them to management. Use a 5% interest rate. Walmart Kit Target First Cost $40,000 $65,000Annual Maintenance Cost $10,000 $12,000Salvage Value $12,000 $25,000Life Years 3 6 a. Using NPW (Net Present Worth Analysis) analysis determine which kitchen kit you should chooseb. Using EUAW (Equivalent Uniform Annual Worth) analysis determine which kitchen kit you should choose. C. You really want the Target kit because it looks nicer and has more bells and whistles. You are willing to keep these products around for longer and therefore extend the lives of these products. Perform the analysis to show that the Target option is the better choice. d. Now from your analysis in part b think about how ethical presenting this information to management would be. Write 2-3 sentences about how you would present this information in a way that showed your bias. You will be graded on your ability to consider two options in an ethical comparison and how you perceive your bias. examine the headlines in this newspaper when was this primary source created Identify the parent function of f(x)=(x+3)3 imagine you want to convince the local school board that changing the high school start time would benefit all students. Which appeal would most likely move this audience to support your case Which sentence feature a first person point of view