Answer:
The results of the hypothesis test suggests that there is no difference in productivity level of two warehouses (East Coast and the Midwest Coast).
p-value = 0.0473
Step-by-step explanation:
To perform this test we first define the null and alternative hypothesis.
The null hypothesis plays the devil's advocate and usually takes the form of the opposite of the theory to be tested. It usually contains the signs =, ≤ and ≥ depending on the directions of the test.
While, the alternative hypothesis usually confirms the the theory being tested by the experimental setup. It usually contains the signs ≠, < and > depending on the directions of the test.
For this question, we want to test if there is a difference in productivity level of the two warehouses (East Coast and the Midwest Coast).
Hence, the null hypothesis would be that there isn't significant evidence to suggest that there is a difference in productivity level of two warehouses (East Coast and the Midwest Coast). That is, there is no difference in the productivity level of two warehouses (East Coast and the Midwest Coast).
The alternative hypothesis is that there is significant evidence to suggest that there is a difference in productivity level of two warehouses (East Coast and the Midwest Coast).
Mathematically, if the average productivity level of the East Coast group is μ₁, the average productivity level of the Midwest group is μ₂ and the difference in productivity level is μ = μ₂ - μ₁
The null hypothesis is represented as
H₀: μ = 0 or μ₂ = μ₁
The alternative hypothesis is represented as
Hₐ: μ ≠ 0 or μ₂ ≠ μ₁
So, to perform this test, we need to compute the test statistic
Test statistic for 2 sample mean data is given as
Test statistic = (μ₂ - μ₁)/σ
σ = √[(s₂²/n₂) + (s₁²/n₁)]
μ₁ = average productivity level of the East Coast group = 1299 parts shipped
n₁ = sample size of East Coast group surveyed = 35
s₁ = standard deviation of the East Coast group sampled = 350
μ₂ = average productivity level of the Midwest group = 1456 parts shipped
n₂ = sample size of Midwest group surveyed = 35
s₂ = standard deviation of the Midwest group sampled = 297
σ = √[(297²/35) + (350²/35)] = 77.5903160379 = 77.59
We will use the t-distribution as no information on population standard deviation is provided
t = (1456 - 1299) ÷ 77.59
= 2.02
checking the tables for the p-value of this t-statistic
Degree of freedom = df = n₁ + n₂ - 2 = 35 + 35 - 2 = 68
Significance level = 0.01
The hypothesis test uses a two-tailed condition because we're testing in both directions.
p-value (for t = 2.02, at 0.01 significance level, df = 68, with a two tailed condition) = 0.047326
The interpretation of p-values is that
When the (p-value > significance level), we fail to reject the null hypothesis and when the (p-value < significance level), we reject the null hypothesis and accept the alternative hypothesis.
So, for this question, significance level = 0.01
p-value = 0.047326
0.047326 > 0.01
Hence,
p-value > significance level
This means that we fail to reject the null hypothesis & say that there isn't enough evidence to suggest that there is a difference in productivity level of two warehouses (East Coast and the Midwest Coast).
Hope this Helps!!!
Ten different numbers are written on pieces of paper and thrown into a hat. The sum of all the numbers is 205. What is the probability of selecting four numbers that have a sum greater than 82
Answer:
The probability is 40%
Step-by-step explanation:
a) There are ten pieces of paper with ten numbers
Probability of selecting four pieces of paper = 4/10 or 40%
Probability that the four numbers selected will have a sum greater than 82 = 82/205 = 40%
Therefore, the probability of selecting four numbers that have a sum greater than 82 out of ten numbers totalling 205 is 40%.
b) Probability is the ratio of the number of outcomes favourable for the event to the total number of possible outcomes. In other words, it is a measure of the likelihood of an event (or measure of chance).
–9(w + 585) = –360 w = ______
Answer:
w = 15
Step-by-step explanation:
-9(w + 585) = -360w
-9w -5265 = -360w
351w = 5265
w=15
I need help urgent plz someone help me solved this problem! Can someone plz help I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!
Answer:
Step-by-step explanation:
t=V100-50/4
t=V50/4=1.76≈1.8 s
when h=0
t=V100/4=10/4=2.5 s
Answer: a) (5√2)/4 ≈ 1.77 seconds
b) 5/2 = 2.5 seconds
Step-by-step explanation:
[tex]t=\dfrac{\sqrt{100-h}}{4}\\\\\\h=50\rightarrow t=\dfrac{\sqrt{100-50}}{4}\\\\\\.\qquad \qquad =\dfrac{\sqrt{50}}{4}\\\\\\.\qquad \qquad =\large\boxed{\dfrac{5\sqrt2}{4}}\\\\\\\\h=0\rightarrow t=\dfrac{\sqrt{100-0}}{4}\\\\\\.\qquad \qquad =\dfrac{\sqrt{100}}{4}\\\\\\.\qquad \qquad =\dfrac{{10}}{4}\\\\\\.\qquad \qquad =\large\boxed{\dfrac{5}{2}}[/tex]
in triangle ABC shown below, Segment DE is parallel to Segment AC:
Answer:
Selected option is correct
Step-by-step explanation:
Triangle BDE and BAC are similar because of the two pairs of equal angles (AA)
1. angle B
2. angle BDE = angle BAC
Identify the range of the function shown in the graph.
Answer:
B
Step-by-step explanation:
The range is all values of y. Y goes from -1 to 1. Please mark brainliest.
Answer:
see below
Step-by-step explanation:
The domain of the function is the possible x values
The domain is all real values since x can be any number
The range of the function is the possible y value
The values of y go from -1 to 1 so
-1 ≤y≤1
798/8×41 rounded to one significant figure
Answer:
2.5
Step-by-step explanation:
the other persons answer is wrong
The number after rounding to the one significant figure is 4000.
What is significant figure?
The term significant figures refers to the number of important single digits (0 through 9 inclusive) in the coefficient of an expression in scientific notation
What is round off?Rounding off means a number is made simpler by keeping its value intact but closer to the next number
According to the given question we have an expression.
[tex]\frac{798}{8} (41)[/tex]
When we evaluate this expression we get
[tex]\frac{798}{8} (41)[/tex]
[tex]=99.75(41)[/tex]
[tex]= 4089.75[/tex]
Here, the first significant figure is 4 and the second one is 0 which is less than 5.
Hence, the number after rounding to the one significant figure is 4000.
Find out more information about rounding off here:
https://brainly.com/question/17353491
#SPJ2
If (x) = 3x - 5 and g(x) = x + 3, find (f - g)(x).
O A. 8 - 2x
O B. 2x-2
O c. 2x-8
O D. 4x-2
Answer:
C
Step-by-step explanation:
(f-g)(x)=(3x-5)-(x+3) = 3x-5-x-3 = 2x-8
Answer:
2x -8
Step-by-step explanation:
f (x) = 3x - 5
g(x) = x + 3,
(f - g)(x) = 3x - 5 - ( x+3)
Distribute the minus sign
= 3x-5 -x-3
Combine like terms
= 2x -8
m−4+m−5 how do i solve this?
Answer:
2m-9
Step-by-step explanation:
m-4+m-5
=m+m-4-5
=2m-9
Answer:
2m-9
Step-by-step explanation:
m-4+m-5
take the like terms
= 2m-4-5
= 2m-9
Sorry if that didn't help
Select the action you would use to solve 4x = 16. Then select the property
that justifies that action.
A. Action: Divide both sides by 4.
B. Property: Multiplication property of equality.
C. Action: Multiply both sides by 4.
D. Property: Division property of equality.
E. Property: Addition property of equality.
O F. Action: Add 4 to both sides.
Answer:
A.
Step-by-step explanation:
Since you are trying to find x, you have to divide both sides by 4 to isolate x and get your answer.
n a nature conservatory, the ratio of butterflies to total number of flying insects is 36 to 100. There are 450 total flying insects. (a) Create a table for how many butterflies there are for 1, 50, and 100 flying insects. Show your work. (b) How many butterflies are in the conservatory? Show your work.
Answer:
There are 172 butterflies in the conservatory.
Step-by-step explanation:
Given
ratio of butterflies to total number of flying insects is 36 to 100
total number of butterflies / total number of flying insects = 36 / 100 = 9/25
Create a table for how many butterflies there are for 1, 50, and 100 flying insects.
Let the number of butter flies be x
when total no. of insects = 1
total number of butterflies / total number of flying insects =9/25=x/1
=> 9/25= x/1
=> x = 9/25
____________________________________
when total no. of insects = 50
total number of butterflies / total number of flying insects =9/25=x/50
=> 9/25= x/50
=> x = 9/25 * 50 = 18
_______________________________________
when total no. of insects = 100
total number of butterflies / total number of flying insects =9/25=x/100
=> 9/25= x/100
=> x = 9/25 * 100= 36
Thus, table is
butterfly total no of insects
9/25 1
50 18
100 36
______________________________________________
Given there There are 450 total flying insects in the conservatory
again using the same ratio and taking no. of butterflies as x
total number of butterflies / total number of flying insects =9/25=x/450
9/25=x/450
=>x = 9/25 * 450 = 9*18 = 172
Thus, there are 172 butterflies in the conservatory.
Answer:
There are 162 butterflies in the conservatory.
Step-by-step explanation:
Given
ratio of butterflies to total number of flying insects is 36 to 100
total number of butterflies / total number of flying insects = 36 / 100 = 9/25
Create a table for how many butterflies there are for 1, 50, and 100 flying insects.
Let the number of butter flies be x
when total no. of insects = 1
total number of butterflies / total number of flying insects =9/25=x/1
=> 9/25= x/1
=> x = 9/25
____________________________________
when total no. of insects = 50
total number of butterflies / total number of flying insects =9/25=x/50
=> 9/25= x/50
=> x = 9/25 * 50 = 18
_______________________________________
when total no. of insects = 100
total number of butterflies / total number of flying insects =9/25=x/100
=> 9/25= x/100
=> x = 9/25 * 100= 36
Thus, table is
butterfly total no of insects
9/25 1
50 18
100 36
______________________________________________
Given there There are 450 total flying insects in the conservatory
again using the same ratio and taking no. of butterflies as x
total number of butterflies / total number of flying insects =9/25=x/450
9/25=x/450
=>x = 9/25 * 450 = 9*18 = 162
Thus, there are 162 butterflies in the conservatory.
The highway fuel economy of a 2016 Lexus RX 350 FWD 6-cylinder 3.5-L automatic 5-speed using premium fuel is a normally distributed random variable with a mean of μ = 26.50 mpg and a standard deviation of σ = 3.25 mpg.
Required:
a. What is the standard error of X and the mean from a random sample of 25 fill-ups by one driver?
b. Within what interval would you expect the sample mean to fall, with 98 percent probability?
Answer:
a) 0.65 mpg
b) Between 24.99 mpg and 28.01 mpg.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation, which is also called standard error, [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question, we have that:
[tex]\mu = 26.50, \sigma = 3.25, n = 25, s = \frac{3.25}{\sqrt{25}} = 0.65[/tex]
a. What is the standard error of X and the mean from a random sample of 25 fill-ups by one driver?
s = 0.65 mpg
b. Within what interval would you expect the sample mean to fall, with 98 percent probability?
From the: 50 - (98/2) = 1st percentile
To the: 50 + (98/2) = 99th percentile
1st percentile:
X when Z has a pvalue of 0.01. So X when Z = -2.327.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]-2.327 = \frac{X - 26.50}{0.65}[/tex]
[tex]X - 26.50 = -2.327*0.65[/tex]
[tex]X = 24.99[/tex]
99th percentile:
X when Z has a pvalue of 0.99. So X when Z = 2.327.
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]2.327 = \frac{X - 26.50}{0.65}[/tex]
[tex]X - 26.50 = 2.327*0.65[/tex]
[tex]X = 28.01[/tex]
Between 24.99 mpg and 28.01 mpg.
Approximate the area under the curve y = x^3 from x = 2 to x = 5 using a Right Endpoint approximation with 6 subdivisions.
Answer:
182.8125
Step-by-step explanation:
Given:
y = x^3
from [2,5] using 6 subdivisions
deltax = (5 - 2)/6 = 3/6 = 0.5
hence the subdivisions are:
[2, 2.5]; [2.5, 3]; [3, 3.5]; [3.5, 4]; [4, 3.5]; [4.5, 5]
hence the right endpoints are:
x1 = 2.5; x2 = 3; x3 = 3.5; x4 =4; x5 = 4.5; x6 = 5
now the area is given by:
A = deltax*[2.5^3 + 3^3 + 3.5^3 + 4^3+ 4.5^3 + 5^3]
A = 0.5*365.625
A = 182.8125
Area using Right Endpoint approximation is 182.8125
The area of the region is an illustration of definite integrals.
The approximation of the area of the region R is 182.8125
The given parameters are:
[tex]\mathbf{f(x) = x^3}[/tex]
[tex]\mathbf{Interval = [2,5]}[/tex]
[tex]\mathbf{n = 6}[/tex] ------ sub intervals
Using 6 sub intervals, we have the partitions to be:
[tex]\mathbf{Partitions = [2,2.5]\ u\ [2.5, 3]\ u\ [3,3.5]\ u\ [3.5,4]\ u\ [4,4.5]\ u\ [4.5,5]}[/tex]
List out the right endpoints
[tex]\mathbf{x= 2.5,\ 3,\ 3.5,\ 4,\ 4.5,\ 5}[/tex]
Calculate f(x) at these partitions
[tex]\mathbf{f(2.5) = 2.5^3 = 15.625}[/tex]
[tex]\mathbf{f(3) = 3^3 = 27}[/tex]
[tex]\mathbf{f(3.5) = 3.5^3 = 42.875}[/tex]
[tex]\mathbf{f(4) = 4^3 = 64}[/tex]
[tex]\mathbf{f(4.5) = 4.5^3 = 91.125}[/tex]
[tex]\mathbf{f(5) = 5^3 = 125}[/tex]
So, the approximated value of the definite integral is:
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx \frac{1}{2}(\sum f(x))}[/tex]
This becomes
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx \frac{1}{2}(15.625 + 27 + 42.875 + 64+91.125 + 125)}[/tex]
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx \frac{1}{2} \times 365.625}[/tex]
[tex]\mathbf{\int\limits^5_2 {f(x)} \, dx \approx 182.8125}[/tex]
Hence, the approximation of the area of the region R is 182.8125
Read more about definite integrals at:
https://brainly.com/question/9897385
Assume that cans are filled so that the actual amounts have a mean of 17.00 ounces. A random sample of 36 cans has a mean amount of 17.79 ounces. The distribution of sample means of size 36 is normal with an assumed mean of 17.00 ounces and a standard deviation of 0.08 ounce.
Required:
How many standard deviations is the sample mean from the mean of the distribution of sample?
Answer:
The sample mean is 9.875 standard deviations from the mean of the distribution of sample
Step-by-step explanation:
Z-score:
In a set with mean [tex]\mu[/tex] and standard deviation s, the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{s}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:
[tex]X = 17.79, \mu = 17, s = 0.08[/tex]
How many standard deviations is the sample mean from the mean of the distribution of sample?
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{17.79 - 17}{0.08}[/tex]
[tex]Z = 9.875[/tex]
The sample mean is 9.875 standard deviations from the mean of the distribution of sample
Q.04: (11 points) Given the polar curve r = e θ , where 0 ≤ θ ≤ 2π. Find points on the curve in the form (r, θ) where there is a horizontal or vertical tangent line. g
I suppose the curve is [tex]r(\theta)=e^\theta[/tex].
Tangent lines to the curve have slope [tex]\frac{dy}{dx}[/tex]; use the chain rule to get this in polar coordinates.
[tex]\dfrac{dy}{dx}=\dfrac{dy}{d\theta}\dfrac{d\theta}{dx}=\dfrac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}[/tex]
We have
[tex]y(\theta)=r(\theta)\sin\theta\implies\dfrac{dy}{d\theta}=\dfrac{dr}{d\theta}\sin\theta+r(\theta)\cos\theta[/tex]
[tex]x(\theta)=r(\theta)\cos\theta\implies\dfrac{dx}{d\theta}=\dfrac{dr}{d\theta}\cos\theta-r(\theta)\sin\theta[/tex]
[tex]r(\theta)=e^\theta\implies\dfrac{dr}{d\theta}=e^\theta[/tex]
[tex]\implies\dfrac{dy}{dx}=\dfrac{e^\theta\sin\theta+e^\theta\cos\theta}{e^\theta\cos\theta-e^\theta\sin\theta}=\dfrac{\sin\theta+\cos\theta}{\cos\theta-\sin\theta}[/tex]
The tangent line is horizontal when the slope is 0, which happens wherever the numerator vanishes:
[tex]\sin\theta+\cos\theta=0\implies\sin\theta=-\cos\theta\implies\tan\theta=-1[/tex]
[tex]\implies\theta=\boxed{-\dfrac\pi4+n\pi}[/tex]
(where [tex]n[/tex] is any integer)
The tangent line is vertical when the slope is infinite or undefined, which happens when the denominator is 0:
[tex]\cos\theta-\sin\theta=0\implies\sin\theta=\cos\theta\implies\tan\theta=1[/tex]
[tex]\implies\theta=\boxed{\dfrac\pi4+n\pi}[/tex]
The function graphed is reflected across the x-axis to create a new function. Which is true about the domain and range of each function? Both the domain and range change. Both the range and domain stay the same. The domain stays the same, but the range changes. The range stays the same, but the domain changes.
Answer:
Domain stays the same while the range changes
Step-by-step explanation:
While reflecting cross x-axis, the x coordinates remains the same while the y-coordinate changes to its opposite.
=> x- coordinate = Domain
=> y-coordinate = Range
The domain stays the same, but the range changes. is true about the domain and range of each function. Option C is correct.
What is the domain and range of a function?Domain is the set of values for which the given function is defined.Range is the set of all values which the given function can output.
When reflecting across the x-axis, the x coordinates remain constant, but the y coordinate changes to its inverse.
The Domain represent as x-coordinate and the range as y-coordinate
The domain stays the same, but the range changes. is true about the domain and range of each function. Option C is correct.
Hence, option C is correct.
Learn more about appropriate domain here:
https://brainly.com/question/20073127
#SPJ2
Graph the line y=-1/3x+2
Answer:
Graphed below.
Step-by-step explanation:
The slope of the line is -1/3.
The y-intercept is at (0, 2).
The x-intercept is at (6, 0).
Mr.Chang needs to ship 8 boxes of cookies in a packing carton. Each box is a tight rectangular prism 8 inches long, 5 inches wide, and 3 inches high. What is the volume in cubic inches, of each box?
Answer:
120 inches cubed
Step-by-step explanation:
The formula for finding the volume of a rectangular prism is length * width * height.
In this case, 8 inches long is the length, 5 inches is the width, and 3 inches is the height.
So multiplying all of those together gets you 120 inches cubed.
In a basketball shooting competition there are ten balls from 1-10. The number of points earned is based on the number on the ball (I.e shoots a 7 gets 7 points), if a person misses 2 shots what number is not possible
52
44
41
38
35
The answer is 41 because all of the them are in the 7 times table .so I deducted 2 from each one of them and 41 was not part
Please answer this correctly
Answer:
12.5%
Step-by-step explanation:
There is only one number 5 from a total of 8 parts.
1 out of 8.
1/8 = 0.125
P(5) = 12.5%
Answer:
12.5%
Step-by-step explanation:
Spinner divided in parts = 8
Number 5 = 1
P(5) = 12.5%
Please answer this for me!!! 25 points to whoever answers this!!!!!!
Sean, Angelina, and Sharon went to an office supply store. Sean bought 7 pencils, 8 markers, and 7 erasers. His total was $22.00. Angelina spent $19.50 buying 4 pencils, 8 markers, and 6 erasers. Sharon bought 6 pencils, 4 markers, and 7 erasers for $17.75. What is the cost of each item?
Answer:
Pencil = $0.25
Marker = $1.00
Eraser = $1.75
Step-by-step explanation:
Let P denote pencils, M denote markers and E denote erasers. The quantities of each item and total amounts spent by each person can be modeled into the following linear system:
[tex]7P+8M+7E=22\\4P+8M+6E=19.5\\6P+4M+7E=17.75[/tex]
Solving the linear system:
[tex]7P-4P+8M-8M+7E-6E=22-19.5\\3P+E=2.5\\E=2.5-3P \\\\7P+8M+7E-2*(6P+4M+7E)=22-2*17.75\\-5P-7E=-13.5\\-5P*-7*(2.5-3P)=-13.5\\16P=-13.5+17.5\\P=0.25\\E=2.5-0.25*3\\E=1.75\\7P+8M+7E =22\\7*0.25+8M+7*1.75 =22\\8M=8\\M=1[/tex]
The price of each item is:
Pencil = $0.25
Marker = $1.00
Eraser = $1.75
Solve by quadratic Formula:
Answer:
x = 1, x = .333
Step-by-step explanation:
Answer:
x = 1 and x = 1/3
Step-by-step explanation:
Here the coefficients of this quadratic are a = 3, b = -4 and c = 1.
The discriminant is b^2 - 4ac, or (-4)^2 - 4(3)(1) = 16 - 12 = 4.
Thus, the roots are:
-(-4) ± √4 4 ± 2
x = ---------------- = ------------- => x = 1 and x = 1/3
2(3) 6
The angles of a
quadrilateral, taken in order
are y, 5y, 4y
and
2y.
Find these angles
Answer:
30, 150, 120, and 60 degrees
Step-by-step explanation:
Since the sum of the interior angles in a quadrilateral is 360 degrees:
y+5y+4y+2y=360
12y=360
y=30
2y=60, 4y=120, 5y=150
Hope this helps!
Step-by-step explanation:
y+5y+ 4y + 2y=360°(sum of a Quadrilateral)
12y=360°
divide both sides by 12
y=30°
5y=(5×30)=150°
4y=(4×30)=120°
2y=(2×30)=60°
Convert 100 kilometers to meters.
Answer:
100,000 meters
Step-by-step explanation:
There are 1000 meters in a kilometer so there are 100,000 meters in 100 kilometers.
Answer:
it is 100000 kilometers
Step-by-step explanation:
use the metric system and you get 10000 kilometers.
A teacher based in California calculated a particular date in the calendar and named it Square Root Day. Try and find out why the day was named so. Can you find more such days? When was last square root day and when is next square root day
Answer:
may 5 the is squareroot day and it is when the day and the month has the first two digits in the date are the square root of the last two digits. examples 2nd February,2004 3rd March 2009 and the last time we had one was April 4th 2016. The next square root day is May 5th 2025
Please answer this correctly
Answer:
1/2
Step-by-step explanation:
The numbers 3 or odd are 1, 3, 5, and 7.
4 numbers out of 8.
4/8 = 1/2
P(3 or odd) = 1/2
[tex] 3 {x}^{2} - 15x = 15[/tex]
[tex]3x^2-15x= 15\\\\x^2 -5x = 5\\\\x^2-5x-5=0\\\\\Delta = 25+20\\\\\Delta = 45\\\\\\x = \dfrac{5\pm \sqrt{\Delta}}{2}\\\\\\x = \dfrac{5\pm \sqrt{45}}{2}\\\\\\x = \dfrac{5\pm 3\sqrt{5}}{2}\\\\\\[/tex]
What is the area of the figure below 13 in length, 11 in width, 29 in and 13 in?
Answer:
B. 533in²
Step-by-step explanation:
Step 1: Find the area of the rectangle
A = lw
A = (29)13
A = 377
Step 2: Find the leg of the triangle
13 + 11 = 24
Step 3: Find the area of the triangle
A = 1/2bh
A = 1/2(24)(13)
A = 12(13)
A = 156
Step 3: Add the areas of the 2 figures together
377 + 156 = 533
What is 66 tens + 24 tens
Answer:
900.
Step-by-step explanation:
66 tens are 660.
and 24 tens are 240.
so, It is 900!
A car is driving at 100 kilometers per hour. How far, in meters, does it travel in 3 seconds?
Answer:
The car travels 83 1/3 meters in 3 seconds.
Step-by-step explanation:
Speed of car = 100 KM/ hour
1 km= 1000m
1 hour = 3600 seconds
Lets find speed of car in Meters/second
speed of car in m/sec = 100*1000 m/3600 second
here we have taken 1000 for km and 3600 for hour
speed of car in m/sec = 100*1000 m/3600 second = 500/18 m/second
speed of car in m/sec = 250/9 m per sec
We know that
distance = speed*time
speed = 250/9 m per sec
time =3 second
distance = 250/9 * 3 meters = 250/3 meters = 83 1/3 meters.
Thus, car travels 83 1/3 meters in 3 seconds.
What is the best description of the transformation shown?What is the best description of the transformation shown?
Answer:
the correct answer is a reflection over the y axis
Step-by-step explanation:
The best description of the transformation shown will be;
''Reflection over the y - axis.''
What is Translation?
A transformation that occurs when a figure is moved from one location to another location without changing its size or shape is called translation.
Given that;
The transformation is shown in figure.
Now,
Clearly, A'B'C'D' is the mirror image of the ABCD across the y - axis.
So, The best description of the transformation shown will be;
''Reflection over the y - axis.''
Thus, The best description of the transformation shown will be;
''Reflection over the y - axis.''
Learn more about the translation visit:
https://brainly.com/question/1046778
#SPJ6