The density of salt is 80 pounds per cubic foot (lb/ft3). 1 pound (lb) is approximately 0.4536 kilogram (kg). 1 cubic foot (ft3) is approximately 0.0283 cubic meter (m3). What is the approximate density of salt in kilograms per cubic meter (kg/m3)?

Answers

Answer 1

Answer: Density = 1,282.26 kg/m^3

Step-by-step explanation:

Density =  80 lb/ft^3

We know that:

1lb = 0.4536 kg.

1ft^3 = 0.0283 m^3

then we can write:

1 = (0.4536kg)/(0.0283 m^3)*(1ft^3/lb)

we can multiply our equation by this, and it wont be affected, then we have:

Density = 80 lb/ft^3 = 80 lb/ft^3 (0.4536kg)/(0.0283 m^3)*(1ft^3/lb)

Density = 1,282.26 kg/m^3


Related Questions

Amanda is constructing equilateral triangle JKL inscribed in circle M. To construct the inscribed polygon, she is going to use a compass to partition the circle into congruent arcs. To what width should she set the compass when partitioning the circle? A. The width must be equal to the radius of circle M. B. The width must be equal the diameter of circle M. C. The width can be equal to either the radius or the diameter of circle M. D. The width can be any size greater than the radius but less than the diameter of circle M. E. The width must be less than the radius of circle M. help meee please!!!!!!!!!!!!!!!!!

Answers

Given:

An equilateral triangle JKL inscribed in circle M.

Solution:

To draw an equilateral triangle inscribed in circle follow the steps:

1: Draw a circle with any radius.

2. Take any point A, anywhere on the circumference of the circle.

3.  Place the compass on point A, and swing a small arc crossing the circumference of the circle.

Remember the span of the compass should be the same as the radius of the circle.

4. Place the compass at the intersection of the previous arc and the circumference and draw another arc but don't change the span of the compass.

5. Repeat this process until you return to point A.

6. Join the intersecting points on the circle to form the equilateral triangle.

So the correct option is A. The width must be equal to the radius of circle M.

Still timed. More math needing help with, i'll double points and mark brainliest! 1. (y - 6) (y + 3) 2. (4x - 5) (x - 7) 3.(3x - 2) ( 4x - 1)

Answers

Answer:

1. y² - 3x - 18

2. 4x² - 33x + 35

3. 12x² - 11x + 2

Step-by-step explanation:

All we do with these questions are expanding the factored binomials. Use FOIL:

1. y² + 3y - 6y - 18

y² - 3y - 18

2. 4x² - 28x - 5x + 35

4x² - 33x + 35

3. 12x² - 3x - 8x + 2

12x² - 11x + 2

Answer:

1) (y-6) (y+3)

=> [tex]y^2+3y-6y-18[/tex]

=> [tex]y^2-3y-18[/tex]

2) (4x-5) (x-7)

=> [tex]4x^2-28x-5x+35[/tex]

=> [tex]4x^2-33x+35[/tex]

3) (3x - 2) ( 4x - 1)

=> [tex]12x^2-3x-8x+3[/tex]

=> [tex]12x^2-11x+3[/tex]

Can somebody help me with this question

Answers

The answer of the are is : area = x^2+8x

Or x(x+8)

Both answer are correct just choose one


Explain

Area =1/2 base x height


Base : 2x

Height: x+8

Area : 1/2 base x height 1/2 x(2x) x (x+8)


1/2 x (2x) x (x+8)

Cancel 2

( x) x (x+8)

Open the bracket

X^2 +8x


Have a great day

Stay safe

The scientist performs additional analyses and observes that the number of major earthquakes does appear to be decreasing but wonders whether the relationship is statistically significant. Based on the partial regression output below and a 5% significance level, is the year statistically significant in determining the number of earthquakes above magnitude 7.0?Dependent Variable: Earthquakes above Magnitude 7.0 Coefficients Standard t Stat P-value Lower 95% Upper 95% ErrorIntercept 64.67 38.08 4.32 89.22 240.12Year -0.07 0.02 -3.82 -0.11 -0.04

Answers

Answer:

Step-by-step explanation:

Hello!

A regression model was determined in order to predict the number of earthquakes above magnitude 7.0 regarding the year.

^Y= 164.67 - 0.07Xi

Y: earthquake above magnitude 7.0

X: year

The researcher wants to test the claim that the regression is statistically significant, i.e. if the year is a good predictor of the number of earthquakes with magnitude above 7.0 If he is correct, you'd expect the slope to be different from zero: β ≠ 0, if the claim is not correct, then the slope will be equal to zero: β = 0

The hypotheses are:

H₀: β = 0

H₁: β ≠ 0

α: 0.05

The statistic for this test is a student's t: [tex]t= \frac{b - \beta }{Sb} ~~t_{n-2}[/tex]

The calculated value is in the regression output [tex]t_{H_0}= -3.82[/tex]

This test is two-tailed, meaning that the rejection region is divided in two and you'll reject the null hypothesis to small values of t or to high values of t, the p-value for this test will also be divided in two.

The p-value is the probability of obtaining a value as extreme as the one calculated under the null hypothesis:

p-value: [tex]P(t_{n-2}\leq -3.82) + P(t_{n-2}\geq 3.82)[/tex]

As you can see to calculate it you need the information of the sample size to determine the degrees of freedom of the distribution.

If you want to use the rejection region approach, the sample size is also needed to determine the critical values.

But since this test is two tailed at α: 0.05 and there was a confidence interval with confidence level 0.95 (which is complementary to the level of significance) you can use it to decide whether to reject the null hypothesis.

Using the CI, the decision rule is as follows:

If the CI includes the "zero", do not reject the null hypothesis.

If the CI doesn't include the "zero", reject the null hypothesis.

The calculated interval for the slope is: [-0.11; -0.04]

As you can see, both limits of the interval are negative and do not include the zero, so the decision is to reject the null hypothesis.

At a 5% significance level, you can conclude that the relationship between the year and the number of earthquakes above magnitude 7.0 is statistically significant.

I hope this helps!

(full output in attachment)

slope of (-2, -5) and (1, -3)

Answers

Start by making a table for the ordered pairs with the x-values

in the left column and the y-values in the right column.

            --x--|--y--

             -2  |  -5

              1   |  -3

                  |

                  |

Now remember that the slope is equal to the rate of change

or the change in y over the change in x.

We can see that the y-values go from -5 to -3 so the change in y is 2.

The x-values go from -2 to 1 so the change in x is 3.

So the change in y over the change in x is 2/3.

This means that the slope is also equal to 2/3.

If someone weighs 130 kilos what is the conversion in lbs

Answers

Answer:

286.60

Please tell me if I'm wrong.

Suppose a polling agency reported that 44.4​% of registered voters were in favor of raising income taxes to pay down the national debt. The agency states that results are based on telephone interviews with a random sample of 1049 registered voters. Suppose the agency states the margin of error for 95​% confidence is 3.0​%. Determine and interpret the confidence interval for the proportion of registered voters who are in favor of raising income taxes to pay down the national debt.

Answers

Answer:

95% of confidence interval for the proportion of registered voters who are in favor of raising income taxes to pay down the national debt.

(0.414 ,0.474)

Step-by-step explanation:

Step(i):-

Given sample proportion

                                    p⁻ = 44.4 % = 0.444

Random sample size 'n' = 1049

Given margin of error for 95% confidence level = 3 % = 0.03

Step(ii):-

95% of confidence interval for the proportion is determined by

[tex](p^{-} - Z_{\alpha }\sqrt{\frac{p^{-} (1-p^{-} }{n} } , p^{-} + Z_{\alpha }\sqrt{\frac{p^{-} (1-p^{-} }{n} })[/tex]

we know that

Margin of error for 95% confidence level is determined by

[tex]M.E = Z_{\alpha }\sqrt{\frac{p^{-} (1-p^{-}) }{n} }[/tex]

Step(iii):-

Now

95% of confidence interval for the proportion is determined by

[tex](p^{-} - M.E, p^{-} + M.E)[/tex]

Given Margin of error

                              M.E = 0.03

Now 95% of confidence interval for the proportion

[tex](0.444 - 0.03, 0.444+ 0.03)[/tex]

(0.414 ,0.474)

Conclusion:-

95% of confidence interval for the proportion of registered voters who are in favor of raising income taxes to pay down the national debt.

(0.414 ,0.474)

Plz. Can anyone explain and tell the answer of this question.I promise I will mark it as brainliest Question.

Answers

Answer:

x = 15

y = 90

Step-by-step explanation:

Step 1: Find x

We use Definition of Supplementary Angles

9x + 3x = 180

12x = 180

x = 15

Step 2: Find y

All angles in a triangle add up to 180°

3(15) + 3(15) + y = 180

45 + 45 + y = 180

90 + y = 180

y = 90°

What’s the probability of getting each card out of a deck?

Determine the probability of drawing the card(s) at random from a well-shuffled regular deck of 52 playing cards.​

a. a seven​​​​​​​​​​​​ __________

b. a six of clubs​​​​​​​​​​​​. ___________

c. a five or a queen​​​​​​​​​​​ ___________

d. a black card​​​​​​​​​​​​. ___________

e. a red card or a jack​​​​​. ___________

f. a club or an ace​​​​​​​​​​​. ___________

g. a diamond or a spade​​​​​​​​​​​. ___________

Answers

Answer:

a. 1/13

b. 1/52

c. 2/13

d. 1/2

e. 15/26

f. 17/52

g. 1/2

Step-by-step explanation:

a. In a deck of cards, there are 4 suits and each of them has a 7. Therefore, the probability of drawing a 7 is:

P(7) = 4/52 = 1/13

b. There is only one 6 of clubs, therefore, the probability of drawing a 6 of clubs is:

P(6 of clubs) = 1/52

c. There 4 fives (one for each suit) and 4 queens in a deck of cards. Therefore, the probability of drawing a five or a queen​​​​​​​​​​​ is:

P(5 or Q) = P(5) + P(Q)

= 4/52 + 4/52

= 1/13 + 1/13

P(5 or Q) = 2/13

d. There are 2 suits that are black. Each suit has 13 cards. Therefore, there are 26 black cards. The probability of drawing a black card is:

P(B) = 26/52 = 1/2

e. There are 2 suits that are red. Each suit has 13 cards. Therefore, there are 26 red cards. There are 4 jacks. Therefore:

P(R or J) = P(R) + P(J)

= 26/52 + 4/52

= 30/52

P(R or J) = 15/26

f. There are 13 cards in clubs suit and there are 4 aces, therefore:

P(C or A) = P(C) + P(A)

= 13/52 + 4/52

P(C or A) = 17/52

g. There are 13 cards in the diamonds suit and there are 13 in the spades suit, therefore:

P(D or S) = P(D) + P(S)

= 13/52 + 13/52

= 26/52

P(D or S) = 1/2

The Mathalot Company makes and sells textbooks. They have one linear function that represents the cost of producing textbooks and another linear function that models how much income they get from those textbooks. Describe the key features that would determine if these linear functions ever intercepted. (10 points)

Answers

this is the answer trust me i got it right

What is the first step when solving the equation below for x?
4
0.2
= 1.9
Add 1.9 to both sides of the equation.
Divide each side of the equation by 4.
Add 0.2 to both sides of the equation.
Subtract 0.2 from both sides of the equation.

Answers

Step-by-step explanation:

4x + 0.2=0.9

transposing 0.2 to RHS

=> 4x =0.9-0.2 => 4x=0.7

transposing 4 to RHS

=> x=0.7÷4

=> x=0.175

if it helps plzz mark it as brainliest

Answer: add 0.2

Step-by-step-explanation:

"Tegan is trying to decide if a coin is fair. She flips it 100 times and gets 63 heads. Please explain why it might make sense to view 63 heads as enough evidence to conclude the coin is unfair."

Answers

Answer:

Should be a 50/50 chance

Step-by-step explanation:

When you flip a coin there are 2 possible chances, heads or tails. That means that out of 100 there should a 50/50 chance to get both. By Tegan getting 63 heads it show how the mentailty that it should be a perfect 50/50 chnace to get heads is not real and therefore not fair.

(but in real life this is what happens. Its not fair).

Find f o g and g o f to determine if f and g are inverse functions. If they are not inverses, pick the function that would be the inverse with f(x). f(x) = (-2/x) – 1; g(x) = -2/(x+1) Choices: a. g(x) has to be: (1+x)/2 b. g(x) has to be: x/2 c. g(x) has to be: 2 – (1/x) d. Inverses

Answers

Answer:

(f o g) = x, then, g(x) is the inverse of f(x).

Step-by-step explanation:

You have the following functions:

[tex]f(x)=-\frac{2}{x}-1\\\\g(x)=-\frac{2}{x+1}[/tex]

In order to know if f and g are inverse functions you calculate (f o g) and (g o f):

[tex]f\ o\ g=f(g(x))=-\frac{2}{-\frac{2}{x+1}}-1=x+1-1=x[/tex]

[tex]g\ o\ f=g(f(x))=-\frac{2}{-\frac{2}{x}+1}=-\frac{2}{\frac{-2+x}{x}}=\frac{2x}{2-x}[/tex]

(f o g) = x, then, g(x) is the inverse of f(x).

Leo takes 15 minutes to cycle to school at an average speed of 12 km/h. He will need only ___hours if he cycle at 18 km/h. Express your answer as a common fraction.

Answers

Answer:

1/6 hours

Step-by-step explanation:

It takes leo 15 minutes = 15/60 = 0.25 hours to circle to school with speed of

12km/hr .

Distance covered = speed*Time.

Distance covered = 12*0.25

Distance covered= 3 km

So the distance to be covered each time is 3km.

If speed increase to 18 km/he

Time taken = distance/speed

Time taken = 3/18

Time= 1/6 hour

Or 1/6 * 60 = 60/6 = 10 minutes

Which equation represents a line that passes through (2,-2) and has a slope of 3?

y-2 = 3(x +
y – 3 = 2(x + ?)
y +
= 3(x - 2)
y +
= 2(x - 3)

Answers

y=3x-8 is the answer , maybe u can find it in this equations

At 95% confidence, what is the margin of error of the number of eligible people under 20 years old who had a driver's license in year A? (Round your answer to four decimal places.

Answers

Answer:

(0.6231 , 0.6749)

Step-by-step explanation:

With the information we have, it is impossible to solve the exercise, therefore I was looking for information to complete it and we have to:

the sample proportion is 64.9%, or 0.649 plus the sample size is 1300 (n)

Now, we have that the standard error is given by:

SE = (p * (1 - p) / n) ^ (1/2)

replacing

SE = (0.649 * (1 - 0.649) / 1300) ^ (1/2)

SE = 0.0132

Now we have that confidence level is 95%, hence α = 1 - 0.95 = 0.05

α / 2 = 0.05 / 2 = 0.025, Zc = Z (α / 2) = 1.96

With this we can calculate margin of error like so:

ME = z * SE

ME = 1.96 * 0.0132

ME = 0.0259

Finally the interval would be:

CI = (p - ME, p + ME)

CI = (0.649 - 0.0259, 0.649 + 0.0259)

CI = (0.6231, 0.6749)

The nth term of a geometric sequence is given by an = 27(0.1)n - 1. Write the first five terms of this sequence.

Answers

Answer:

The first first five terms of this sequence are

27 ,2.7 ,0.27 ,0.027 , 0.0027

Step-by-step explanation:

[tex]a(n) = 27(0.1)^{n - 1} [/tex]

where n is the number of term

For the first term

n = 1

[tex]a(1) = 27(0.1)^{1 - 1} = 27(0.1) ^{0} [/tex]

= 27(1)

= 27

Second term

n = 2

[tex]a(2) = 27(0.1)^{2 - 1} = 27(0.1)^{1} [/tex]

= 27(0.1)

= 2.7

Third term

n = 3

[tex]a(3) = 27(0.1)^{3 - 1} = 27(0.1)^{2} [/tex]

= 0.27

Fourth term

n = 4

[tex]a(4) = 27(0.1)^{4 - 1} = 27(0.1)^{3} [/tex]

= 0.027

Fifth term

n = 5

[tex]a(5) = 27(0.1)^{5 - 1} = 27(0.1)^{4} [/tex]

= 0.0027

Hope this helps you

What is the value of x?

Enter your answer in the box.

Answers

Answer:

x=11

Step-by-step explanation:

Since the lines in the middle are parallel, we know that both sides are proportional to each other.

6:48 can be simplified to 1:8

Since we know the left side ratio is 1:8, we need to match the right side with the same ratio

We can multiply the ratio by 5 to match 5:3x+7

5:40

5:3x+7

Now we can set up the equation: 40=3x+7

Subtract 7 from both sides

3x=33

x=11

It was found that the mean length of 200 diodes (LED) produced by a company
was 20.04 mm with a standard deviation of 0.02mm. Find the probability that a diode
selected at random would have a length less than 20.01mm​

Answers

Answer:

6.68% probability that a diode selected at random would have a length less than 20.01mm​

Step-by-step explanation:

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this question:

[tex]\mu = 20.04, \sigma = 0.02[/tex]

Find the probability that a diode selected at random would have a length less than 20.01mm​

This is the pvalue of Z when X = 20.01. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{20.01 - 20.04}{0.02}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

6.68% probability that a diode selected at random would have a length less than 20.01mm​

Bailey and Jade both play basketball. The table and graph show the total number of games that each of their teams won over six weeks. A coordinate plane labeled Jade's Team. The x-axis is labeled Weeks and the y-axis is labeled Wins. Points plotted are (1, 0), (2, 1), (3, 3), (4, 5), (5, 6), and (6, 7). Bailey’s Team Number of weeks Wins 1 2 2 2 3 3 4 4 5 4 6 6 After which week had the two teams won the same number of games? week 1 week 2 week 3 week 5

Answers

Answer:

Week 3

Step-by-step explanation:

Week one was 1,0

Week two was 2,1

Week three was 3,3 which is the same number the teams have won

Therefore the answer is week 3

Hope this helps

The amount of syrup that people put on their pancakes is normally distributed with mean 63 mL and standard deviation 13 mL. Suppose that 43 randomly selected people are observed pouring syrup on their pancakes. Round all answers to 4 decimal places where possible.

What is the distribution of XX? XX ~ N(_______,_________)
What is the distribution of ¯xx¯? ¯xx¯ ~ N(______,_________)
If a single randomly selected individual is observed, find the probability that this person consumes is between 61.4 mL and 62.8 mL. ________
For the group of 43 pancake eaters, find the probability that the average amount of syrup is between 61.4 mL and 62.8 mL. _________
For part d), is the assumption that the distribution is normal necessary? No Yes
please only answer if you are able to answer all parts correctly

Answers

Answer:

(a) X ~ N([tex]\mu=63, \sigma^{2} = 13^{2}[/tex]).

    [tex]\bar X[/tex] ~ N([tex]\mu=63,s^{2} = (\frac{13}{\sqrt{43} } )^{2}[/tex]).

(b) If a single randomly selected individual is observed, the probability that this person consumes is between 61.4 mL and 62.8 mL is 0.0398.

(c) For the group of 43 pancake eaters, the probability that the average amount of syrup is between 61.4 mL and 62.8 mL is 0.2512.

(d) Yes, for part (d), the assumption that the distribution is normally distributed necessary.

Step-by-step explanation:

We are given that the amount of syrup that people put on their pancakes is normally distributed with mean 63 mL and a standard deviation of 13 mL.

Suppose that 43 randomly selected people are observed pouring syrup on their pancakes.

(a) Let X = amount of syrup that people put on their pancakes

The z-score probability distribution for the normal distribution is given by;

                      Z  =  [tex]\frac{X-\mu}{\sigma}[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean amount of syrup = 63 mL

            [tex]\sigma[/tex] = standard deviation = 13 mL

So, the distribution of X ~ N([tex]\mu=63, \sigma^{2} = 13^{2}[/tex]).

Let [tex]\bar X[/tex] = sample mean amount of syrup that people put on their pancakes

The z-score probability distribution for the sample mean is given by;

                      Z  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where, [tex]\mu[/tex] = mean amount of syrup = 63 mL

            [tex]\sigma[/tex] = standard deviation = 13 mL

            n = sample of people = 43

So, the distribution of [tex]\bar X[/tex] ~ N([tex]\mu=63,s^{2} = (\frac{13}{\sqrt{43} } )^{2}[/tex]).

(b) If a single randomly selected individual is observed, the probability that this person consumes is between 61.4 mL and 62.8 mL is given by = P(61.4 mL < X < 62.8 mL)

   P(61.4 mL < X < 62.8 mL) = P(X < 62.8 mL) - P(X [tex]\leq[/tex] 61.4 mL)

  P(X < 62.8 mL) = P( [tex]\frac{X-\mu}{\sigma}[/tex] < [tex]\frac{62.8-63}{13}[/tex] ) = P(Z < -0.02) = 1 - P(Z [tex]\leq[/tex] 0.02)

                                                           = 1 - 0.50798 = 0.49202

  P(X [tex]\leq[/tex] 61.4 mL) = P( [tex]\frac{X-\mu}{\sigma}[/tex] [tex]\leq[/tex] [tex]\frac{61.4-63}{13}[/tex] ) = P(Z [tex]\leq[/tex] -0.12) = 1 - P(Z < 0.12)

                                                           = 1 - 0.54776 = 0.45224

Therefore, P(61.4 mL < X < 62.8 mL) = 0.49202 - 0.45224 = 0.0398.

(c) For the group of 43 pancake eaters, the probability that the average amount of syrup is between 61.4 mL and 62.8 mL is given by = P(61.4 mL < [tex]\bar X[/tex] < 62.8 mL)

   P(61.4 mL < [tex]\bar X[/tex] < 62.8 mL) = P([tex]\bar X[/tex] < 62.8 mL) - P([tex]\bar X[/tex] [tex]\leq[/tex] 61.4 mL)

  P([tex]\bar X[/tex] < 62.8 mL) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{62.8-63}{\frac{13}{\sqrt{43} } }[/tex] ) = P(Z < -0.10) = 1 - P(Z [tex]\leq[/tex] 0.10)

                                                           = 1 - 0.53983 = 0.46017

  P([tex]\bar X[/tex] [tex]\leq[/tex] 61.4 mL) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] [tex]\leq[/tex] [tex]\frac{61.4-63}{\frac{13}{\sqrt{43} } }[/tex] ) = P(Z [tex]\leq[/tex] -0.81) = 1 - P(Z < 0.81)

                                                           = 1 - 0.79103 = 0.20897

Therefore, P(61.4 mL < X < 62.8 mL) = 0.46017 - 0.20897 = 0.2512.

(d) Yes, for part (d), the assumption that the distribution is normally distributed necessary.

Which comparison is correct?
0.298 < 0.289
0.420 > 0.42
1.32 < 1.319
d) 3.544 > 3.455

Answers

Step-by-step explanation:

Option D is the correct answer because 3.544 is greater than 3.455

Option D is true in given comparison.

Here,

We have to find the correct comparison.

What is Decimal expansion?

The decimal expansion terminates or ends after finite numbers of steps. Such types of decimal expansion are called terminating decimals.

Now,

In option D;

The one tenth of 3.544 is 5 and place value of one tenth number in 3.455 is 4.

Clearly, 5 > 4

So, 3.544 > 3.455

Hence, option D; 3.544 > 3.455 is true.

Learn more about the Decimal expansion visit:

https://brainly.com/question/26301999

#SPJ2

A car travelling from Ibadan to Lagos at 90 km/hr

takes 1 hour 20 min. How fast must one travel to

cover the distance in one hour?

Answers

Answer:

A velocity of 120km/h is needed to cover the distance in one hour

Step-by-step explanation:

The velocity formula is:

[tex]v = \frac{d}{t}[/tex]

In which v is the velocity, d is the distance and t is the time.

A car travelling from Ibadan to Lagos at 90 km/hr takes 1 hour 20 min.

This means that [tex]v = 90, t = 1 + \frac{20}{60} = 1.3333[/tex]

We use this to find d.

[tex]v = \frac{d}{t}[/tex]

[tex]90 = \frac{d}{1.3333}[/tex]

[tex]d = 90*1.3333[/tex]

[tex]d = 120[/tex]

The distance is 120 km.

How fast must one travel to cover the distance in one hour?

Velocity for a distance of 120 km(d = 120) in 1 hour(t = 1). So

[tex]v = \frac{d}{t}[/tex]

[tex]v = \frac{120}{1}[/tex]

[tex]v = 120[/tex]

A velocity of 120km/h is needed to cover the distance in one hour

The International Air Transport Association surveys business travelers to develop quality ratings for transatlantic gateway airports. The maximum possible rating is 10. Suppose a simple random sample of 50 business travelers is selected and each traveler is asked to provide a rating for the Miami International Airport. The ratings obtained from the sample of 50 business travelers follow. Click on the datafile logo to reference the data. 6 4 6 8 7 7 6 3 3 8 10 4 8 7 8 7 5 9 5 8 4 3 8 5 5 4 4 4 8 4 5 6 2 5 9 9 8 4 8 9 9 5 9 7 8 3 10 8 9 6Develop a 95% confidence interval estimate of the population mean rating for Miami.

Answers

Answer:

The 95% confidence interval for the population mean rating is (5.73, 6.95).

Step-by-step explanation:

We start by calculating the mean and standard deviation of the sample:

[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{50}(6+4+6+. . .+6)\\\\\\M=\dfrac{317}{50}\\\\\\M=6.34\\\\\\s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{49}((6-6.34)^2+(4-6.34)^2+(6-6.34)^2+. . . +(6-6.34)^2)}\\\\\\s=\sqrt{\dfrac{229.22}{49}}\\\\\\s=\sqrt{4.68}=2.16\\\\\\[/tex]

We have to calculate a 95% confidence interval for the mean.

The population standard deviation is not known, so we have to estimate it from the sample standard deviation and use a t-students distribution to calculate the critical value.

The sample mean is M=6.34.

The sample size is N=50.

When σ is not known, s divided by the square root of N is used as an estimate of σM:

[tex]s_M=\dfrac{s}{\sqrt{N}}=\dfrac{2.16}{\sqrt{50}}=\dfrac{2.16}{7.071}=0.305[/tex]

The degrees of freedom for this sample size are:

[tex]df=n-1=50-1=49[/tex]

The t-value for a 95% confidence interval and 49 degrees of freedom is t=2.01.

The margin of error (MOE) can be calculated as:

[tex]MOE=t\cdot s_M=2.01 \cdot 0.305=0.61[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=M-t \cdot s_M = 6.34-0.61=5.73\\\\UL=M+t \cdot s_M = 6.34+0.61=6.95[/tex]

The 95% confidence interval for the mean is (5.73, 6.95).

If TU = 6 units, what must be true? SU + UT = RT RT + TU = RS RS + SU = RU TU + US = RS

Answers

Answer:

Since RT = 12, TU = 6 and RS = 24, T and U are the midpoints of RS and TS respectively. This means that SU + UT = RT.

Answer:

su+ut=rt

Step-by-step explanation:

HELP!!!! 25 POINTS AND BRAINLIEST ANSWER!!!!


Look at photo above!

Answers

Answer:

8.96 seconds

Step-by-step explanation:

A triangle has sides of lengths 9, 7, and 12. Is it a right triangle? Explain.

Answers

Answer:

Yes based on the numbers .

Step-by-step explanation:

Answer:Yes

Step-by-step explanation:Based on the number given, it shows that there is a hypotenuse (The longest side of a right triangle, in this case being 12), And opposite (Another part of the right triangle, that could be either 9 or 7), and the adjacent (The line next to the opposite, which could be 9 or 7)

A positive integer is twice another. The sum of the reciprocals of the two positive integers is 3/14. Find the two integers.

Answers

Answer:

The integers are 7 and 14.

Step-by-step explanation:

y = 2x

1/y + 1/x = 3/14

1/(2x) + 1/x 3/14

1/(2x) + 2/(2x) = 3/14

3/(2x) = 3/14

1/2x = 1/14

2x = 14

x = 7

y = 2x = 2(7) = 14

Answer: The integers are 7 and 14.

The required two integers are 7 and 14

This is a question on word problems leading to the simultaneous equation:

Let the two unknown integers be x and y. If a positive integer is twice another, then x = 2y .......... 1

Also, if the sum of the reciprocals of the two positive integers is 3/14, then:

[tex]\frac{1}{x}+ \frac{1}{y} =\frac{3}{14}[/tex] ..........2

Substitute equation 1 into 2

[tex]\frac{1}{2y} +\frac{1}{y} =\frac{3}{14} \\[/tex]

Find the LCM of 2y and y

[tex]\frac{1+2}{2y} =\frac{3}{14} \\\frac{3}{2y} =\frac{3}{14} \\\\cross \ multiply\\2y \times 3=3 \times 14\\6y=42\\y=\frac{42}{6}\\y=7[/tex]

Substitute y = 7 into equation 1:

Recall that x = 2y

[tex]x = 2(7)\\x = 14[/tex]

Hence the required two integers are 7 and 14.

Learn more here: https://brainly.com/question/17671977

is a parallelogram sometimes always or never a trapezoid

Answers

yes

Step-by-step explanation:

parallelogram are quadrilaterals with two sets of parallel sides. since square must be quadrilaterals with two sets of parallel sides ,then all squares are parallelogram ,a trapezoid is quadrilateral.

Not sure how to solve this

Answers

Answer:

x     y

8     -2

0     0

12    3

Step-by-step explanation:

The equation you are given is:

[tex] y = \dfrac{1}{4}x [/tex]

To find y, replace the given x-value in the table with x in the equation, and solve for y.

When x = -8, you get, replacing x with -8:

[tex] y = \dfrac{1}{4}(-8) [/tex]

Simplify:

[tex] y = -2 [/tex]

This gives you the line in the table:

-8     -2

When x = 0, you get, replacing x with 0:

[tex] y = \dfrac{1}{4}(0) [/tex]

Simplify:

[tex] y = 0 [/tex]

This gives you the line on the table:

0     0

To find x, replace the given y-value in the table with y in the equation, and solve for x.

When y = 3, you get, replacing y with 3:

[tex] 3 = \dfrac{1}{4}x [/tex]

Simplify:

[tex] 3 \times 4 = \dfrac{1}{4}x \times 4 [/tex]

[tex] 12 = x [/tex]

This gives you the line in the table:

12     3

Answer

1) -2

2) 0

3) 12

Explanation

y = 1/4x, in order to obtain the y value you substitute the x value into the equation.

When x = -8

y = 1/4 • -8 = -2

When x = 0

y = 1/4 • 0 = 0

When you want to obtain the x value, rearrange equation then substitute the y value

y = 1/4x

Multiply both sides by 4

4y = x

When y = 3

3 • 4 = 12

<~>\_/<~> Ho_odini <~>\_/<~>


Other Questions
Is President Donald Trump a good leader for this country? Why or why not? (Please be civilized and nice about your answer.) Why was the Committee on Public Information formed? A) to stop anti-war feelings B) to ensure equal rights on the home front C) to turn public support away from the Allies D) to inform the public about victories during World War I Given a double slit apparatus with slit distance 1 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 400 nm on the slits A DNA template is used to create an mRNA strand.An mRNA template is used to create a DNA strand.A DNA template is used to create a ribosome.An mRNA template is used to create a tRNA strand. A dependent _____ clause often helps qualify an infinitive or participle On one day in January, the temperature in Milwaukee, Wisconsin fell 12F from the high temperature to a low temperature of -8F. If t represents the high temperature, what is the value of t? why people cannot live on neptune two reson ? a=3 and b=4b/2 2 + (a2 - 1) Find the exact value by using a half-angle identity. cosine of pi divided by twelve Given that [Image Display]What is the domain of the function f ?a.only positive integersc.only negative integersb.All non zero real numbers.d.All real numbers including zero 11. Write the equation of the line in slope-intercept form that is parallel to the line y = - 4x + 2 andpasses through (2-4) (Q) How much, in grams, do 8.85 x 1024 atoms of zinc weigh?A. 3.49 x 1049 gB. 961 gC. 4.45 gD.5.33 x 1047 gE. 1.47 g In the first week of July, a record 1 comma 100 people went to the local swimming pool. In the second week, 125 fewer people went to the pool than in the first week. In the third week, 145 more people went to the pool than in the second week. In the fourth week, 185 fewer people went to the pool than in the third week. What is the percent decrease in the number of people who went to the pool over these four weeks? The percent decrease of people who went to the pool is __ % please help me on number 11 if you know how to :) ! Humans can see the star Polaris from Earth. It appears to move during different times of the year. Explain why Polaris appears to move. On December 2, Coley Corp. reacquired 1,000 shares of its $2 par value common stock for $27 each. On December 20, Coley Corp. reissued 400 shares for $15 each. Which of the following is correct regarding the journal entry for the reissued shares?a. Debit Cash $15,000. b. Credit Treasury Stock $10,800. c. Credit Paid in Capital - Treasury Stock $5,200. d. Credit Treasury Stock $6,000. Structuring a Special-Order Problem Harrison Ford Company has been approached by a new customer with an offer to purchase 10,000 units of its model IJ5 at a price of $5 each. The new customer is geographically separated from the company's other customers, and existing sales would not be affected. Harrison normally produces 75,000 units of IJ5 per year but only plans to produce and sell 60,000 in the coming year. The normal sales price is $12 per unit. Unit cost information for the normal level of activity is as follows: Direct materials $1.75 Direct labor 2.50 Variable overhead 1.50 Fixed overhead 3.25 Total $9.00 Fixed overhead will not be affected by whether or not the special order is accepted.Direct Materials $1.75Direct Labor 2.50Variable Overhead 1.50Fixed Overhead 3.25Total $9.00Requried:a. What are the relevant costs and benefits of the two alternatives (accept or reject the special order)?b. By how much will operating income increase or decrease if the order is accepted? Explain how the interconnectedness of living and nonliving things is shown in the biogeochemical cycles. Please could someone help me? Write the standard equation of the circle with center (4, -2) and radius 5.2.