Answer:
Step-by-step explanation:
given a point [tex](x_0,y_0)[/tex] the equation of a line with slope m that passes through the given point is
[tex]y-y_0 = m(x-x_0)[/tex] or equivalently
[tex] y = mx+(y_0-mx_0)[/tex].
Recall that a line of the form [tex]y=mx+b [/tex], the y intercept is b and the x intercept is [tex]\frac{-b}{m}[/tex].
So, in our case, the y intercept is [tex](y_0-mx_0)[/tex] and the x intercept is [tex]\frac{mx_0-y_0}{m}[/tex].
In our case, we know that the line is tangent to the graph of 1/x. So consider a point over the graph [tex](x_0,\frac{1}{x_0})[/tex]. Which means that [tex]y_0=\frac{1}{x_0}[/tex]
The slope of the tangent line is given by the derivative of the function evaluated at [tex]x_0[/tex]. Using the properties of derivatives, we get
[tex]y' = \frac{-1}{x^2}[/tex]. So evaluated at [tex]x_0[/tex] we get [tex] m = \frac{-1}{x_0^2}[/tex]
Replacing the values in our previous findings we get that the y intercept is
[tex](y_0-mx_0) = (\frac{1}{x_0}-(\frac{-1}{x_0^2}x_0)) = \frac{2}{x_0}[/tex]
The x intercept is
[tex] \frac{mx_0-y_0}{m} = \frac{\frac{-1}{x_0^2}x_0-\frac{1}{x_0}}{\frac{-1}{x_0^2}} = 2x_0[/tex]
The triangle in consideration has height [tex]\frac{2}{x_0}[/tex] and base [tex]2x_0[/tex]. So the area is
[tex] \frac{1}{2}\frac{2}{x_0}\cdot 2x_0=2[/tex]
So regardless of the point we take on the graph, the area of the triangle is always 2.
f(x) = (x + 2)(x + 2)
[tex]\displaystyle f(x) = (x + 2)(x + 2)[/tex]
[tex]\displaystyle f(x) = (x + 2)^2[/tex]
Answer:
[tex]f(x) = {(x + 2)}^{2} [/tex]
Step-by-step explanation:
[tex]f(x) = (x + 2)(x + 2) \\ f(x) = {(x + 2)}^{2} [/tex]
hope this helps you.
Consider the graph of the line of best fit, y = 0.5x + 1, and the given data points. A graph shows the horizontal axis numbered negative 4 to positive 4 and the vertical axis numbered negative 4 to positive 4. Points show an upward trend. Which is the residual value when x = 2? –2 –1 1 2
Answer
its -1
Step-by-step explanation:
ED 2020 boiiiii
The residual value of the line of the best fit when x = 2 is -1
How to determine the residual value?The equation of the line is given as:
y = 0.5x + 1
When x = 2, we have:
y = 0.5 * 2 + 1
Evaluate
y = 2
The residual is the difference between the actual value and the predicted value.
From the complete graph, the actual value is 1.
So, we have:
Residual = 1 - 2
Evaluate
Residual = -1
Hence, the residual value when x = 2 is -1
Read more about residuals at:
https://brainly.com/question/1168961
#SPJ2
Any help would be great
Answer:
V = 137.2
Step-by-step explanation:
We are given the volume equation. Simply plug in your r into the equation and calculate and you should get 137.189 as your answer.
Google I would like to purchase 10 bags of chicken wings the store is selling three bags for $51.00 what is the cost of 10 bags of chicken wings
a. 61.00
b. 71.00
c. 170.00
d. 130.00
Answer:
A 61.00
Step-by-step explanation:
51 Added to 10 Equals 61.00 which is the Cost of 10 Bags of chicken Wings. Your Welcome.
All math teachers are smart. Ms. Smith is your math teacher, so she is smart. What type of reasoning is this? inductive or deductive
Answer:
I believe it is Inductive Reasoning.
Step-by-step explanation:
Inductive Reasoning is a type of logical thinking that involves forming generalizations based on specific incidents you've experienced, observations you've made, or facts you know to be true or false.
Deductive Reasoning is a basic form of valid reasoning.
Which foundation drawing matches this orthographic drawing ?
The correct answer is A
Explanation:
An orthographic drawing shows a three-dimensional figure from different perspectives or sides. Indeed, the orthographic drawing in the question shows how the object looks if you see this the front, side, and top of this. This implies the foundation drawing needs to match the figures of the orthographic drawing.
According to this, the correct figure is A because this is the only one that has a rectangle shape, and due to this, if you look at this from any different sides you will always see a rectangle. For example, the top view shows a rectangle of approximately 2x3 squares, and this view only fits with option A because B and C are not complete rectangles and therefore their top view is not a rectangle.
Approximately 8% of all people have blue eyes. Out of a random sample of 20 people, what is the probability that 2 of them have blue eyes? Round answer to 4 decimal places. Answer:
Answer:
27.11% probability that 2 of them have blue eyes
Step-by-step explanation:
For each person, there are only two possible otucomes. Either they have blue eyes, or they do not. The probability of a person having blue eyes is independent of any other person. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
8% of all people have blue eyes.
This means that [tex]p = 0.08[/tex]
Random sample of 20 people:
This means that [tex]n = 20[/tex]
What is the probability that 2 of them have blue eyes?
This is P(X = 2).
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{20,2}.(0.08)^{2}.(0.92)^{18} = 0.2711[/tex]
27.11% probability that 2 of them have blue eyes
The probability that 2 of them have blue eyes is 27.11%.
Given that,
Approximately 8% of all people have blue eyes.
Out of a random sample of 20 people,
We have to determine,
What is the probability that 2 of them have blue eyes?
According to the question,
People having blue eyes p = 8% = 0.08
Sample of people n = 20
For each person, there are only two possible outcomes. Either they have blue eyes, or they do not.
The probability of a person having blue eyes is independent of any other person.
The probability that 2 of them have blue eyes is determined by using a binomial probability distribution.
[tex]\rm P (X = x) =n_C_x\times p^x \times (1-p)^{n-x}}[/tex]
Therefore,
The probability that 2 of them have blue eyes is,
[tex]\rm P (X = x) =n_C_x\times p^x \times (1-p)^{n-x}}\\\\ \rm P (X = x) = \dfrac{n!}{(n-x)! \times x!} \times p^x \times (1-p)^{n-x}}\\\\[/tex]
Substitute all the values in the formula,
[tex]\rm P (X = 2) = \dfrac{20!}{(20-2)! \times 2!} \times (0.08)^2 \times (1-0.08)^{20-2}}\\\\ P (X = 2) = \dfrac{20!}{(18)! \times 2!} \times (0.0064) \times (0.92)^{18}}\\\\ P (X = 2) = \dfrac{19\times 20}{ 2} \times (0.0064) \times (0.222)\\\\ P(X = 2) = {19\times 10}\times (0.00142)\\\\P(X = 2) = 0.2711\\\\P(X = 2) = 27.11 \ Percent[/tex]
Hence, The required probability that 2 of them have blue eyes is 27.11%.
For more details refer to the link given below.
https://brainly.com/question/23640563
All the angles in the diagram are measured to the nearest degree. Work out the upper bound and lower bound of angle x 59 degree 108 degree 81 degree X degree ??????
Answer: lower bound, x = 110.5°
upper bound, x = 113.5°
Step-by-step explanation:
There is no diagram but I am going to assume it is a quadrilateral since it has 4 angles. The sum of the angles of a quadrilateral is 360°.
Upper Lower
59° 58.5° ≤ a < 59.5
108° 107.5° ≤ b < 108.5°
81° 80.5° ≤ c < 81.5°
Total: 246.6° ≤ x < 249.5°
Subtract the lower and upper bound totals from 360° :
360.0 360.0
- 246.5 - 249.5
x = 1 1 3.5 1 1 0.5
↓ ↓
upper lower
bound bound
please help and please show your work
Answer:
The volume of all 9 spheres is 301.6 [tex]in^3[/tex]
Step-by-step explanation:
Notice that three of the identical spheres fit perfectly along the 12 in side box, therefore we know that the diameter of each is 12 in/3 = 4 in.
Then the radius of each sphere must be 2 inches (half of the diameter). Now that we know the radius of each sphere, we use the formula for the volume of a sphere to find it:
[tex]V=\frac{4}{3} \pi R^3\\V=\frac{4}{3} \pi (2\,in)^3\\V=\frac{4}{3} \pi\, 8\,\,in^3\\V=\frac{32}{3} \pi\,\,in^3[/tex]
Now, the total volume of all nine spheres is the product of 9 times the volume we just found:
[tex]V_{all \,9}=9\,*\frac{32}{3} \pi\,\,in^3\\V_{all \,9}=96 \pi\,\,in^3\\V_{all \,9}\approx \,301.6\,\,in^3[/tex]
Write an equation for a polynomial function that has the given roots
-2. 3i , and 5
Answer:
x^4 - 3x^3 - x^2 - 27x - 90 = 0.
Step-by-step explanation:
If 3i is one root then another is -3i.
In factor form we have:
(x + 2)(x - 5)(x - 3i)(x + 3i) = 0
(x^2 - 3x - 10)(x^2 -9i^2) = 0
(x^2 - 3x - 10)(x^2 + 9) = 0
x^4 + 9x^2 - 3x^3 - 27x - 10x^2 - 90 = 0
x^4 - 3x^3 - x^2 - 27x - 90 = 0.
What is the area of a shape with points a 5 -8 b 11, -8 c 11,0 d 6,-3 e 4,-3
Answer:
Area of the given figure is 51.5 square units.
Step-by-step explanation:
Area of rectangle OCBH = Length × width
= 11 × 8
= 88 square units
Area of trapezoid OGEF = [tex]\frac{1}{2}(b_1+b_2)\times h[/tex]
= [tex]\frac{1}{2}(\text{GE+OF)}\times (\text{OG})[/tex]
= [tex]\frac{1}{2}(3+6)\times 4[/tex]
= 18 units²
Area of trapezoid GCDE = [tex]\frac{1}{2}(\text{GC+DE)}\times (\text{GE})[/tex]
= [tex]\frac{1}{2}(7+2)\times 3[/tex]
= 13.5 units²
Area of triangle AFH = [tex]\frac{1}{2}(\text{Base})\times (\text{Height})[/tex]
= [tex]\frac{1}{2}(5)(2)[/tex]
= 5 units²
Area of polygon ABCDEF = Area of rectangle CBHO - (Area of trapezoid OGEF + Area of trapezoid GCDE + Area of triangle AFH)
= 88 - (18 + 13.5 + 5)
= 88 - 36.5
= 51.5 units²
Therefore, area of the given polygon is 51.5 units²
A roller coaster car is going over the top of a 13-mm-radius circular rise. At the top of the hill, the passengers "feel light," with an apparent weight only 50 %% of their true weight. How fast is the coaster moving?
Answer:
0.253 m/s
Step-by-step explanation:
radius r of the circular rise = 13 mm = 0.013 m
apparent weight loss = 50%
acceleration of the new weight = 0.5 x 9.81 = 4.905 m/s^2
centripetal acceleration = 9.81 - 4.905 = 4.905 m/s^2
centripetal acceleration = [tex]\frac{v^{2} }{r}[/tex]
where v is the acceleration at the rise and r is the radius of the rise
centripetal force = [tex]\frac{v^{2} }{r}[/tex] = [tex]\frac{v^{2} }{0.013}[/tex]
4.905 = [tex]\frac{v^{2} }{0.013}[/tex]
[tex]v^{2}[/tex] = 0.063765
v = [tex]\sqrt{0.063765}[/tex] = 0.253 m/s
Regression modeling is a statistical framework for developing a mathematical equation that describes how: a. One explanatory and one or more response variables are related b. Several explanatory and several response variables response are related c. One response and one or more explanatory variables are related d. All of these are correct
Answer:
c. One response and one or more explanatory variables are related.
Step-by-step explanation:
Regression shows the relationship between a given variable and its covariates, which can be one or more. The initial variable is the dependent or response variable selected to show its level of variation with respect to one or more independent or explanatory variables.
Therefore, regression modeling describes how one response is related to one or more explanatory variables.
A sanitation supervisor is interested in testing to see if the mean amount of garbage per bin is different from 50. In a random sample of 36 bins, the sample mean amount was 48.99 pounds and the sample standard deviation was 3.7 pounds. Conduct the appropriate hypothesis test using a 0.01 level of significance.
a) What is the test statistic? Give your answer to four decimal places.
b) What is the P-value for the test? Give your answer to four decimal places.
Answer:
Step-by-step explanation:
Claim: if the mean amount of garbage per bin is different from 50.
Null hypothesis: u=50
Alternative hypothesis : u =/ 50
Using the z score formular for a one sample z test - z = (x - u ) / (sd/√n)
Where x = 48.99, u = 50 sd =3.7 and n = 36
z = 48.99 - 50 / (3.7/√36)
z = -1.01 / (3.7/6)
z = -1.01/0.6167
z = -1.6377
To find the p value at a 0.01 level of significant from the -1.6377 z score for a two tailed test the p value using the p value calculator is 0.1016. The result is not significant at 0.01 level of significant thus we will fail to reject the null and conclude that the mean amount of garbage per bin is 50.
Brainliest to whoever gets this correct Which of the following is equal to the rational expression when x ≠ -3? x^2-9/x+3
Answer:
see below
Step-by-step explanation:
We presume you want to simplify ...
[tex]\dfrac{x^2-9}{x+3}=\dfrac{(x-3)(x+3)}{x+3}=\boxed{x-3}[/tex]
__
The numerator is the difference of squares, so is factored accordingly. One of those factors cancels the denominator.
A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
Y
p(x,y), 0 1 2
0 .10 .04 .02
x 1 .08 .20 .06
2 .06 .14 .30
a. What is P(X = 1 and = 1)?
b. Compute P(X land Y 1).
c. Give a word description of the event {X t- 0 and Y 0}, and compute the probability of this event
d. Compute the marginal pmf of X and of Y. Using pX(x), what is P(X 5 1)?
e. Are X and Y independent rv's? Explain.
Answer:
Step-by-step explanation:
Y
p(x,y) 0 1 2
0 0.10 0.04 0.02
x 1 0.08 0.2 0.06
2 0.0 0.14 0.30
a) What is P(X = 1 and = 1)
From the table above we have
P(1,1) = 0.2
b) Compute P(X ≤ 1 and Y ≤ 1).
[tex]=p(0,0)+p(0,1)+p(1,0)+p(1,1)\\\\=0.1+0.04+0.08+0.2\\\\=0.42[/tex]
C)
Let A ={X ≠ 0 and Y ≠ 0}
p{X ≠ 0 , Y ≠ 0}
= p(1,1) + p(1,2) + p(2,1) + p(2,2)
= 0.20 + 0.06 + 0.14 + 0.30
=0.7
d) The possible X values are in the figure 0,1,2
[tex]p_x(0)=p(0,0)+p(0,1)+p(0,2)\\\\=0.1+0.04+0.02\\\\=0.16\\\\p_x(1)=p(1,0)+p(1,1)+p(1,2)\\\\=0.08+0.2+0.06\\\\=0.34\\\\p_x(2)=p(2,0)+p(2,1)+p(2,2)\\\\=0.06+0.14+0.3\\\\=0.5[/tex]
The possible Y values are in the figure 0,1,2
[tex]p_y(0)=p(0,0)+p(1,0)+p(2,0)\\\\=0.1+0.08+0.06\\\\=0.24\\\\p_y(1)=p(0,1)+p(1,1)+p(2,1)\\\\=0.04+0.2+0.14\\\\=0.38\\\\p_y(2)=p(0,2)+p(1,2)+p(2,2)\\\\=0.02+0.06+0.3\\\\=0.38[/tex]
So the probability of x ≤ 1 is
[tex]p(x\leq 1)=p_x(0)+p_x(1)\\\\=0.34+0.16\\\\=0.50[/tex]
e) From the table
[tex]p_x(x=1,y=1)=p(1,1)\\\\=0.2\\\\p_x(1)=0.34\\\\p_y(1)=0.38[/tex]
we multiply both together
0.34 x 0.38
=0.1292
Therefore p(1,1) is not equal px(1), py(1)
Hence x and y are not independent it is not equal
What is the value of AC?
Answer:
0.637
Step-by-step explanation:
The average value of a whole sinusoidal waveform over one complete cycle is zero as the two halves cancel each other out
The valve was tested on 270 engines and the mean pressure was 6.6 lbs/square inch. Assume the variance is known to be 0.49. If the valve was designed to produce a mean pressure of 6.5 lbs/square inch, is there sufficient evidence at the 0.1 level that the valve does not perform to the specifications
Answer:
[tex]z=\frac{6.6-6.5}{\frac{0.7}{\sqrt{270}}}=2.347[/tex]
The p value for this case would be given by"
[tex]p_v =2*P(z>2.347)=0.0189[/tex]
For this case since the p value is higher than the significance level we don't have enough evidence to conclude that the true mean is significantly different from 6.5 lbs/square inch at 10% of significance. So then there is not enough evidence to conclude that the valve does not perform to the specifications
Step-by-step explanation:
Information given
[tex]\bar X=6.6[/tex] represent the sample mean
[tex]s=\sqrt{0.49}= 0.7[/tex] represent the population deviation
[tex]n=270[/tex] sample size
[tex]\mu_o =6.5[/tex] represent the value that we want to test
[tex]\alpha=0.1[/tex] represent the significance level
z would represent the statistic
[tex]p_v[/tex] represent the p value for the test
Hypothesis to verify
We want to verify if the true mean for this case is equal to 6.5 lbs/square inch or not , the system of hypothesis would be:
Null hypothesis:[tex]\mu= 6.5[/tex]
Alternative hypothesis:[tex]\mu \neq 6.5[/tex]
The statistic for this case is given by:
[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex] (1)
And replacing we got:
[tex]z=\frac{6.6-6.5}{\frac{0.7}{\sqrt{270}}}=2.347[/tex]
The p value for this case would be given by"
[tex]p_v =2*P(z>2.347)=0.0189[/tex]
For this case since the p value is higher than the significance level we don't have enough evidence to conclude that the true mean is significantly different from 6.5 lbs/square inch at 10% of significance. So then there is not enough evidence to conclude that the valve does not perform to the specifications
how many nickels equal $18.45? (show your work)
Answer:
369
Step-by-step explanation:
One nickel = 0.05
0.05x=18.45
x=369
What is the product of the expressions? Assume y does not equal 0.
Answer:
The correct answer would be option 4
12x+20
5y3
Hope that helps.Thank you!!!
Can advise on the solution?
Answer:
340
Step-by-step explanation:
If x is the amount of pages in the book we can write:
1/4x + 5 + 3/5(x - (1/4x + 5)) + 10 + 12 + 24 = x
1/4x + 51 + 3/5(3/4x - 5) = x
1/4x + 51 + 9/20x - 3 = x
7/10x + 48 = x
3/10x = 48
x = 160
Mr. Taylor filled out a bracket for the NCAA National Tournament. Based on his knowledge of college basketball, he has a 0.54 probability of guessing any one game correctly. (a) What is the probability Mr. Taylor will pick all 32 of the first round games correctly
Answer:
The probability is [tex]2.7327 \times 10^{-9}[/tex]
Step-by-step explanation:
The probability of guessing correctly, P = 0.54
Probability of not guessing correctly, q = 1 – P
q = 1 – 0.54 = 0.46
Number of trials, n = 32
Now calculate the probability that Mr. Taylor will pick 32 correctly in first round of the game.
Below is the calculation using binomial distribution.
[tex]Probability = \left ( _{k}^{n}\textrm{} \right )P^{k}(1-P)^{(n-k)} \\= \left ( _{32}^{32}\textrm{} \right )0.54^{32}(0.46)^{(32-32)} \\= 0.54^{32} \\= 2.7327 \times 10^{-9}[/tex]
The local food pantry has 1, 600 cans of fruit. They give away 155 cans of fruit each week. Assuming no new donations are made,
how many cans of fruit will remain after 6 weeks?
The solution is
What is the answer for this problem?
Answer:
670 Cans of fruit will be left
Step-by-step explanation:
First you multiply 155 by the 6 weeks.
That equals 930 and then you subtract 930 from 1,600 and that gives you 670.
There are 670 cans of fruit that will remain after 6 weeks the answer is 670 cans.
What is a sequence?It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.
We have:
The local food pantry has 1, 600 cans of fruit. They give away 155 cans of fruit each week.
First term a = 1600
Common difference d = -155
After 6 weeks means on week 7.
n = 7
a(7) = 1600 + (7-1)(-155)
a(7) = 1600 - 930
a(7) = 670
Thus, there are 670 cans of fruit that will remain after 6 weeks the answer is 670 cans.
Learn more about the sequence here:
brainly.com/question/21961097
#SPJ2
Solve the equation x^3 + 2x^2 - 11x -12 = 0
Answer: there are 4 solutions
x = -2
x = -1/2 = -0.500
x =(3-√5)/2= 0.382
x =(3+√5)/2= 2.618
Step-by-step explanation:
A student walk 60m on a bearing
of 028 degree and then 180m
due east. How is she from her
starting point, correct to the
nearest whole number?
Answer:
d = 234.6 m
Step-by-step explanation:
You can consider a system of coordinates with its origin at the beginning of the walk of the student.
When she start to walk, she is at (0,0)m. After her first walk, her coordinates are calculated by using the information about the incline and the distance that she traveled:
[tex]x_1=60cos28\°=52.97m\\\\y_1=60sin28\°=28.16m[/tex]
she is at the coordinates (52.97 , 28.16)m.
Next, when she walks 180m to the east, her coordinates are:
(52.97+180 , 28.16)m = (232.97 , 28.16)m
To calculate the distance from the final point of the student to the starting point you use the Pythagoras generalization for the distance between two points:
[tex]d=\sqrt{(x-x_o)^2+(y-y_o)^2}\\\\x=232.97\\\\x_o=0\\\\y=28.16\\\\y_o=0\\\\d=\sqrt{(232.97-0)^2+(28.16-0)^2}m=234.6m[/tex]
The displacement of the student on her complete trajectory was of 234.6m
Rearrange the following steps in the correct order to locate the last occurrence of the smallest element in a finite list of integers, where the integers in the list are not necessarily distinct.
a. return location
b. min ≔a1 and location ≔1
c. min ≔ai and location≔i
d. procedure last smallest(a1,a2,...,an: integers)
e. If min >= ai then
Answer:
The rearranged steps is as follows:
d. procedure last smallest(a1,a2,...,an: integers)
b. min ≔a1 and location ≔1
e. If min >= ai then
c. min ≔ai and location≔i
a. return location
Step-by-step explanation:
The proper steps to perform the task in the question above is dbeca
Here, the procedure (or function) was defined along with necessary parameters
d. procedure last smallest(a1,a2,...,an: integers)
The smallest number is initialized to the first number on the list and its location is initialized to 1
b. min ≔a1 and location ≔1
The next line is an if conditional statement that checks if the current smallest number is greater than a particular number
e. If min >= ai then
If the above condition is true, the smallest value is assigned to variable min; it's location is also assigned to variable location
c. min ≔ai and location≔i
The last step returns the location of the smallest number
a. return location
A manufacturer of chocolate chips would like to know whether its bag filling machine works correctly at the 442 gram setting. It is believed that the machine is underfilling the bags. A 44 bag sample had a mean of 438 grams. Assume the population variance is known to be 576. A level of significance of 0.1 will be used. Find the P-value of the test statistic. You may write the P-value as a range using interval notation, or as a decimal value rounded to four decimal places.
Answer:
p value is 0.1343
Step-by-step explanation:
Null: u>= 442
Alternative: u < 442
Using the formula for z score:
(x - u)/sd/√n
Where x is 438, u = 442 sd can be determined from the variance = √variance =√576 = 24 and n = 44
z score = 438-442 / (24/√44)
z score = -4/(24/6.6332)
z = -4/3.6182
z =-1.1055
Now let's find the p value at 0.1 significance level using a z score of -1.1055, using a p value calculator, p value is 0.1343 which greatest than 0.1 meaning the day is not sufficient enough to conclude that the machine is underfilling the bags.
Please answer this correctly
Answer:
33.3%
Step-by-step explanation:
The numbers greater than 6 from the spinner are 7 and 8.
2 numbers out of total 6 numbers.
2/6 = 1/3
= 0.333
= 33.3%
Find the slope of the line that goes through the given points.
(6,1) and (9,-1)
Answer:
m = -2/3
Step-by-step explanation:
Slope Formula: [tex]m = \frac{y2-y1}{x2-x1}[/tex]
So,
[tex]m = \frac{-1-1}{9-6}[/tex]
m = -2/3
Brand name producers of aspirin claim that one advantage of their aspirin over generic aspirin is that brand name aspirin is much more consistent in the amount of active ingredient used. This in turn means that users can expect the same results each time they use the brand name aspirin, while the effects of the generic aspirin can be a lot more variable. A random sample of 200 brand name aspirin tablets had a mean and standard deviation of active ingredient of 325.01 and 10.12 mg. A second independent sample of 180 generic aspirin tablets was measured for the amount of active ingredient, and the mean standard deviation were 323.47 and 11.43 mg. Given that the amount of active ingredient is normally distributed for both the brand name and the generic aspirin, do these data support the brand name producers claim? Let alpha = 0.025.
Answer:
Step-by-step explanation:
The claim here is that the brand name aspirin is more consistent in the amount of active ingredient used than the generic aspirin.
This is a test of 2 independent groups. The population standard deviations are not known. Let μ1 be the mean amount of active ingredients in brand name aspirin and μ2 be the mean amount of active ingredients in generic name aspirin
The random variable is μ1 - μ2 = difference in the mean amount of active ingredients between the brand name and generic aspirin
We would set up the hypothesis.
The null hypothesis is
H0 : μ1 ≥ μ2 H0 : μ1 - μ2 ≥ 0
The alternative hypothesis is
H1 : μ1 < μ2 H1 : μ1 - μ2 < 0
This is a left tailed test
Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is
(x1 - x2)/√(s1²/n1 + s2²/n2)
From the information given,
x1 = 325.01
x2 = 323.47
s1 = 10.12
s2 = 11.43
n1 = 200
n2 = 180
t = (325.01 - 323.47)/√(10.12²/200 + 11.43²/180)
t = 1.24
1.237877
The formula for determining the degree of freedom is
df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²
df = [10.12²/200 + 11.43²/180]²/[(1/200 - 1)(10.12²/200)² + (1/180 - 1)(11.43²/180)²] = 1.53233946713/0.00537245359
df = 285
We would determine the probability value from the t test calculator. It becomes
p value = 0.108
Since alpha, 0.025 < than the p value, 0.108, then we would fail to reject the null hypothesis. Therefore, at 2.5% level of significance, these data support the brand name producers claim