The area of a square is increasing at a rate of 2 square feet a second. If the square started with an area of 4 square feet, how much time passes before the area of the square equals 16 square feet

Answers

Answer 1

Answer:

  6 seconds

Step-by-step explanation:

The area of interest increases from 4 square feet to 16 square feet, an increase of 12 square feet. Since the area increases by 2 square feet each second, the time required for it to increase 12 square feet is ...

  (12 square feet)/(2 square feet/second) = 6 seconds


Related Questions

Solve for x: −3x + 3 < 6

Answers

Answer:x>-1

Step-by-step explanation:

Step 1: Subtract 3 from both sides.

-3x+3-3<6-3

-3x<3

Step 2: Divide both sides by -3.

-3x/-3<3/3

X>-1

Imagine you have a rectangular wooden block with dimensions of 10 cm x 3 cm x 8 cm (L x W x H). Required:a. What is the volume of your wooden block?b. What is the density of this wooden block if it has a mass of 168 g?

Answers

Answer:

a) The volume of the wooden block is 240 cm^3.

b) The density of the wooden block is 0.7 g/cm^3.

Step-by-step explanation:

The volume of the rectangular wooden block can be calculated as the multiplication of the length in each dimension: length, wide and height.

With dimensions 10 cm x 3 cm x 8 cm, the volume is:

[tex]V=L\cdot W\cdot H = 10\cdot 3\cdot 8=240[/tex]

The volume of the wooden block is 240 cm^3.

If we know that the mass of the wooden block is 168 g, we can calculate the density as:

[tex]\rho = \dfrac{M}{V}=\dfrac{168}{240}=0.7[/tex]

The density of the wooden block is 0.7 g/cm^3.

100 pts You have a bag of 15 marbles: 5 blue, 3 red, 4 green, and 3 yellow. You draw 3 marbles without replacement. Which action, performed before the draws, increases the probability of drawing 3 green marbles in a row?

Answers

Answer:

see below

Step-by-step explanation:

You can remove one or more of the other color marbles to increase the probability of drawing a green marble

or

You can add  one or more green marbles to have more green marbles in the bag

Please help with this problem

Answers

Answer:

The length of the short side is 14.5 units, the length of the other short side is 18.5 units, and the length of the longest side is 23.5 units.

Step-by-step explanation:

The Pythagorean Theorem

If a and b are the lengths of the legs of a right triangle and c is the length of the hypotenuse, then the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

This relationship is represented by the formula:

                                                     [tex]a^2+b^2=c^2[/tex]

Applying the Pythagorean Theorem  to find the lengths of the three sides we get:

[tex](x)^2+(x+4)^2=(x+9)^2\\\\2x^2+8x+16=x^2+18x+81\\\\2x^2+8x-65=x^2+18x\\\\2x^2-10x-65=x^2\\\\x^2-10x-65=0[/tex]

Solve with the quadratic formula

[tex]\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}[/tex]

[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

[tex]\mathrm{For\:}\quad a=1,\:b=-10,\:c=-65:\quad x_{1,\:2}=\frac{-\left(-10\right)\pm \sqrt{\left(-10\right)^2-4\cdot \:1\left(-65\right)}}{2\cdot \:1}\\\\x_{1}=\frac{-\left(-10\right)+ \sqrt{\left(-10\right)^2-4\cdot \:1\left(-65\right)}}{2\cdot \:1}=5+3\sqrt{10}\\\\x_{2}=\frac{-\left(-10\right)- \sqrt{\left(-10\right)^2-4\cdot \:1\left(-65\right)}}{2\cdot \:1}=5-3\sqrt{10}[/tex]

Because a length can only be positive, the only solution is

[tex]x=5+3\sqrt{10}\approx 14.5[/tex]

The length of the short side is 14.5, the length of the other short side is [tex]14.5+4=18.5[/tex], and the length of the longest side is [tex]14.5+9=23.5[/tex].

An elementary school is offering 3 language classes: one in Spanish, one in French, and one in German. The classes are open to any of the 100 students in the school. There are 28 students in the Spanish class, 26 in the French class, and 16 in the German class. There are 12 students who are in both Spanish and French, 4 who are in both Spanish and German, and 6 who are in both French and German. In addition, there are 2 students taking all 3 classes. If two students are randomly chosen, what is the probability that at exactly one of them does exactly two language classes.

Answers

Answer:

The probability that at exactly one of them does exactly two language classes is 0.32.

Step-by-step explanation:

We can model this variable as a binomial random variable with sample size n=2.

The probability of success, meaning the probability that a student is in exactly two language classes can be calculated as the division between the number of students that are taking exactly two classes and the total number of students.

The number of students that are taking exactly two classes is equal to the sum of the number of students that are taking two classes, minus the number of students that are taking the three classes:

[tex]N_2=F\&S+S\&G+F\&G-F\&S\&G=12+4+6-2=20[/tex]

Then, the probabilty of success p is:

[tex]p=20/100=0.2[/tex]

The probability that k students are in exactly two classes can be calcualted as:

[tex]P(x=k) = \dbinom{n}{k} p^{k}(1-p)^{n-k}\\\\\\P(x=k) = \dbinom{2}{k} 0.2^{k} 0.8^{2-k}\\\\\\[/tex]

Then, the probability that at exactly one of them does exactly two language classes is:

[tex]P(x=1) = \dbinom{2}{1} p^{1}(1-p)^{1}=2*0.2*0.8=0.32\\\\\\[/tex]

Butler Trucking Company has developed a regression equation to predict the delivery time for its drivers (y). The model is based on the miles traveled (x 1), the number of deliveries (x 2) and whether or not the travel will occur during rush hours (x 3 - 1 if during rush hour and 0 if not during rush hour). The regression equation that they use is y

Answers

Answer:

The answer is Y = 6.3973.

Note: Kindly find an attached document of the complete question to this solution

Sources: The complete question was researched from Quizlet site.

Step-by-step explanation:

Solution

Given that:

The regression  equation is given below:

Y = - 0.3302 + 0.0672 x₁ + 0.6735 x₂ + 0.9980 x₃

Now,

When x₂ = 5, x₁ = 50, x₃ = 0

Y = - 0.3302 + 0.0672 * 50 +0.6735 * 5

Y=  - 0.3302 + 3.36 + 3.3675

Y = 6.3973

Therefore the time (hour) it will take for the driver to make five deliveries on a 50 mile journey not during rush hour is 6.3973.

Single adults: According to a Pew Research Center analysis of census data, in 2012, 20% of American adults ages 25 and older had never been married. Suppose that we select 3 random samples of 500 adults from this population. Which of the following is most likely to occur with the three samples?
A. The number that had never been married will equal 20% in each of the three samples.B. The number that had never been married will vary in each sample due to the random selection of adults.C. The average for the three samples of the number of adults that had never been married will equal 20%.D. The number of adults that had never been married will increase for each sample because the number is generally increasing over time.

Answers

Answer:

Option B

Step-by-step explanation:

The number that had never been married will vary in each sample due to the random selection of adults.

This number will vary in each sample to the random selection process but they might or might not be as close as possible to one another after sampling.

What is the equation of the line with an X intercept of negative 2 and Y intercept of one

Answers

Answer:

y = 1/2x + 1

Step-by-step explanation:

Step 1: Find slope

(1-0)/(0+2) = 1/2

Step 2: Write equation

y = 1/2x + 1

Find the fifth term of an=(-1)^n/2n-1

a.-1/7 b.-1/9 c.1/9 d.1/7

Answers

Answer:

b) -1/9

Step-by-step explanation:

Given

              [tex]a_{n} = \frac{(-1)^{n} }{2n-1}[/tex]

First term

              [tex]a_{1} = \frac{(-1)^{1} }{2(1)-1} = -1[/tex]

second term

            [tex]a_{2} = \frac{(-1)^{2} }{2(2)-1} = \frac{1}{3}[/tex]

Third term

           [tex]a_{3} = \frac{(-1)^{3} }{2(3)-1} = \frac{-1}{5}[/tex]

Fourth term

          [tex]a_{4} = \frac{(-1)^{4} }{2(4)-1} = \frac{1}{7}[/tex]

Fifth term

         [tex]a_{5} = \frac{(-1)^{5} }{2(5)-1} = \frac{-1}{9}[/tex]

Answer:

B

Step-by-step explanation:

right on edge 2021

Can someone plz help me solved this problem! I’m giving you 10 points! I need help plz help me! Will mark you as brainiest!

Answers

Answer:

See the answers below.

Step-by-step explanation:

[tex]a.\:\frac{f\left(x\right)-f\left(a\right)}{x-a}=\frac{2x^2-x-5-\left(2a^2-a-5\right)}{x-a}\\\\=\frac{2x^2-x+a-2a^2}{x-a}\\\\=\frac{2\left(x+a\right)\left(x-a\right)-1\left(x-a\right)}{x-a}\\\\=\frac{\left(x-a\right)\left[2\left(x+a\right)-1\right]}{x-a}\\\\=2x+2a-1\\\\\\b.\:\frac{f\left(x+h\right)-f\left(x\right)}{h}=\frac{2\left(x+h\right)^2-\left(x+h\right)-5-\left(2x^2-x-5\right)}{h}\\\\=\frac{2\left(x^2+2xh+h^2\right)-\left(x+h\right)-5-\left(2x^2-x-5\right)}{h}\\[/tex]

Expand and simplify to get:

[tex]=\frac{2h^2+4xh-h}{h}\\\\=\frac{h\left(2h+4x-1\right)}{h}\\\\=2h+4x-1[/tex]

Best Regards!

B
Round your answer to the nearest hundredth.
A
9
B
5

Answers

Answer:

  56.25°

Step-by-step explanation:

The definition of the cosine function tells you that

  cos(B) = BC/BA

  B = arccos(BC/BA) = arccos(5/9)

  B ≈ 56.25°

State the size of angle 'n' in the triangle illustrated below.

Answers

Answer:

Option B

Step-by-step explanation:

<r = 32 degrees (alternate angles )

<r = <n = 32 degrees (vertical angles)

Lucy has to run two errands. She starts from home and travels 3 miles south to the post office. From the post office, she travels 4 miles east to the gas station. Then, from the gas station, she travels 5 miles to return home. The entire trip forms a triangle. What was the smallest angle made at her trip? A. At the gas station B. At Lucy's home C. At the post office D. It depends on the direction she is traveling

Answers

Answer:

the correct choice is A. At the gas station

Step-by-step explanation:

Lucy starts at home and travels 3 miles south to the post office. From the post office, she travels 4 miles east to the gas station. As it is known south and east directions form right angle. Since the entire trip forms a triangle, this triangle is right with right angle at the post office.

Call the vertices of this triangle P - post office, G - gas station, H - home. Then HP and PG are legs of this triangle and GH is hypotenuse.

From the given data:

HP=3;

PG=4;

GH=5;

∠P=90°.

The smallest angle is opposite to the smallest side. The smallest side is leg HP, so the smallest angle is G that is the angle at gas station.

Answer:

a

Step-by-step explanation:

Simplify the expression by combining like terms
15 + 12x – 5.2 + 4y - 7​

Answers

9.8 +12x+y-7

2.8+12x+4y

Select a composite number to break into factors. Continue factoring until all factors are prime

Answers

Answer:

2*2  * 2*2   * 2*3

Step-by-step explanation:

96 =16 *6

Break these down, since neither 16 nor 6 are prime

    = 4*4 * 2*3

4 in not prime, but 2 and 3 are prime

   = 2*2  * 2*2   * 2*3

All of these are prime

Answer:

22, 23

Step-by-step explanation:

Just got it right on edge 2021

N
Write the rate as a unit rate
729 riders in 9 subway cars
А
The unit rate is
This
(Simplify your answ
riders/car​

Answers

Answer:

Unit rate = 81  riders/ car.

Step-by-step explanation:

Given

729 riders in 9 cars

we have to find unit rate in terms of riders per car

let the the riders per car (i.e rate) be x.

If there are 9 cars then

total no. of riders in 9 cars = no. of cars *  riders per car = 9*x = 9x

given that 729 riders in 9 cars

then

9x = 729

=> x = 729/9 = 81

Thus, riders per car =  x = 81.

Unit rate is 81 riders per car.

Rod's quiz grades are 72, 74, 89, and90. What score on a fifth quiz will make his average woz grade at least 84?​

Answers

Answer: He would need at least a 95

Step-by-step explanation:

First I found the current average by adding 72, 74, 89, and 90 which equals 325.

Second, I worked backwards to see what the sum of his grades had to be by multiplying 84 times 5. 84 times 5 = 420

Now that we have both the current and the target sum, we find the difference by doing 420-325 which equals 95.

What is the distance between (8, -3) and (4, - 7)?

Answers

Answer:

[tex]distance=\sqrt{32}[/tex]  , which agrees with answer "c" in your list of possible options

Step-by-step explanation:

Use the formula for distance between two points [tex](x_1,y_1)[/tex], and [tex](x_2,y_2)[/tex] on the plane:

[tex]distance = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\distance= \sqrt{(4-8)^2+(-7-(-3))^2} \\distance= \sqrt{(-4)^2+(-4)^2} \\distance=\sqrt{16+16}\\distance=\sqrt{32}[/tex]

(−p 2 +4p−3)(p 2 +2)

Answers

Answer:

[tex]-p^4+4p^3-5p^2+8p-6[/tex]

I hope this help you :)

Any help would be greatly appreciated

Answers

Answer: 267.9

Step-by-step explanation:

Since we are given the radius, we can plug it into the equation given.

[tex]V=\frac{4}{3} \pi (4)^3[/tex]

[tex]V=\frac{4}{3} \pi (64)[/tex]

[tex]V=267.9[/tex]

Please answer this correctly

Answers

Answer:

The number of employees classified into groups as shown below:

1 - 10: 3 6 (2companies)

11-20: 16 (1 company)

21-30: 25, 26, 27 (3 companies)

31-40: 34, 35, 35, 35, 36 (5 companies)

41-50: 41, 43, 48, 48 (4 companies)

Hope this helps!

Answer:

11-20 is 1

31-40 is 5

Step-by-step explanation:

Just count the amount

Hope that helps :D

On a coordinate plane, a line goes through points (0, 1) and (3, 0). Y = one-half x minus 1. Identify the slope of the graphed line: Identify the y-intercept of the graphed line: Identify the slope of the line given by the equation: Identify the y-intercept of the line given

Answers

Answer:

(a)

[tex]Slope=-\dfrac{1}{3}\\$y-intercept =1[/tex]

(b)

[tex]Slope = \dfrac12\\$y-intercept=$ -1[/tex]

Step-by-step explanation:

Given a line which goes through the points: (0, 1) and (3, 0).

(a)Slope

[tex]m=\dfrac{0-1}{3-0}\\m=-\dfrac{1}{3}[/tex]

The slope-intercept form of the equation of a line is given as: y=mx+b

Therefore:

[tex]y=-\dfrac{1}{3}x+b\\$From the point (0,1), When x=0, y=1; Therefore:$\\1=-\dfrac{1}{3}(0)+b\\$Therefore:\\b=1[/tex]

The y-intercept of the line through points (0, 1) and (3, 0) is 1.

(b)Given the line:

[tex]y=\dfrac12x-1[/tex]

Comparing with the slope-intercept form of the equation of a line: y=mx+b

[tex]Slope = \dfrac12\\$y-intercept=$ -1[/tex]

Answer:

Identify the slope of the graphed line:

✔ -1/3

Identify the y-intercept of the graphed line:

✔ 1

Identify the slope of the line given by the equation:

✔ 1/2

Identify the y-intercept of the line given by the equation:

✔ -1

Step-by-step explanation:

Got it right on edge. 2020

:)) hope I helped.

According to the National Association of Theater Owners, the average price for a movie in the United States in 2012 was $7.96. Assume the population standard deviation is $0.50 and that a sample of 30 theaters was randomly selected.

Required:
a. Calculate the standard error of the mean.
b. What is the probability that the sample mean will be less than $7.75?
c. What is the probability that the sample mean will be less than $8.10?
d. What is the probability that the sample mean will be more than $8.20?

Answers

Answer:

(a) The standard error of the mean is 0.091.

(b) The probability that the sample mean will be less than $7.75 is 0.0107.

(c) The probability that the sample mean will be less than $8.10 is 0.9369.

(d) The probability that the sample mean will be more than $8.20 is 0.0043.

Step-by-step explanation:

We are given that the average price for a movie in the United States in 2012 was $7.96.

Assume the population standard deviation is $0.50 and that a sample of 30 theaters was randomly selected.

Let [tex]\bar X[/tex] = sample mean price for a movie in the United States

The z-score probability distribution for the sample mean is given by;

                              Z  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]  ~ N(0,1)

where,  [tex]\mu[/tex] = population mean price for a movie = $7.96

            [tex]\sigma[/tex] = population standard deviation = $0.50

            n = sample of theaters = 30

(a) The standard error of the mean is given by;

     Standard error  =  [tex]\frac{\sigma}{\sqrt{n} }[/tex]  =  [tex]\frac{0.50}{\sqrt{30} }[/tex]

                                =  0.091

(b) The probability that the sample mean will be less than $7.75 is given by = P([tex]\bar X[/tex] < $7.75)

  P([tex]\bar X[/tex] < $7.75) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{7.75-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z < -2.30) = 1 - P(Z [tex]\leq[/tex] 2.30)

                                                         = 1 - 0.9893 = 0.0107

The above probability is calculated by looking at the value of x = 2.30 in the z table which has an area of 0.9893.

(c) The probability that the sample mean will be less than $8.10 is given by = P([tex]\bar X[/tex] < $8.10)

  P([tex]\bar X[/tex] < $8.10) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] < [tex]\frac{8.10-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z < 1.53) = 0.9369

The above probability is calculated by looking at the value of x = 1.53 in the z table which has an area of 0.9369.

(d) The probability that the sample mean will be more than $8.20 is given by = P([tex]\bar X[/tex] > $8.20)

  P([tex]\bar X[/tex] > $8.20) = P( [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex] > [tex]\frac{8.20-7.96}{\frac{0.50}\sqrt{30} } }[/tex] ) = P(Z > 2.63) = 1 - P(Z [tex]\leq[/tex] 2.63)

                                                         = 1 - 0.9957 = 0.0043

The above probability is calculated by looking at the value of x = 2.63 in the z table which has an area of 0.9957.

Rewrite the expression using exponents .Then find the product

Answers

Answer:

[tex]m ^ {3/7}[/tex]

Step-by-step explanation:

=> [tex]\sqrt[7]{m^3}[/tex]

[tex]\sqrt[7]{}= ^\frac{1}{7}[/tex]

=> [tex]m^{3*1/7}[/tex]

=> [tex]m ^ {3/7}[/tex]

Among coffee drinkers, men drink a mean of 3.2 cups per day with a standard deviation of 0.8 cups. Assume the number of cups per day follows a normal distribution.

a. What proportion drink 2 cups per day or more?

b. What proportion drink no more than 4 cups per day?

c. If the top 5% of coffee drinkers are considered "heavy" coffee drinkers, what is the minimum number of cups consumed by a heavy coffee drinker?

d. If a sample of 20 men is selected, what is the probability that the mean number of cups per day is greater than 3?

Answers

Answer:

a) 0.9332 = 93.32% drink 2 cups per day or more.

b) 0.8413 = 84.13% drink no more than 4 cups per day

c) The minimum number of cups consumed by a heavy coffee drinker is 4.52.

d) 86.86% probability that the mean number of cups per day is greater than 3

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

When the distribution is normal, we use the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

[tex]\mu = 3.2, \sigma = 0.8[/tex]

a. What proportion drink 2 cups per day or more?

This is 1 subtracted by the pvalue of Z when X = 2. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{2 - 3.2}{0.8}[/tex]

[tex]Z = -1.5[/tex]

[tex]Z = -1.5[/tex] has a pvalue of 0.0668

1 - 0.0668 = 0.9332

0.9332 = 93.32% drink 2 cups per day or more.

b. What proportion drink no more than 4 cups per day?

This is the pvalue of Z when X = 4.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]Z = \frac{4 - 3.2}{0.8}[/tex]

[tex]Z = 1[/tex]

[tex]Z = 1[/tex] has a pvalue of 0.8413

0.8413 = 84.13% drink no more than 4 cups per day

c. If the top 5% of coffee drinkers are considered "heavy" coffee drinkers, what is the minimum number of cups consumed by a heavy coffee drinker?

This is the 100 - 5 = 95th percentile, which is X when Z has a pvalue of 0.95. So X when Z = 1.645. Then

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

[tex]1.645 = \frac{X - 3.2}{0.8}[/tex]

[tex]X - 3.2 = 1.645*0.8[/tex]

[tex]X = 4.52[/tex]

The minimum number of cups consumed by a heavy coffee drinker is 4.52.

d. If a sample of 20 men is selected, what is the probability that the mean number of cups per day is greater than 3?

Sample of 20, so applying the central limit theore with n = 20, [tex]s = \frac{0.8}{\sqrt{20}} = 0.1789[/tex]

This probability is 1 subtracted by the pvalue of Z when X = 3.

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{3 - 3.2}{0.1789}[/tex]

[tex]Z = -1.12[/tex]

[tex]Z = -1.12[/tex] has a pvalue of 0.1314

1 - 0.1314 = 0.8686

86.86% probability that the mean number of cups per day is greater than 3

y= -3/2x-6 x=15 plssssssssssssssssssssssss help

Answers

Answer:

-45/2 - 12/2 = -57/2

Step-by-step explanation:

Substitute 15 for x in the given equation:  y = (-3/2)x - 6 becomes

y = (-3/2)(15) - 6 = -45/2  -  6 when x = 15.  This is equivalent to -57/2

. A foreman for an injection-molding firm admits that on 23% of his shifts, he forgets to shut off the injection machine on his line. Failure to shut down at night causes the machine to overheat, increasing the probability that a defective molding will be produced during the early morning run from 5% to 15%. The plant manager randomly selects a molding from the early morning run and discovers it is defective. What is the probability that the foreman forgot to shut off the machine the previous night?

Answers

Answer:

P(F | D) = 47.26%

There is a 47.26% probability that the foreman forgot to shut off the machine the previous night.

Step-by-step explanation:

A foreman for an injection-molding firm admits that on 23% of his shifts, he forgets to shut off the injection machine on his line.

Let F denote the event that foreman forgets to shut off the machine.

Failure to shut down at night causes the machine to overheat, increasing the probability that a defective molding will be produced during the early morning run from 5% to 15%.

Let D denote the event that the mold is defective.

If the foreman forgets to shut off the machine then 15% molds get defective.

P(F and D) = 0.23×0.15

P(F and D) = 0.0345

If the foreman doesn't forget to shut off the machine then 5% molds get defective.

P(F' and D) = (1 - 0.23)×0.05

P(F' and D) = 0.77×0.05

P(F' and D) = 0.0385

The probability that the mold is defective is

P(D) = P(F and D) + P(F' and D)

P(D) = 0.0345 + 0.0385

P(D) = 0.073

The probability that the foreman forgot to shut off the machine the previous night is given by

∵ P(B | A) = P(A and B)/P(A)

For the given case,

P(F | D) = P(F and D)/P(D)

Where

P(F and D) = 0.0345

P(D) = 0.073

So,

P(F | D) = 0.0345/0.073

P(F | D) = 0.4726

P(F | D) = 47.26%

Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar. In a talent competition, half of the contestants are eliminated in each round. At the end of the nth round, 32 contestants remain. If there were 1,024 contestants at the start of the competition, what is the value of n? The value of n is .

Answers

Answer:

n =32

Step-by-step explanation:

If 1 contestant is eliminated each round

then of 1024contestants

32 left

1024/32=32

Answer:

n=32

Step-by-step explanation:

The answer to – 7x + y = -10

Answers

Step-by-step explanation:

y=7x-10

Answer:

[tex]\huge \boxed{y=7x-10}[/tex]

Step-by-step explanation:

[tex]-7x+y=-10[/tex]

[tex]\sf Add \ 7x \ on \ both \ sides.[/tex]

[tex]-7x+y+7x=-10+7x[/tex]

[tex]y=7x-10[/tex]

Dr. Miriam Johnson has been teaching accounting for over 20 years. From her experience, she knows that 60% of her students do homework regularly. Moreover, 95% of the students who do their homework regularly generally pass the course. She also knows that 85% of her students pass the course.

a. What is the probability that a student will do homework regularly and also pass the course?

b. What is the probability that a student will neither do homework regularly nor will pass the course?

c. Are the events "pass the course" and "do homework regularly" mutually exclusive? Explain.

d. Are the events "pass the course" and "do homework regularly" independent? Explain.

Answers

Answer:

a) The probability that a student will do homework regularly and also pass the course = P(H n P) = 0.57

b) The probability that a student will neither do homework regularly nor will pass the course = P(H' n P') = 0.12

c) The two events, pass the course and do homework regularly, aren't mutually exclusive. Check Explanation for reasons why.

d) The two events, pass the course and do homework regularly, aren't independent. Check Explanation for reasons why.

Step-by-step explanation:

Let the event that a student does homework regularly be H.

The event that a student passes the course be P.

- 60% of her students do homework regularly

P(H) = 60% = 0.60

- 95% of the students who do their homework regularly generally pass the course

P(P|H) = 95% = 0.95

- She also knows that 85% of her students pass the course.

P(P) = 85% = 0.85

a) The probability that a student will do homework regularly and also pass the course = P(H n P)

The conditional probability of A occurring given that B has occurred, P(A|B), is given as

P(A|B) = P(A n B) ÷ P(B)

And we can write that

P(A n B) = P(A|B) × P(B)

Hence,

P(H n P) = P(P n H) = P(P|H) × P(H) = 0.95 × 0.60 = 0.57

b) The probability that a student will neither do homework regularly nor will pass the course = P(H' n P')

From Sets Theory,

P(H n P') + P(H' n P) + P(H n P) + P(H' n P') = 1

P(H n P) = 0.57 (from (a))

Note also that

P(H) = P(H n P') + P(H n P) (since the events P and P' are mutually exclusive)

0.60 = P(H n P') + 0.57

P(H n P') = 0.60 - 0.57

Also

P(P) = P(H' n P) + P(H n P) (since the events H and H' are mutually exclusive)

0.85 = P(H' n P) + 0.57

P(H' n P) = 0.85 - 0.57 = 0.28

So,

P(H n P') + P(H' n P) + P(H n P) + P(H' n P') = 1

Becomes

0.03 + 0.28 + 0.57 + P(H' n P') = 1

P(H' n P') = 1 - 0.03 - 0.57 - 0.28 = 0.12

c) Are the events "pass the course" and "do homework regularly" mutually exclusive? Explain.

Two events are said to be mutually exclusive if the two events cannot take place at the same time. The mathematical statement used to confirm the mutual exclusivity of two events A and B is that if A and B are mutually exclusive,

P(A n B) = 0.

But, P(H n P) has been calculated to be 0.57, P(H n P) = 0.57 ≠ 0.

Hence, the two events aren't mutually exclusive.

d. Are the events "pass the course" and "do homework regularly" independent? Explain

Two events are said to be independent of the probabilty of one occurring dowant depend on the probability of the other one occurring. It sis proven mathematically that two events A and B are independent when

P(A|B) = P(A)

P(B|A) = P(B)

P(A n B) = P(A) × P(B)

To check if the events pass the course and do homework regularly are mutually exclusive now.

P(P|H) = 0.95

P(P) = 0.85

P(H|P) = P(P n H) ÷ P(P) = 0.57 ÷ 0.85 = 0.671

P(H) = 0.60

P(H n P) = P(P n H)

P(P|H) = 0.95 ≠ 0.85 = P(P)

P(H|P) = 0.671 ≠ 0.60 = P(H)

P(P)×P(H) = 0.85 × 0.60 = 0.51 ≠ 0.57 = P(P n H)

None of the conditions is satisfied, hence, we can conclude that the two events are not independent.

Hope this Helps!!!

Other Questions
help :rewrite 2.267 repeating 67 as a simplifed answer Find the difference.(4x2 - 6x+8) - (3x2 - 6x + 2) Students were told to write an essay about a tough-looking male "skinhead." Group A was told not to let their stereotypes about skinheads influence them. Group B was told nothing. Each student was later brought into a room with eight empty chairs. The first chair had a jacket draped over it that supposedly belonged to a skinhead. Group A students sat farther away from the jacket than did group B students. These events probably happened because: How could you turn the noun music into an adverb? 1.Add the suffix ian: musician 2.Add the suffix ality: musicality 3.Add the suffix ally: musically 4.Add the suffix al: musical HELLLP PLEASE || the graph below shows a conversion of energy for a skydive jumping out of a plane and landing safely on the ground. which energy is represented by line A? A) Potential B) Thermal C) Kinetic D) Total Energy You are the project manager for a cable service provider. Your project team is researching a new service offering. They have been working together for quite sometime and are in the performing stage of Team Development. A new member has been introduced to the team. Which of the following is true?A. The team will start all over again at the storming stage but quickly progress to the performing stage. B. The team will continue in the performing stage. C. The team will start all over again with the storming stage. D. The team will start all over again with the forming stage. What happens during a chemical reaction ? How many milliliters of a 1.5 m h2so4 are needed to neutralize 35ml sample of a 1.5 m solution?1) 17.5ml2) 35ml3) 52.5ml4) 3.0ml 4.3cm round to 3 decimal places? 1. Evaluate (101.5)? - (100.5) If 0.84 mol of CS2 reacts with oxygen completely according to the equation CS2() + 3 O2(g) CO2(g) + 2 SO2(g) what volume (total) would the products occupy if they were measured at STP? A 4400 W motor is used to do work. If the motor is used for 200 s, how much work could it do? (Power: P = W/t) 22 J 4200 J 4600 J 880,000 J The promising alternative energy sources currently under development are fuel cell technology and large-scale solar energy power. The probabilities that these two sources will be successfully developed and commercially viable in the next 10 years are 0.70 and 0.85, respectively. The successful development of these two energy sources are statistically independent. Determine the following: a. The probability that there will be energy supplied by these two alternative sources in the next 10 years. b. The probability that only one of the two alternative energy sources will be commercially viable in the next 10 years. Here's a graph of a linear function. Write theequation that describes that function.Express it in slope intercept form. Most of the money we're investing as part of this plan will get out the door immediately and godirectly to job-creation, generating or saving three to four million new jobs. And the vastmajority of these jobs will be created in the private sector-because, as these CEOs well know,business, not government, is the engine of growth in this country. But even as this plan putsAmericans back to work today, it will also make those critical investments in alternative energyand safer roads, better health care and modern schools that will lay the foundation for long-termgrowth and prosperity. And it will invest in broadband and emerging technologies ... becausethat is how America will retain and regain its competitive edge in the 21st century.Read the quotation above, an excerpt from a speech by a U.S. public official. The statement most directly reflects which of the following economic principles andcontradicts which other? (5 points)O Adam Smith's free enterprise, Karl Marx's social equityO Adam Smith's minimal but progressive taxation, John Maynard Keynes's government responsibilityJohn Maynard Keynes's government responsibility, Adam Smith's free enterpriseKarl Marx's social city, John Keynes's government responsibility According to a milk carton, 2% milk contains 70 % less fat than whole milk. The nutrition label on the other side of the carton states that one serving of this milk contains 2.5 grams of fat. How many grams of fat are in anequivalent serving of whole milk? Melanie needs to cut a carpet with two angles that each measure 80 and two angles that each measure 100. Name the quadrilaterals that could be the shape of the carpet. Which numbers are the means of the proportion shown belowA. 2 and 30B 2 and 200.3 and 30D. 3 and 20 A rule of law enabling a defendant to win even if all of plaintiff's allegations are true is a(n) _____. Select one: a. counterclaim b. affirmative defense c. deposition d. judgment notwithstanding the verdict What is the first step in simplifying the solution: log2 ^32 = xRewrite the equation as 2^x = 32Find the square root of 32Rewrite the equation as 2^32 = xFind 32^2